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ABSTRACT

NOISY OBSERVATION
IN ADVERSE SELECTION MODELS

We consider a principal-agent contracting problem under incomplete
information where some of the agent's actions are imperfectly observable.
Contracts take the form of reward schedules based on the noisy observation
of the agent's action. We first review situations where the principal can
reach the same utility as in the absence of noise. Then we focus on the use
of linear reward schedules, which allow universal implementation, i.e.
implementation of a given mechanism for any unbiased noise of observation,
and on quadratic reward schedules, which only require the knowledge of the
variance of the noise. We exhibit sufficient conditions under which linear
reward schedules implement a given mechanism. Finally, we characterize
necessary conditions for a mechanism to be implementable under noisy
observation by a linear schedule, and by quadratic schedules. We give the
geometric intuition behind all results.

Journal of Economic Literature classification : 026

Key words : Principal-Agent, Contracts, Adverse Selection, Moral
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I.INTRODUCTION

This paper is a contribution to principal-agent contracting theory,
The starting point of the analysis is a standard adverse selection problem
in which we intrcduce the possibility of errors (by the principal or by the
enforcing party) in the observation of the actions of the agent. The model
combines the "hidden knowledge" aspect of adverse selection problems and
the "hidden action" aspect of pure moral hazard contexts. However, we
restrict attention to risk neutral agents, which eliminates the insurance
question that characterizes moral hazard problems. Thus the situation can
be better described as a "noisy" adverse selection situation.

This type of situation is the focus of a recent strand of contract
theory, pioneered by Laffont-Tirole [1986] and developed by Picard [1987],
Melumad-Reichelstein [1989] and Rogerson [1988] , among others. Its
applications and relevance to real world analysis are clear and illustrated
in the following two examples. When the manager of a firm is controlled by
a regulatory agency or a group of shareholders, the costs and profits
achieved are merely a noisy estimatgr of the actual decisions made by the
manager on the basis of his private information about the firm and his own
talent. A worker's production depends upon his intrinsic productivity, but
also on the random, unobserved quality of the materials he uses and can
therefore only provide an imperfect assessment of the worker's quality.

In situations of noisy adverse selection, the pure adverse selection
optimum, i.e. in the absence of noise, provides a desirable benchmark for
the principal. The literature has focused on situations where this
benchmark is achievable despite the noise of observation. In this paper, we
study situations in which, even though some variables are subject to errors
of observation, some others are perfectly observed. We show that in general
there exist many ways of achieving the pure adverse selection benchmark. We
then investigate the possibility of imposing an additional property on the
mechanism that attains this benchmark, namely to be robust to the imperfect

knowledge of the distribution of the noise of observation. We characterize



cases where the beﬁchmark can be achieved despite the fact that the
principal does not know the distribution of the noise except that it is
unbiased : we call this property "universal implementation”. Again, our
reflections on universal implementation are in line with Laffont-Tirole's
initial attempt. However, by considering a general setting, the analysis
casts the subject in an improved perspective. Previous positive results
appear as special cases, the role of the different parameters of the
contracting problem can be ascertained, and the analysis of universal
implementation stresses the “role and the 1limits of linear schemes in
economic contracting.

The earlier literature on contracts has been faced with the centrast
between the complexity of theoretically optimal schemes and the rough
simplicity of many real world arrangements (See Hart-Holmstrom [1987]). The
later literature has provided a number of explanations which mitigate the
discrepancy between theory and practice. In particular Holmstrom-Milgrom
[1987] have shown that simple linear schemes may be optimal in pure moral
hazard problems where the action variable can be continuously corrected to
respond to the accrual of information. The present paper (as well as the
previous literature on which it relies) can be viewed as developing a
different argument for the usefulness of linear schemes. The argument is
that linear schemes provide a robust implementation of an optimum in a
context of multidimensional adverse selection problems where '"noise"
significantly affects a subset of the contractual variables.

The paper is constructed as follows. Section II presents our simple
framework where some actions are. perfectly observed and some actions are
observed with noise. Sectioh II1 reviews the body of existing results that
guarantee that the principal can achieve, under noisy observation, the same
utility as in the pufe adverse selection situation. This short survey
encompasses more general settings as presented in Melumad-Reichelstein
[1989] (hereafter MR) and Caillaud-Guesnerie-Rey [1988] (hereafter CGR). It
shows that in our specific framework, there may be a large number of

possibilities of implementation under noisy observation, some being very



demanding on the knowledge of the noise distribution, some others being
more robust to the imperfection of this knowledge.

