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HIERARCHICAL BAYESIAN ESTIMATION OF INEQUALITY
MEASURES WITH NONRECTANGULAR CENSORED SURVEY

DATA WITH AN APPLICATION TO WEALTH DISTRIBUTION OF
FRENCH HOUSEHOLDS

By Eric Gautier

CREST (ENSAE)

We consider the estimation of wealth inequality measures with
their confidence interval, based on survey data with interval censor-
ing. We rely on a Bayesian hierarchical model. It consists of a model
where, due to survey sampling and unit nonresponse, the summaries
of the wealth distribution of households are observed with error;
a mixture of multivariate models for the wealth components where
groups correspond to portfolios of assets; and a prior on the param-
eters. A Gibbs sampler is used for numerical purposes to do the in-
ference. We apply this strategy to the French 2004 Wealth Survey.
In order to alleviate the nonresponse, the amounts were systemati-
cally collected in the form of brackets. Matched administrative data
on the liability of the respondents for wealth tax and response to
overview questions are used to better localize the wealth components.
It implies nonrectangular multidimensional censoring. The variance
of the error term in the model for the population inequality measures
is obtained using linearization and taking into account the complex
sampling design and the various weight adjustments.

1. Introduction. The estimation of wealth inequality measures for a gi-
ven finite population (e.g., a country) is a difficult problem. A main compli-
cating issue is that wealth can be defined in different ways. Data on wealth
can be obtained from numerous sources—banks, notaries (inheritances), tax
declarations (e.g., wealth taxes) and surveys among them—that may differ
in their exact definitions. Fundamentally, these sources are often limited to
information on particular elements on wealth, and so do not provide good
indications of total net worth (that is, the current value of all marketable
or fungible assets less the current value of total liabilities or debts). The
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2 E. GAUTIER

sources may also not be representative of complete populations of interest;
for instance, data on a tax focused on high wealth brackets are inherently
limited to just those persons above the designated threshold.

Household surveys on wealth are a common way to collect data from wider
populations. American wealth surveys include the Survey of Consumer Fi-
nance (SCF) and the wealth extensions of the Panel Study of Income Dy-
namics (PSID). France’s public office for statistics and economic studies,
INSEE, designs and administers the wealth survey known as the Enquête
Patrimoine (hereafter referred to as EP). Though these surveys can use-
fully collect substantial amounts of information, they are far from perfect
as measures of wealth. The personal or intrusive nature of wealth questions
and their level of detail subject them to potentially high nonresponse rates
(due, perhaps, to fear of theft or confusion between the data collector and
tax authorities). It has been observed in the SCF that nonresponse is higher
among the rich [Kennickell (1998)], for whom answering the survey takes
a much longer time simply because assets are more numerous. Wealth can
also be inherently difficult to discuss accurately—for instance, it is diffi-
cult to know the “market value” of one’s personal or small business assets
without actually bringing them to market.

To ease collection of wealth information and to make the questions easier
and less intrusive to answer, it is now common to ask for bracket information
rather than specific amounts. In some surveys, intervals may be the only
responses; in others, displaying flash cards and asking for responses within
particular intervals may be used as a remedy when a respondent is hesitant
or unable to provide a single amount. Chand and Gan (2003) and Juster
and Smith (1997) discuss the conceptual advantages and disadvantages of
the collection of bracket data; the use of categorical, interval data or the
mixing of bracket and point-specific data also raise analytical challenges.

This paper addresses the specific challenges in using survey data to study
wealth inequality: the extent to which wealth is unevenly distributed across
the population, such as a small share of people holding a large share of
the wealth in a population group. Accordingly, one further complication
of survey-based data on wealth merits mention. Household surveys should
adequately represent the whole distribution of wealth, but the variance of
sample-survey-based estimates of wealth inequality can be reduced by over-
sampling the wealthy. The major surveys can vary greatly in the way they do
this: the PSID is principally targeted at studying lower-income populations
and thus not well suited for wealth inequality measures, while the SCF’s
dual-frame design includes a list sample of households likely to be wealthy,
using a stratification based on variables from individual tax returns.

In this paper we utilize data from the 2004 administration of the French
EP, the design of which was developed to address these methodological is-
sues. The survey asks only for interval measures for amounts of wealth; for
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some assets, the EP asked respondents to choose categorical brackets from
reference cards, but in others respondents could specify their own bounds.

The survey also mixed questions on specific components of wealth with
overview questions, as a check on consistency. To estimate total net worth,

information from the overview questions, individual components and limited
matching to tax data (liability under a French wealth tax) can be used to

provide tighter estimates. The EP oversamples very wealthy households via
a stratification based on proxies of wealth. Because of these features, the

EP survey design is very complex; confidence intervals are hard to obtain
even in the ideal cases where tight values of total net worth are observed for

all sampled households [see, e.g., Särndal, Swensson and Wretman (1992)].
The information on wealth that results from the EP are a set of intricate

domains, making it difficult or impossible to directly calculate wealth in-

equality measures.
This paper develops a solution for estimating wealth inequality based on

a Bayesian hierarchical model. We begin in Sections 2 and 3 by describing
the data source—the 2004 EP survey—in more detail, covering the survey

design and the comparison of EP results with other data sources. Section 4
introduces the inequality indices and the design based procedure to provide

an interval estimate in the ideal case where there is perfect response. Sec-
tion 5 presents the hierarchical model. Section 6 describes the multivariate

domains used as an information set for the posterior inference. Section 7
deals with the specific approach to inference. Section 8 presents the Gibbs

sampler used for numerical purposes. Section 9 presents the results for the
2004 EP. Section 10 concludes.

2. The 2004 French Wealth Survey.

2.1. General overview. Administered approximately every 6 years since

1986, the EP has become a critical reference on wealth in France. Unlike the
American surveys, response to the EP is mandatory rather than voluntary.