Section IV constitutes the core of the paper and analyzes the
conditions under which a principal can implement an adverse selection
optimum under noisy observation, when ignoring the distribution of the
noise of observation of the agent's actions (except the zero mean). We
insist on geometric intuition. We identify the only reward schedule that
can possibly yield universal implementation (IV A), we exhibit sufficient
conditions for this schedule to be indeed an acceptable reward schedule,
i.e. sufficient conditions for universal implementation (IV B), and we use
the lecal incentive compatibility required of reward schedules to provide a
necessary condition for universal implementation (IV C). Finally, in
subsection IV D we relax our requirement of universality, to focus on
reward schedules that require the knowledge of the variance (and of the

zero mean) of the distribution of the noise of observation.

II. THE MODEL

We consider a standard principal-agent model under asymmetric
information, with a multi-dimensional action space and a one-dimensional
information space. The principal designs a contract with the agent who has
private information on one characteristic denoted by ©; 8 is assumed to
belong to ® , a compact interval of R . The contract bears on a
multidimensional action £eL that the agent can take and on the transfer teR
that he can receive from the principal. L is a compact subset of R®. The
agent’'s VNM utility function depends on action £ and characteristic 6 and
exhibits risk neutrality w.r.t. revenue; it is denoted by t + U(£;8).

The pure adverse selection (or hidden knowledge) framework refers

to the situation where action £ is observable and verifiable {therefore
contractible}. Using the Revelation Principle (Myerson [1979] ), the
principal can restrict attention to the set of Direct Incentive Compatible

Mechanisms (DICM):



Definition 1 : A Direct Incentive Compatible Mechanism 1is a pair of
functions (£€(.),t{.)) mapping the set of characteristics © into L x R,
such that for any (6,6')e &:

t(8) + U(£(0);8) 2 t(0') + U(£(8'):0)

A continously differentiable DICM necessarily satisfies the
following "first order" and "second order" conditions for truthful

revelation (see for example Guesnerie-Laffont [(1984] Theorem 1, p 336)

n de
(1) ie- S 5, U(2(8):6) — =0
i=1
n ae,
(2) Z £,0U(£(8):8) —=>0

For a comprehensive analysis of this type of adverse selection
problems we refer the reader to Guesnerie-Laffont [1984]. In particular, as
a consequence of the "taxation principle"” (Hammond [1979], Guesnerie

[1981]), a DICM is equivalent to a non-linear tax schedule ¢ :

Proposition 1 : The pair (£(.},t(.)) is a DICM if and only if there exists
a mapping ¢ from R® to R such that:

Ye®, £(8) € Argmax [@(£) + U(£;0)]
Lel
t(8) = @(£(6))

Such a function ¢ will be called a (£{.),t(.)}-associated schedule.

(In the following when there is no ambiguity we will speak of an associated
schedule without explicitly refering to the DICM (£(.),t(.)) with which it
is associated).

In the present problem, the locus of points (£,t) in R**! such that
(€,t) = (£(8),t(8)) for some 6e® is generally a one-dimensional curve which

we call the "contract curve". Given a DICM (£(.),t(.)), an associated
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schedule can be easily constructed : Take a "hypersurface" in R°*! which
contains the contract curve and such that for each type 8€®, it has no
intersection with the set P(8) of actions £ strictly preferred by 8 to
the contractual action £(8). (For all 8, these sets P(6) must lie above (in
the sense of increasing transfers) the hypersurface). Figure 1 visualizes
such an associated schedule in the case n = 2.

Note that a (£{(.),t(.))-associated schedule is uniquely defined
only for £€£(®), i.e. for the set of contractual actions. There is thus
much freedom in the construction of an associated schedule outside £(®). In
the paper, we will often make the assumption that the DICM (£({.),t(.))

under consideration satisfies :

(B) There exists a large enough penalty M® such that:
Y0e®, Max U(£:0) - M° < t(8) + U(£(8);:8)
£el
With (B), the penalty M° will deter any agent from choosing £ rather than
his preferred point on the contract curve. The assumption (B) allows us to

puild "M-associated"” schedules, i.e. associated schedules that act as a

penalty M against deviations far away from the contract curve.! In the
limit, we can choose the associated schedule to be @(£) = -M with M = M
everywhere outside the support £(®) ; this would deter any agent of type 0,
when facing the associated schedule ¢(.), from choosing an action £ outside
(@), This particular associated schedule 1is called a "knife-edge"
associated schedule (In Figure 2, we present an associated schedule that is

close to the knife-edge schedule).