The EP provides information on wealth portfolios and the distributions of
a large number of assets of French households. It also collects information

on current and past employment, marital history, income, transmissions,
the modes of acquisition of the principal residence, debts, credit, risk aver-

sion, etc. EP data are widely used by three key constituencies: by INSEE
to establish the national accounts on wealth and as input to the French mi-

crosimulation model, by the French central bank (which partially funds the
survey collection), and by external researchers studying wealth inequalities

and dynamics.
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Table 1
Second phase oversampling of principal residences

Self-employed and Retired
company owners Executives people Others

Rich neighborhoods 4 3 3 2
Other neighborhoods 2 1.5 1.5 1

2.2. The sampling scheme, weighting and data collection. The collection
of the 2004 EP data took place from October 2003 to January 2004. It
is a survey on households in their principal residence. The sample design
has two phases. The first phase is common for all surveys on households in
France, previous to the renovated French census, and corresponds to sam-
pling in two sampling frames: the “Master Sample” (constructed from the
1999 census), and a sampling frame of real estate built after 1999. The Mas-
ter Sample is a sampling frame of cities or groups of smaller neighboring
towns or districts for larger cities. It was obtained using a stratified cluster
sampling with two or three stages, depending on the stratum. The 5 strata
correspond to the following: (1) the rural, (2) urban units with less than
20,000 inhabitants, (3) between 20,000 and 100,000, (4) more than 100,000
excluding Paris, and (5) Paris. The first phase of the 2004 EP corresponds,
therefore, to a stratified three to four stage sampling. In the first phase,
40,079 households were sampled. In the second phase, 15,025 households
were sampled according to a stratified sampling with unequal probabilities.
10 strata were chosen: 8 for principal residences at the time of the census,
1 for other dwellings at the time of the census and 1 for real estate built
after 1999. Unequal probabilities were used to include a priori more wealthy
households. We present, in Table 1, the proportions corresponding to the
second phase oversampling.

The initial weights were modified because they implied an estimate of
57.1% of home owners at the time of census, while the true percentage was
54.7%. Among the sampled units, 13,154 dwellings corresponded to principal
residences and were kept. Eventually, due to unit nonresponse, 9692 ques-
tionnaires remained. Sampling weights were adjusted again to account for
unit nonresponse, using stratification and assuming a uniform nonresponse
mechanism per strata. The initial weights were divided by response rates
per strata. The unit nonresponse is traditionally modeled as a third phase
Poisson sampling and the new weights are usually treated as if they were the
true inverse of the inclusion probabilities: we propose an alternative method
in Section 10. In order to decrease the variance of the survey sampling es-
timators and to account for the changes in the French population since the
1999 census, a calibration procedure was used [Deville and Särndal (1992)].
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More details on the design, unit nonresponse adjustment and calibration are
available on the survey’s webpage.1

2.3. The survey questionnaire. The survey questionnaire comprised two
parts of unequal length. The first part was face-to-face interviews using
computer-assisted personal interviewing (CAPI), like for the SCF. A sec-
ond questionnaire on general attitudes and risk exposure was left with the
households, to be returned by mail in a prepaid envelope.

The CAPI questionnaire was organized as follows: the first section gath-
ered information on the people in the household; the second section was
concerned with holdings of assets and liabilities; sections were then orga-
nized according to types of assets, and amounts were collected in brackets;
then data on income, loans, donations, inheritance, debts and life annuities
was collected.
The section on financial wealth gathered information on every type of finan-

cial asset: checking accounts, saving accounts, CD accounts, profit sharing,
corporate savings plans, pension schemes, participating insurances, stocks,
bonds, etc. For the market value of each asset, people were asked to choose
a bracket within asset specific range cards. For example, in the case of check-
ing accounts and amounts in euros, the following system was used:

[0,750), [750,1500), [1500,3000), [3000,7500), [7500,∞).

At the end of this section, an overview question was asked:
“Taking into account everything that you own, what is the value of your

entire financial wealth?”
The amount was collected within the following ranges:

[0,3000), [3000,7500), [7500,15,000), [15,000,30,000),

[30,000,45,000), [45,000,75,000), [75,000,105,000),

[105,000,150,000), [150,000,225,000), [225,000,300,000),

[300,000,450,000), [450,000,∞).

There were also overview questions for some blocks of assets.
The section on wealth in real estate gathered information on the principal

residence, holiday homes, pied-à-terres, rentals and private parking lots.
The section on professional wealth gathered information on assets and

liabilities potentially related to the exercise of a profession. There was a dis-
tinction between those which are directly related to a profit-generating occu-
pation in the case of the self-employed or company owners, and those which
are not. In the first case, the liabilities are loans and the assets are farmed

1http://www.insee.fr/fr/themes/detail.asp?reg_id=0&ref_id=fd-patri04.

http://www.insee.fr/fr/themes/detail.asp?reg_id=0&ref_id=fd-patri04
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Table 2
Type of response for different variables

Share of: Principal Financial Total wealth
(in percent, without weighting) residence wealth (last question)

Holdings 55.7 100 100
Point measures 12.3 0 0
Unbounded brackets 2.8 0.7 7.5
Bounded brackets 76.6 94.4 86.7
Item nonresponse 8.3 4.0 4.8

lands, vineyards, orchards, woods, other lands, buildings, machinery, equip-
ment, vehicles, livestock, stock, clientele, commercial/farming leases, etc. In
the second case, the assets are lands, buildings, machinery, equipment, vehi-
cles, livestock, stock, etc., which are not used to generate profit. For all the
amounts which are not related to financial wealth, people were asked to pro-
vide a bracket with limits that they could choose based on their evaluation.

A specific question concerning total wealth was asked at the end of the
section gathering amounts:

“Suppose you sell everything, including durable goods, works of art, private
collections, precious metals and jewelry, how much could you get for it?”

The values of the last items were not collected in the previous sections.
Indeed, it could have been troublesome if the pollster asked for such infor-
mation and a robbery occurred after the visit. The amount was collected
within the same predefined system of brackets as for the overview question
on financial wealth. The threshold for the higher and unbounded bracket
is 450,000 e. It was chosen well below the threshold of 720,000 e for the
liability for the ISF (Impôt Sur la Fortune, a specific French wealth tax) in
order to mitigate the nonresponse rate.

In Table 2 we compare 3 variables in terms of the type of response that
was obtained. Figures are percentages out of the responding households,
sample weights are not taken into account. Point measures occur when the
respondents provide their own limits to the bracket and when these limits
are equal. When we consider wealth components at an aggregate level, with
a sum of detailed wealth components, as soon as one component is measured
in interval, the sum falls into some interval. We see in Table 2 that genuine
item nonresponse is relatively low.

3. Quality of the data, comparison and matching with administrative
data. Brackets for components and those involving several components
(overview questions on some groups of financial assets, the total financial
wealth and the total wealth) were not always coherent. This enabled the
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detection of errors like confusion between Francs and Euros or errors due to
the difficulty in recall when summing amounts. Consistency checks based on
these overview questions were used during the CAPI administration of the
survey.

A fraction of the households surveyed in the 2004 EP have been inter-
viewed later by sociologists in order to learn how the survey was perceived.
It was mainly aimed to understand the households’ difficulties to talk about
money and wealth. Overall, the households felt a sense of civic responsibility
to answer the questions. They found it less confidential to answer questions
about holdings than questions about amounts. They seemed to know quite
well their wealth holdings and talked very easily about their principal resi-
dence. The financial wealth was a more difficult topic. For example, though
the surveys asked for the current value of each asset, many households an-
swered the value initially invested and found it difficult to take into account
the appreciation or depreciation when they had not cashed it or sold the
asset. For more information on these interviews see Cordier and Girardot
(2007) and the references therein.

Concerning wealth holdings, we will make the assumption that the infor-
mation on holdings is always accurate. This is certainly only partially true.
However, questions on holdings are indeed less indiscreet than questions on
the values of the assets. Moreover, the questionnaire was designed so that
very early, right after the collection of the information on the households
members, questions on holdings were asked without any reference to the
amounts. In this synthetic block, answering yes or no thus took the exact
same time. It is only later, once the full portfolio of wealth was known, that
questions on amounts were asked. It did not appear from the testing of the
questionnaire that there was bias on the holdings of products on the bottom
of the list. Comparison of the results on holdings of financial assets in the
EP with data provided by banks (gathered by the French central bank) have
proved, in the past, to be very satisfactory. The publication of the results
on holdings by INSEE is judged satisfactory by the professionals that use it.
What occurred often, though, is people who declared in the first stage that
they hold a product but then refused to give a bracketed amount.

There is another issue with the values of the components of wealth which
is related to the type of data that is collected. The last question of the sec-
tion on amounts which collects the total net worth used a system of broad
intervals, topcoded at a relatively low value in order that the households
do not suspect a tax investigation and provide an answer to the question.
Based solely on this question, a billionaire is observationally equivalent to
a household whose total wealth is 450,001 e. Though in theory oversam-
pling more a priori wealthy people improves the accuracy of estimators of
inequality indices like the Gini; in practice, because we collected less precise
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information on the wealthiest, oversampling increased the number of house-
holds for which we measured wealth inaccurately. Because it is important to
have a good picture of the wealth, especially for the wealthy who contribute
significantly to the inequality, it is useful to gather the most adequate in-
formation on the total net worth and the wealth components. This is why
we not only use the last overview question but use also aggregated wealth
components.

We were also able to match the survey data with a file provided by the
French tax authority which gives the tax liability of the surveyed households
for the 2004 ISF, a specific tax, paid only by wealthy households. Taxable
wealth is very different from total net worth we are interested in. Still, it is,
as we will see, very useful to anchor the values of the wealth components and
provide for each responding household a smaller multidimensional domain
containing the values of the aggregated wealth components.

4. Inequality indices and survey sampling estimators.

4.1. Inequality indices. For the sake of completeness we present the three
inequality measures that we use: the Gini (based on the Lorentz curve), the
Atkinson family and the Theil.

The Lorentz curve plots the proportion of national wealth earned by each
given percentage of households, ordered from the poorest to the richest. It is
increasing and convex. Complete equality corresponds to a straight 45 degree
line through the origin. In this case the poorest x% of households possess
x% of the national wealth. The greater the departure from this straight line,
the higher the concentration of wealth among a relatively small number
of households. The Gini index corresponds to twice the area between the
straight line of equal distribution and the Lorentz curve. The closer it is to
one, the higher the concentration. If we denote by tk the (total) wealth of
the household of index k from 1 to N , N the total number of households
in the French population, r(k) =

∑N
i=1 1{ti ≤ tk} the rank of tk, 1{·} the

indicator function and t= 1
N

∑N
k=1 tk, the formula for the Gini is

G=

∑N
k=1(2r(k)− 1)tk

N2t
− 1.

The inequality measures introduced in Atkinson (1970) are

I = 1−
U−1((1/N)

∑N
k=1U(tk))

t
,

where U is a utility function which is increasing and concave and the numer-
ator is the equally distributed equivalent of total wealth corresponding to
the expected utility (or social welfare function). They lie between zero and
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one. The closer they are to one, the more unequal the distribution of wealth.
Interpretation is easy: if I = 0.9, then we would need only 10% of the na-
tional wealth to achieve the same level of social welfare. Under the constant
relative inequality aversion assumption, which corresponds to the require-
ment that I is homogeneous of degree zero (i.e., invariant with respect to
proportional changes in wealth), the function U is necessarily among a spe-
cific one parameter family of functions [Atkinson (1970)]. Hence, we get the
following family of inequality indices indexed by ε > 0:

Aε = 1−

(

1

N

N
∑

k=1

(

tk
t

)1−ε
)1/(1−ε)

if ε 6= 1,

A1 = 1−

(

N
∏

k=1

tk
t

)1/N

.

Because ε is a measure of inequality aversion, higher values of ε lead to more
weight being attached to transfers at the lower end of the distribution.

The inequality measure introduced in Theil (1967), derived from entropy,
is defined by

T =
1

N

N
∑

k=1

tk
t
log

(

tk
t

)

.

The Theil decomposability holds: in a population consisting of several groups,
inequality can be expressed as the sum of within group inequality and be-
tween group inequality. The first is the sum of the inequality levels of each
group weighted by the share of national wealth it receives. The second is
the inequality index computed on average values, where we replace each in-
dividual wealth by the average wealth of each group. As shown in Foster
(1983), this property is characteristic of the Theil index among inequality
measures that: (1) satisfy the Pigou–Dalton transfer principle (inequality
increases under a transfer from the poor to the rich); (2) are invariant under
permutations of the individual wealth; and (3) are homogeneous of degree
zero.

4.2. Design based point and interval estimates. We present in the case
of the Gini index, and if wealth components were observed, classical sur-
vey sampling estimators to obtain confidence intervals. Recall that in Sec-
tion 2 (see also Section 6), for the most part, only brackets with possibly
unbounded upper and/or lower bounds are available. Thus, in reality, wealth
components are not observed. The formulas for the estimators and the vari-
ance calculations presented below cannot be applied. We present in Section 5
a hierarchical Bayesian model to deal with this missing data problem.
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Given sampling weights (wk)
N
k=1, a design-based estimate of the Gini is

Ĝ=

∑

k∈S(2r̂(k)− 1)wktk
∑

k∈S wk
∑

k∈S wktk
− 1,(4.1)

where S is the randomly drawn set of indices of sampled households and
r̂(k) =

∑

j∈S wj1{tj ≤ tk} is the estimated rank of the wealth of the house-
hold of index k.