Definition 2 : Given a DICM (£€(.).,t(.)) the M-knife edge associated

schedule is defined by:
p(€)

£(8) if there exists 8¢® such that £ = £(8),°

-M otherwise

]
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The (partially) noisy cbservation framework relaxes the assumption

of perfect observability of the agent's actions : we assume

£ = (81.82) € L =L, xL,,where £,_is perfectly observed whereas £, _is not.

More precisely, L, 1is a compact subset of R 1! for i €{1,2} and instead of
£,, the principal observes the signal 3; = ¢, - &, where the additive noise
&eRnl is distributed independently of 6, according to a zero mean
distribution conditional on £. In Section III, we specialize to the case
where € is distributed independently of e.3

In order to implement a given DICM (£{.),t(.)) in the noisy
observation framework,h the principal can restrict attention, according to
the revelation principle, to revelation mechanisms where an announcement
8 € ® determines an observable action £,(0) to be taken by the agent, and a

payment t = H(E;.B) as a function of the observable signal £i. This leads

to the following definition of implementability :

Definition 3 : Under noisy observation of £, , a DICM (e(.),t(.)) is

implementable if there is a function H(Z;,e), from L1x® to R, such

that for any 8 in @ :°

(8,£,(8)) € Argmax E[H(Z,- €.,6) ~ U(%,,2,(6):8)]
6.%,
t(e) = E[H(el (8) - Eve)]

The mechanism discussed in the above definition consists of a menu
of reward schedules (H(.,B),BEG), indexed by the agent's announcement about
6. Alternatively, we could use the observable variable £, as an index. This

leads to the notion of implementability via a noisy reward schedule :

Definition 4 : A DICM (£(.),t(.)) dis implementable via & noisy reward

schedule, if there exists a mapping & from L to R, such that:

We®, (£,(8).2,(0)) € Argmax E[w(£,-€,£,) 1€;,8,] + U(£;.£,:8)
£eL

t(8) = E{w(g, (8)-£,£,(8))1¢£,(8},€,(0)] .

When n, = O or when £, is not one-to-one, focusing on noisy reward



schedules may entail some loss of generality, since it does not allow the
principal to condition the agent's compensation schedule on the state of
nature. A general revelation mechanism, however, allows this conditionning
as seen above, provided incentive compatibility constraints are satisfied.
MR investigates in detail the "value of communication”, i.e. the value of
using general revelation mechanisms compared with using only noisy reward
schedules, and provide some examples in which this value is strictly
positive. When there is a one-to-one relationship between the state of
nature and the desired value of £,, we have the following adaptation of the

above "taxation principle".6

Proposition 2 : Assume n, 21 and consider a DICM (£(.),t(.)) such that
£,(.) from ® to L, is one-to-one. Then if this DICM is implementable,

it is implementable via a noisy reward schedule .

In the following, we will focus on implementation via noisy reward
schedules. Section III reviews some general results on this type of
implementation (irrespectively of any condition on n,, or on the one-to-one
property of 82(.)), and addresses the following questions. When is a DICM
implementable via a noisy reward schedule in the sense of Definition 4 2
How can a noisy reward schedule y be computed for a given specification of

the noise ? Are there many noisy reward schedules ?

Section IV considers. situations in which Proposition 2 holds, and
focuses on "universal" implementation : Can we find reward schedules when
we have only partial information on the noise distribution {e.g. its
variance) ? Could there exist, and under what conditions, "universal"
reward schedules, 1i.e. schedules that implement a DICM whatever the

distribution of the observation error ?



III. IMPLEMENTATION VIA NOISY REWARD SCHEDULES.

In this section, we start from a given DICM (2°(.).t"(.)), and we
analyze its implementability via noisy reward schedules in the sense of
Definition 4. This section is a short summary of results that appeared
independently in MR or in CGR.

The next proposition (for example proposition 2 in CGR) shows that
the problem is equivalent to solving a functional equation that guarantees
that, in expectation over &, the noisy reward schedule gives the same

incentives to the agent as a (£°(.),t'(.)) - asscciated schedule.

Proposition 3 : A DICM (£°(.).,t"(.)) is implementable via a noisy reward
schedule  if and only if there exists ¢, a (¢°(.),t"(.)) -associated
schedule, such that for all {¢,,£,)€ L

(3) e(2,,£,) = Efuw(e,-€,£,)18,.£,]

We provide the (straightforward) proof for the sake of completeness.