Hereafter, we denote by m the cardinal of S. In practice, a normal ap-
proximation for the design-based estimate is usually used in order to obtain
interval estimates. Justification of the asymptotic normality of quite gen-
eral nonlinear estimators, such as that of the Gini, in the case of stratified
two-stage sampling is given in Shao (1994). It is also proposed to use the
jackknife to obtain an estimate of the asymptotic variance. Asymptotics in
survey statistics assume that the finite population quantities correspond to
draws in a super-population. Besides the jackknife, other methods can be
used. In this article, we decided to proceed as explained in Deville (1999). It
is based on the following: (1) using linearization, under fairly general assump-
tions, we can approximate the variance of a complex statistic by the variance
of a Horvitz–Thompson type estimator where the observations are the lin-
earized variables; (2) the variance of the new estimator can be decomposed
into several separate variances to account for stratification, multistages and
multiphases sampling; and (3) each variance is approximated, using analytic
formulas for each simpler sampling procedures [Särndal, Swensson and Wret-
man (1992)]. Unequal probability sampling of fixed sample size was treated
as a maximum entropy sampling. This allows us to use variance approxima-
tions that use only the first-order inclusion probabilities [see (2.3) in Deville
(1999) and Matei and Tillé (2005)] which are usually good approximations.
Calibration amounts to modifying the initial weights in such a way that the
estimated totals

∑

k∈S wkX
i
k for a set of variables Xi are in line with known

totals. Deville and Särndal (1992) show that this improves the accuracy of
the estimators. The whole variance calculations for Horvitz–Thompson esti-
mators, accounting for the complex sampling scheme and calibration, can be
obtained using the POULPE software developed by INSEE [Caron, Deville
and Sautory (1998)]. Linearization of the estimators of the summary of the
wealth distribution we are interested in is easily obtained using the rules
explained in Deville (1999) and Dell et al. (2002).

5. The hierarchical model. We shall now use capital letters for random
variables and lowercase letters for realizations. We also use bold characters
for vectors.

We now enter into a key part of the paper where we present a method
that allows us to adapt the methodology of Section 4, which requires precise
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measurements, to the case where only bracketed data is available. Again,
we restrict our attention for model (I) below to the estimation of the Gini,
but the methodology is used in Section 9 for many summaries of the wealth
distribution. We start off from the approximation

Ĝ≈G+

√

̂V (Ĝ)E,

where Ĝ is an asymptotically normal design-based estimate of the Gini, for
example (4.1). The error term E is a standard centered Gaussian random
variable. The variance estimate, which can be computed as described in

Section 4, is denoted by ̂V (Ĝ).

Due to the measurement in a bracketed format, in practice, Ĝ and ̂V (Ĝ)
cannot be computed. We rely on a three-stage model:

1. model (I) for the quantities of interest, here the Gini, conditional on the
wealth of the households in the sample (T1, . . . , Tm) = (t1, . . . , tm),

G= Ĝ(t1, . . . , tm) +

√

̂V (Ĝ)(t1, . . . , tm)E,
(5.1)

E is a standard normal error term;

2. model (DGP) for the wealth components of the sampled households, the
sum of which is equal to Tk for household k, conditional on the value of
covariates and on parameters;

3. the prior distribution (P) of the parameters Θ of density π(θ).

We make the following assumption.

Assumption (A). E is independent of the distribution of (T1, . . . , Tm)
conditional on the covariates specified in the DGP.

5.1. Model (I). In equation (5.1) G is random, though it is assumed to
have an unknown but fixed value in the finite population of French house-
holds. Reverting the Gaussian approximation to obtain interval estimates is
classical in statistics. Also, from the super-population argument (used for
asymptotics in survey statistics), it makes perfect sense to consider the finite
population quantities as random. Conditional on (T1, . . . , Tm) = (t1, . . . , tm),

Ĝ(t1, . . . , tm) and ̂V (Ĝ)(t1, . . . , tm) can be computed using (4.1) and the
variance estimation procedure of Section 4.

5.2. Assumption (A). It corresponds to the missing at random (MAR)
[Little and Rubin (2002)] assumption for the selection of the sample and
the unit nonresponse. This holds for the first selection stage. Indeed, the
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variables used in the unequal probability sampling of dwellings in the Master
Sample are available. Recall that sampling from the sampling frame for new
dwellings does not rely on unequal probabilities. However, Assumption (A)
requires that the unit nonresponse mechanism is also missing at random,
and, thus, that in the DGP model we have included the adequate covariates
allowing us to ignore the nonresponse mechanism. We will see below that
Assumption (A) is also important to justify the use of the conditional log-
normal distribution.

5.3. Model (DGP). Households might or might not hold each detailed
component, and can have an arbitrary quantity of them (e.g., checking ac-
counts). We chose a model which is a mixture of multivariate Gaussian linear
models for the logarithms of the amount of the held components of wealth
and groups correspond to each pattern of holdings. The DGP that we specify
allows for interdependence between the amounts of the wealth components
held, the type of holding portfolio and portfolio specific parameters. This
is very important and usually imputations, even multiple imputations, are
done independently between components which potentially leads to biases
and is not coherent with the portfolio choice theory. The DGP that we spec-
ify is similar to that of Heeringa, Little and Raghunathan (2002). However,
here we shall allow for covariance matrices that are specific for each pattern
of holdings. Working at a more aggregate level allows us to introduce more
covariates. Heeringa, Little and Raghunathan (2002) work with 12 compo-
nents, but do not include covariates. Introducing covariates seems important
both for the coverage of the interval estimates (predictive performance) and
for the treatment of the unit nonresponse [see Assumption (A)].

Wealth categories. Macro components have been chosen to be as homoge-
neous as possible in order to have good explanatory covariates. They are
defined in terms of the blocks of the survey questionnaire: (1) financial
wealth, W 1; (2) the value of the principal residence, W 2; (3) of real es-
tate other than the principal residence (including second homes for rentals
or for leisure and private parking lots), W 3; (4) professional wealth, W 4;
and (5) the remainder, W 5. The remainder corresponds to durable goods
(including vehicules, etc.), works of art, private collections, precious metal
and jewelry. We grouped together all professional wealth—whether or not
it is used to generate profit—and rental/nonrental real estate properties to
have bigger sample sizes. From a history of wealth accumulation perspective,
it would be meaningful to differentiate between assets which yield returns,
like rentals, some professional wealth, financial assets and other assets. Such
a decomposition of wealth into 5 components implies, in principle, 25 pat-
terns of holdings. For simplicity, we assume that every household has some
financial wealth (e.g., money in a checking account) and some wealth in
the form of remainder (e.g., durable goods). As a result, we are left with
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Table 3
Patterns of holdings

Component/Group 1 2 3 4 5 6 7 8

W 1 √ √ √ √ √ √ √ √

W 2 √ √ √ √

W 3 √ √ √ √

W 4 √ √ √ √

W 5 √ √ √ √ √ √ √ √

Size 658 984 837 147 3274 342 275 3175

only 23 = 8 different groups. 59.36% of households own a primary dwelling,
21.99% other real estate and 19.78% professional wealth. Table 3 gives the
size of each of the eight groups. We denote by Dk = (Dk,l)l=1,...,5 the binary
vector such that Dk,l = 1{W l

k > 0} and define the map P which associates
the index i ∈ {1, . . . ,8} of the pattern to each Dk. The DGP for pattern i,
that is, for k such that P (Dk) = i, is



























Tk =

5
∑

l=1

slkW
l
k,

log(W l
k) = βi,l + xk,lbl +U l

k when dk,l = 1,
W l

k = 0 when dk,l = 0,
Uk N (0,Σi),

(5.2)

where Uk is a vector of size pi =
∑5

l=1 dk,l gathering the components whe-
re W l

k is nonzero. In order to use product specific variables as covariates for
the principal residence, we model the value of the good. Thus, the share that
the household possesses is the multiplier s2k. In the other models, for which
the variables are sums of components collected in the survey, we model the
amount of the share that the household possesses and use household spe-
cific variables only. Thus, for l 6= 2, slk = 1. We denote by sk the stacked
vector of the slk’s. We introduce fixed effects βi,l for the type of portfolio.
xk,l includes a 1 to account for a constant in the model. For identification,
the coefficient β1,l is set to 0. This fixed effect allows us to account for hetero-
geneity, and, since we do not allow bl to depend on i, permits a sufficiently
large sample size for the estimation of the regression coefficients for the loga-
rithms. Other than these group specific coefficients, the covariance matrices
are also allowed to depend on the type of portfolio allocation. Recall that W l

k
are unobservables and that only a domain that contains the vector of held
components is known. The parameters bl and Σi are treated as unobserv-
able random variables according to the Bayesian paradigm [see model (P)
below]. On the other hand, as we mentioned previously, the variables xk,l,
dk,l and slk are observables.



14 E. GAUTIER

Table 4
Covariates for the DGP other than the type of portfolio

Covariate/Component W
1

W
2

W
3

W
4

W
5

Life cycle
Single and childless

√ √ √ √

Age and age squared
√ √ √ √

Position in the life cycle
√

Social and Education
Social/professional characteristics

√ √ √ √ √

Higher education degree
√ √ √ √ √

Income
Level of the salary

√ √ √ √ √

Social benefits received
√

Rent received
√ √ √

Other income received
√ √ √

Principal residence
Location of the principal residence

√ √ √ √

Surface and surface squared
√

Type of real estate
√

History of wealth
Donation received

√ √ √ √

Donation given
√

Recent increase/decrease of wealth
√ √ √ √

Type of wealth of the parents
√ √ √

Professional wealth
Related to a profit generating occupation

√

Firm owned
√

Covariates. We summarize in Table 4 the covariates introduced in the
DGP. Covariates include dummies (single and childless, social benefits re-
ceived, rent received, other income received, donations received, donations
given, recent increase/decrease in wealth, wealth carried on business, firm
owned), multinomials with J alternatives transformed into J − 1 dummies
(position in life cycle, social/professional characteristics, higher education
degree, salary, location of the principal residence, type of real estate, type of
wealth of the parents) and continuous variables (age of the principal adult,
age squared, surface, surface squared). As usual, introducing both the sur-
face and the square of the surface is one way to capture nonlinearities. Life
cycle is a variable which interacts age of the reference person and the type
of family (single person, childless couple, couple with one child, couple with
two children, couple with more than three children, single-parent family,
other). Selection of covariates was done marginal by marginal where MLE
is easy. We included variables (or proxies) from the census that were used
for oversampling (see Table 1), unless they did not appear to be significant
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in the univariate modeling of the wealth components. This is important be-
cause the lognormal assumption could be justified in the general population
only. If the sampled households are endogeneously selected, then the condi-
tional distribution should not remain lognormal. We know that the selection
of the original sample (before unit nonresponse) is exogeneous. This is also
required for Assumption (A) to hold. Thus, to avoid biases, we condition on
the variables (or proxies) that determine the selection process.

5.4. Model (P). We choose π(θ) proportional to

8
∏

i=1

det(Σi)
−(pi+1)/2.(5.3)

The vector of parameters θ in Rd corresponds to the (βi,l,b
′
l)’s and the

matrices Σi where, denoting by diml the dimension of any (βi,l,b
′
l),

d=
5
∑

l=1

diml+
1

2

5
∑

k=2

k(k +1).

The prior is a product of limits of normal/inverse-Wishart’s [Little and Ru-
bin (2002); Schafer (2001)], often called noninformative. The posterior, if
the data were observed, is a bona-fide normal/inverse-Wishart probability
distribution.

5.5. The joint PDF. The full joint pdf for the hierarchical model can be
written with usual notation

f(G|w1, . . . ,wm)

m
∏

k=1

f(wk|θ,xk,dk, sk)π(θ).

Recall that the vectors xk, dk and sk are observables. However, the vec-
tors wk are not observed. We explain in Section 6 that we are able to know,
for each household, in what domain Bk, wk lies. The goal is now to carry
on inference on the posterior distribution of G given the data: (1) the vec-
tors xk, dk and sk, and (2) the domains Bk containing the vectors wk; for
k = 1, . . . ,m.

6. Censoring and use of administrative data. We explain in this sec-
tion how we constructed the domains Bk containing the vectors wk for
k = 1, . . . ,m. First, recall that we always know the status whether the house-
hold holds the wealth component or not. We were easily able to build brack-
ets for the 5 macro components besides the remainder. The brackets for
financial wealth were obtained manipulating the overview question on fi-
nancial wealth and all the brackets for the held components of financial
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wealth. Those for professional wealth were obtained simply by summing the
lower bounds and summing the upper bounds on the values of the held com-
ponents of professional wealth. For these two components we do not have
any point measures. We only have brackets, possibly unbounded, or miss-
ing data. However, due to equal upper and lower limits of the brackets, we
do have 12.3%, respectively 17.8%, of point measures for the value of the
principal residence and real estate other than the principal residence. The
bounds for the component W3 were obtained by summing lower bounds and
by summing upper bounds. The information on the total wealth, collected
in the last question of the survey, which includes the component W5 that we
call the remainder, allowed to obtain upper and lower bounds on W5. For
this last component, we do not have any point measures. The information
on the remainder is rather limited, especially for the top of the distribution
of wealth, but the liability for the ISF provides extra information on the
remainder (see below). One of the possible drawback of aggregating com-
ponents or collecting, for some components, brackets among a predefined
system exclusively, is the total absence of point measures. In the absence of
point measures, intervals are the main information for identification and es-
timation. Also in the absence of point measures, goodness-of-fit tests are un-
fortunately impossible. The conditional lognormal distribution is commonly
used in the economic literature on wealth. We make such an assumption for
each marginal and allow for correlations of the error terms. Alternative DGP
could be formulated, for example, based on the Pareto distribution. In any
case, the rest of the methodology would be the same with a different speci-
fication. Information in intervals are used in Section 7 as an information set
for the computation of posterior means that are involved for the inference.

As we have seen, our data set was matched with restricted data on the ISF.
We are thus able to know which households pay the ISF tax. The condition
to be liable for the ISF is to have a taxable wealth exceeding 720,000 e. We
produced the following upper and lower bounds on taxable wealth:

W 1
k +0.8s2kW

2
k +W 3

k + Ikmin(W 4
k ,NDmax,k) +W 5

k −DEBTk,(6.1)

W 1
k +0.8s2kW

2
k +W 3

k +NDmin,k −DEBT k,(6.2)

where NDmin,k and NDmax,k are upper and lower bounds of the nonde-
ductible professional wealth obtained using the detailed information, Ik is
a dummy variable indicating that some of the professional wealth might
not be deductible, and DEBT k is the total of debts which are deductible.
We assume that households always subtract the deductible amounts. When
a household pays the tax, (6.1) is greater than 720,000 e, while when it
does not pay the tax, (6.2) is less than 720,000 e. Only part of professional
wealth is taxable. It is possible to deduct the professional wealth related
to a profit-generating occupation if one’s primary activity is self-employed,



ESTIMATION OF WEALTH INEQUALITY 17

unless one owns a share in a firm of less than 25%. It is possible to have
a rebate of 20% on the value of one’s principal residence. Works of art are
not taxed and debts are deducted. It is possible to take into account most of
the characteristics of this tax and obtain tight bounds. By chance, the few
households that possessed a share in a firm of less than 25% gave a precise
value of the firm. On the other hand, it is impossible to distinguish works
of art within the remainder.

The final overview question on the total wealth, and liability for the ISF,
implies censoring domains which are subsets of hyper-rectangles.

7. The inference. Suppose that the official statistician is asked to provide
a single value for each summary of the French wealth distribution. What
is the optimal answer? Specifying a loss function l(·, ⋆), it is natural to
minimize, among all answers G∗, the posterior risk:

E[l(G∗,G)|W1 ∈B1, . . . ,Wm ∈Bm,
(7.1)

x1, . . . ,xm,d1, . . . ,dm, s1, . . . , sm],

where G is given by the hierarchy of models from Section 5. It is classical
that if a quadratic loss function is chosen, then the optimal answer from
a risk minimization perspective is given by the posterior mean

G= E[G|W1 ∈B1, . . . ,Wm ∈Bm,
(7.2)

x1, . . . ,xm,d1, . . . ,dm, s1, . . . , sm].

An interval estimate with confidence 1 − α can be obtained finding l ≤ u
such that

P(l≤G≤ u|W1 ∈B1, . . . ,Wm ∈Bm,
(7.3)

x1, . . . ,xm,d1, . . . ,dm, s1, . . . , sm)≥ 1−α.

Various types of such intervals are possible, including, for example, HPD
regions. One natural goal is to minimize the length of the interval. Such in-
terval estimates take into account both the usual uncertainty related to sam-
pling (sampling, unit nonresponse and improvement of the accuracy due to
calibration), and the uncertainty due to the imperfect wealth measurement.

8. Monte Carlo Markov chain approximation. According to Section 7,
inference relies on the evaluation of integrals [(7.2) and (7.3)]. We use a Gibbs
sampler to simulate a path of a Markov chain (vn)n∈N having as invariant
probability µ: the joint posterior and posterior predictive and distribution of
the random disturbance E. Here, the vn’s could be interpreted as scenarios of

V= (Θ′,W′
1, . . . ,W

′
m,E)′.
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Limit theorems for the Gibbs sampler can be found in Robert and Casella
(2004). Also, as in Roberts and Polson (1994), we can prove uniform ex-
ponential L1 ergodicity by minorizing the transition kernel. This follows
from the fact that we introduced upper bounds for the a priori unbounded
amounts. Thus, convergence of the distribution of the marginals of the
Markov chain to the target joint posterior and posterior predictive and dis-
tribution of E (E is always independent of the rest of the components)
should be fast. The ergodic theorem yields approximations of the form

Eµ[g(V)]≈
1

T −B

T
∑

n=B

g(Vn)(8.1)

for some integer B (burn-in) and large T . The Gibbs sampler is a classi-
cal tool for simulation in truncated multivariate normals [Robert (1995)]
and in Bayesian statistics [Robert and Casella (2004); McCulloch and Rossi
(1994)], including in the multiple imputation literature [Little and Rubin
(2002); Schafer (2001)]. For the sake of completeness, let us present the al-
gorithm briefly. The Gibbs sampler relies on a block decomposition of the
coordinates of the state space. These blocks are numbered according to a spe-
cific order. Starting from an initial value v0, the Gibbs sampler simulates
a path from a Markov chain (vn)n≥0. Given vn, a vector Vn+1 decomposed
in the above system of blocks is simulated by iteratively updating the blocks,
and sampling from the distribution of the block, conditional on the values
at stage n of the future blocks, and the value at stage n+1 of the previously
updated blocks. Here Vn corresponds to

(Θ′,W′
1, . . . ,W

′
m,E)′.

The sequence is such that we start by updating the bl’s, followed by the
covariance matrices, then one by one by the wealth components for each
household, and finish with the error term in model (I). It is enough for
the initiation of the algorithm to specify initial conditions for the follow-
ing: (1) the values of the held wealth components of each household in
the sample, and (2) for the covariance matrices for each group. We took
as initial conditions for covariance matrices, diagonal matrices, with diago-
nal terms being the estimated variances of the error terms in the marginal
models obtained by MLE. More precisely, manipulations of the likelihood
times prior imply the sequence of simulations detailed below. We denote by
b= (b′

1,b
′
2,b

′
3,b

′
4,b

′
5)

′, by xk and yk the matrices of size pP (dk)×
∑5

l=1 diml

and pP (dk) × 1 extracted respectively from










xk,1 0 · · ·0 0 · · ·0 0 · · ·0 0 · · ·0
0 · · ·0 xk,2 0 · · ·0 0 · · ·0 0 · · ·0
0 · · ·0 0 · · ·0 xk,3 0 · · ·0 0 · · ·0
0 · · ·0 0 · · ·0 0 · · ·0 xk,4 0 · · ·0
0 · · ·0 0 · · ·0 0 · · ·0 0 · · ·0 xk,5











and











logwk,1

logwk,2

logwk,3

logwk,4

logwk,5











,
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where we only maintain the rows of index l such that dk,l = 1. At stage n+1,
given the covariance matrices, values of the wealth components and error
term E at stage n, we start by drawing bn+1 in the multivariate normal
N (b̂,Σb), where



























Σb =

(

8
∑

i=1

∑

k:P (dk)=i

x′
kΣ

−1
i,nxk

)−1

,

b̂=Σ−1
b

(

8
∑

i=1

∑

k:P (dk)=i

x′
kΣ

−1
i,nyk

)

.

We then sample the inverse of the covariance matrices independently. For
wealth pattern i we draw Σ−1

i,n+1 in the Wishart distribution Wpi(mi, V ),
where the degree of freedom mi is the sample size of the wealth pattern i
and the scale matrix is

V =
∑

k:P (dk)=i

(yk − xkb)
′(yk − xkb).

We then update the wealth components for all the households in the sample.
We split each vector Wk in blocks of size one. This uses the classical condi-
tioning in the multivariate normal random variate and allows us to simulate
the wealth components in univariate truncated normals [see, e.g., Robert
(1995) for efficient algorithms]. The intervals of truncation for the current
variable at each stage of the sequence are updated, taking into account the
previously simulated components for the same household, and the various
inequalities discussed in Section 6.

We finally sample an independent error term En+1.
The integrals (7.2) and (7.3) which are used in this article for inference are

of the form Eµ[g(V)], where g(V) is either G or 1G∈[l,u] and G is given by the
hierarchy of models from Section 5. We therefore use approximations of the
form (8.1). Here, for each n, each Gn = g(vn) is obtained from vn, computing
the total wealth (tn1 , . . . , t

n
m) for each household in the sample and using (5.1)

with the error random disturbance en and ̂V (Ĝ)(tn1 , . . . , t
n
m) computed as

explained in Section 4. If we are interested in a different statistic, we simply
replace in (5.1) the estimate of the Gini coefficient Ĝ and of its variance
̂V (Ĝ), by the corresponding survey sampling estimators. This could be done
with the same sample path of the Gibbs sampler. Note that, concerning the
interval estimation, the above MCMC method is not optimal to evaluate
quantiles and the procedure requires very large T . For this reason, we chose
to present, in Section 9, 90% posterior regions.

The values vn can be interpreted as multiple imputations. None are in
the target distribution since there is only convergence to the invariant prob-
ability. We have seen in Section 7 that an optimal estimation (with respect
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to a quadratic loss function) is given by the posterior mean. Thus, simple
random imputation which corresponds to producing one random scenario
for G is nonoptimal, as the risk of producing such a value is higher. More-
over, it does not allow to obtain interval estimates. If g(V) is nonlinear
in the wealth components, then the prediction of individual wealth is not
a proper imputation procedure even for point estimation. It does not yield
a prediction of g(V). This is the case for all the summaries of the wealth
distribution given in Section 9 besides the mean.

9. Presentation of the results.

9.1. Results with the described DGP. We ran a Gibbs sampler with T =
20,000 and B = 1000. In order to diagnose convergence, we plotted the con-
vergence of the empirical averages required for the inference (see, e.g., Fig-
ure 1). As expected, due to exponential ergodicity, convergence occurs very
quickly. For such values of T and B, burn-in only changes the very last dec-
imals. For simplicity, for such plots, we used rough design-based variance
calculations based on linearization, but approximating the complex sam-
pling design. It is only below that we use the full procedure explained in
Section 4. Since the computations in the POULPE software are extensive,
we take a larger value for B. We do not feel that this is troublesome. Indeed,
large T is important for convergence of the marginals of the Gibbs sampler
to the invariant probability. Once convergence is satisfactory, we compute
the sample analogues (8.1), starting close to the steady state.

Fig. 1. Convergence of empirical averages of the Gini, B = 1000.
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Table 5
Posterior predictions and 90% symmetric posterior regions, (8.1) is used with B = 19,000

and T = 20,000

Summary of the distribution Lower bound Prediction Upper bound

Mean (e) 202,600 211,200 218,800
Median (e) 108,800 112,500 116,600
P99 (e) 1,507,000 1,658,000 1,815,000
P95 (e) 671,900 713,300 748,400
P90 (e) 425,800 438,500 450,000
Q3 (e) 228,300 234,000 239,600
Q1 (e) 16,000 17,200 18,500
P10 (e) 3324 3900 4459
P95/D5 5.97 6.33 6.64
P99/D5 13.30 14.71 16.17
Q3/Q1 12.71 13.72 14.50
D9/D1 94 111.2 126.4
D9/D5 3.75 3.89 4.02
Gini 0.644 0.657 0.669
Theil 0.870 0.930 0.984
Atkinson (ε= 1.5) 0.904 0.921 0.940
Atkinson (ε= 2) 0.974 0.983 0.993

In Table 5 we give posterior predictions and confidence regions and in
Figure 2 we give histograms for posterior distributions of summaries of the
French wealth distribution.

9.2. Stability of the results regarding the aggregation of wealth compo-
nents. To study the relative stability of the results regarding the aggrega-
tion of wealth components, we present an alternative DGP model with fewer
wealth components and thus fewer wealth categories.

Suppose we decide to group together the values of the share held of the
principal residence and of the holdings in other real estate. We now work
with the following components: (1) financial wealth, W̃ 1; (2) wealth in real
estate, W̃ 2; (3) the professional wealth, W̃ 3; and (4) the remainder, W̃ 4.
Table 6 gives details about the size of each of the 4 = 22 groups. The new
wealth component is homogeneous in the sense that it is investment in real
estate. The choice is slightly less justifiable from a wealth accumulation
perspective, as principal residence and other real estate are usually acquired
one after the other. Also, the second can yield returns. As a result, it is
also possible to argue that it is of a similar nature as some of the financial
wealth. The lower and upper bounds for this new aggregated component
were obtained by summing up respectively the lower bounds and upper
bounds of s2W2 and W3. As a result, we only have for the new component
11.9% of point measures. For all the other components we do not have any
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Fig. 2. Posterior distribution of the Gini, Theil and Atkinson indices, full 5 components
model, T = 20,000 and B = 19,000.

point measures. We were no longer able to use variables on the principal
residence as covariates. For example, it makes little sense to use the surface
of the principal residence to predict the value of the total share in real estate.
In this case, liability for the ISF is more difficult to exploit, as one is allowed
to have a rebate of 20% on the value of one’s principal residence. We used
rougher upper and lower bounds of taxable wealth

W̃ 1
k + W̃ 2

k +NDkmin(W̃ 3
k ,NDEDmax,k) + W̃ 4

k −DEBT k,(9.1)

W̃ 1
k +0.8W̃ 2

k +NDEDmin,k −DEBTk.(9.2)

Table 6
Patterns of holdings

Component/Group 1 2 3 4

W̃ 1 √ √ √ √

W̃ 2 √ √

W̃ 3 √ √

W̃ 4 √ √ √ √

Size 1642 4600 275 3175
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Table 7
Posterior predictions and 90% symmetric posterior regions (T = 20,000, B = 19,000)

Summary of the distribution Lower bound Prediction Upper bound

Mean (e) 203,100 211,300 219,100
Median (e) 108,700 112,600 116,400
P99 (e) 1,498,000 1,661,200 1,822,300
P95 (e) 673,100 714,000 749,700
P90 (e) 426,300 438,800 451,000
Q3 (e) 228,800 234,100 239,900
Q1 (e) 16,020 17,210 18,470
P10 (e) 3313 3914 4506
P95/D5 5.98 6.34 6.67
P99/D5 13.19 14.74 16.33
Q3/Q1 12.67 13.59 14.51
D9/D1 94.4 111.6 128.7
D9/D5 3.76 3.89 4.03
Gini 0.644 0.658 0.670
Theil 0.872 0.931 0.989
Atkinson (ε= 1.5) 0.904 0.921 0.940
Atkinson (ε= 2) 0.974 0.983 0.993

When a household pays the tax, (9.1) is greater than 720,000 e, while when
it does not pay the tax, (9.2) is less than 720,000 e. In Table 7 we give poste-
rior predictions and confidence regions with the three-stage model with this
new DGP model. The interval estimates use calculations of the asymptotic
variances of the survey sampling estimators based on the procedure pre-
sented in Section 4. This 4 components DGP yields results which are highly
comparable to those obtained for the 5 components DGP studied previously.

10. Concluding discussion. In order to analyze the French wealth distri-
bution based on the 2004 EP, we proposed a Bayesian hierarchical modeling.
We produced point and interval estimates of summaries of a finite population
distribution under random sampling, and in the presence of generalized non-
rectangular censoring. The approach is flexible, as we can compute any pos-
sible such summaries (quantiles, inequality indices, etc.), and is particularly
useful when the summaries are nonlinear in the input distribution. Unlike
the original Bayesian multiple imputation, we do not rely on proper—that
is, independent—Bayesian multiple imputations [Little and Rubin (2002);
Schafer (2001)], which could be computationally intensive to obtain, nor rely
on approximate formulas to combine multiple imputations. Usually official
statisticians do not like to rely on models for the DGP. This does not seem
feasible in the presence of interval censored data and when the sample sur-
vey estimator is “nonlinear” in the respondent’s wealth. It was, however,
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possible to take into account the complexity of the sample design, auxiliary
information on totals through calibration, etc., using model (I). It is also
possible to adopt a model-based approach and to simulate the wealth for
the nonsampled households, but then the design features are not taken into
account. As noted in Section 2, unit nonresponse was modeled as an extra
phase, resulting in estimated weights. As it is usually done in practice, they
were treated as the true inverse of the inclusion probabilities. Interval es-
timates are thus slightly optimistic. One way to deal with this problem is
to treat the true weights as observed with error and add an extra model in
the hierarchy of models. It implies to augment the state space of the Gibbs
sampler presented in Section 8. We could also include uncertainty in the
model choice, including, for example, the possibility of a Pareto distribu-
tion, with an additional model in the hierarchy and prior weights on each
model in competition. Indeed, distributional assumptions made for the DGP
are crucial especially for the wealthiest. Finally, Assumption (A), made here
for the unit nonresponse, is a strong assumption that is made in most of
the literature on missing data in surveys. It is possible to relax this assump-
tion via strong parametric assumptions [Gautier (2005)]. These extensions
of the methodology proposed in this article could be studied, for example,
in a simpler setting.

We favored objectivity and tried to impose the minimum possible struc-
ture. For this reason, we used noninformative priors and did not impose any
structure on the covariance matrices in the DGP model. A common practice
is to assume diagonal covariance matrices for the residuals. This is the case
when imputations, possibly multiple imputations, are done independently
for each wealth component. This is very questionable, as it is not coherent
with the portfolio choice theory. We feel that it imposes too much structure.
The cost for this objectivity is relatively large interval estimates. We feel,
though, that it is important for a national statistical office to be as objective
as possible. Specification of the DGP components was taken to be the most
classical lognormal one. We traded off the number of parameters for poste-
rior regions with reasonable coverage. The model for the multivariate DGP
has a reasonably small number of components and covariates for groups
of small sample size. The components form homogeneous blocks in terms
of population and wealth accumulation history. Observed heterogeneity is
introduced through fixed effects and covariates, unobserved heterogeneity
through correlations of error terms with group specific covariance matrices.

It is always useful to gather information from sources exterior to the sur-
vey. This is difficult when one is using other survey data, due to different
concepts, different selection mechanisms, especially because of unit nonre-
sponse and the different perception of surveys and different dates. Here we
were able to use matched administrative data for the same year to better
localize the interval censored wealth components.
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Further improvement could be made for the measurement of wealth with
a sampling scheme designed explicitly for the study of the wealth inequality.
Because of its list sample, the SCF is probably better designed for such
studies. One possibility studied for the EP is to draw households based on
the wealth and property taxes (note that the notion of household based
on principal residences is different from the one used for tax purposes),
but it raises issues concerning tax secrecy. In any case, there are limits to
a better sampling design: confidentiality, the relative coarser information for
the wealthiest due to the collection of brackets, the general use of the data;
as well as limits inherent to social statistics: nonresponse, biased responses,
errors in recall for overview questions, misunderstanding, etc.
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