Suppose (£°(8),t"(8)) is implementable via ¢, then :

2" (0) € Argmax [E[U(£,.,£,,0) + w(g;- £,£,)12,,¢,]
(€, ,€,)€eL
£°(0) = E[w(£(8) - €, £(8)1¢](8),2;(8)]
Then (€, .£,) = E[v(£, - £,8,)1¢,,¢,] satisfies (3) and 1is an associated
schedule. Since the agent's choice of action is subject to the same
incentives with the noisy reward schedule and with the associated schedule
the sufficiency part is immediate.

The associated schedule ¢ only reflects pure adverse selection
considerations. On the contrary,  also takes into account the observation
error. Given a DICM (£°(.),t"{(.)), one finds the noisy reward schedules
that implement (€°(.).t°(.)) by first choosing some (e"(.),t"(.))y -
associated schedule and then solving the resulting functional equation (3).
Proposition 3 holds also for multidimensional ® ; it can take the form of a
more general functional equation when 81 and £, are supposed to be of

different dimensions (see MR).
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Depending on the properties of the possible associated schedules
and of the noise distribution, equation (3) may or may not admit a
solution, i.e. the DICM may or may not be implementable under noisy
observation ; a noisy reward schedule may even be explicitly computable. In
the following, we mention a number of cases in which a DICM (£°(.).t"(.))
is implementable under noisy observation when n, = 1 and the noise is

distributed independently of £, according to a density f(.). Some of these

results could be extended in more general frameworks, e.g. when ® is
multidimensional, or n, >lorn, =0 (See CGR) ; MR also provides

technical results when £ is not independent of £ or 9.

- If the density f(.) is uniform on a compact [-&,a] and there exists a
continuous M-associated schedule ¢ that admits a partial derivative with

respect to 81. then (3) is solvable explicitly by :
o0

w8y, 8,) = 2a{ D

k=0

where G is a function pericdical in 8; {period 2a) such that

o¢
3L,

(£,-(2k+1)a,£,) [+ G(£;.£,) - M
I:ZG(X,ez)dx = O for any £,. (See CGR).

- More generally, if f is continuously differentiable on a compact support
[a,b] and there exists a continuously differentiable associated schedule ¢,
then (3) is solvable (under a mild assumption on the relative size of [a,b]
and L, see MR).

- Assume that f has a Fourier transform F(f) (e.g. f norﬁal). and that
there exists a (£ (.),t (.))-associated schedule ¢ with Fourier transform
F(@) taken with respect to £, for each £,. Whenever F{p)/F(f) has an
inverse Fourier transform ¥ ! (F(@)/F(f)), (3) is solvable and a solution is
¥ = FH{F(@)/F(f)) (See (CGR)).

- When there exists an associated schedule that is a peclynomial in £,, then
Proposition 4 below indicates the conditions under which (3) is solvable

and the way to compute explicitly the solution.

Note that we could depart from the exact resolution of equation
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(3) and adopt a concept of almost implementation in the spirit of MR.
Basically, this approach consists in solving (3) for a function 6 that is
well behaved and close to an associated schedule under the topology of the
uniform convergence. But it is possible to adopt other topologies, in
particular if we allow for unbounded, or even infinite-valued functions. As
an example, when f has compact support {a,b] , E; is one-to-one (for
simplicity), and ¢ is the M-knife edge schedule, the solution of (3}
converges, when M goes to infinity, towards a "Mirrlees scheme" :
Wie),£,) = t7(8) if £, = £(8) and 2.e[e](8)-b,2;(8)-a] . = -0 otherwise.
This limit noisy reward schedule implements the DICM under the noise €. (As
is known, this construction extends for example to normal distributions).

The main conclusion of these results is that there is much leeway
in the choice of noisy reward schedules that implement a DICM for two
reasons. First there 1is much freedom in solving the convolution equation
(3) for a given (£°(.),t (.))-associated schedule. Second, one can choose
any associated schedule provided it satisfies some regularity and
integrability properties. This last requirement is intuitively weak, and we
will give a more precise assessment of this fact later.

The question is now : can we exploit the freedom in the choice of
reward schedules to impose on them some additional desirable pfoperties. An
interesting property 7 would be that the noisy reward schedules do not
heavily depend on the specification of the noise density f(.). Indeed, the
information on f{.) required to compute a noisy reward schedule, may
crucially depend on the associated schedule we are starting from. This fact

is clearly illustrated by the next proposition.

Proposition 4 : Assume that n, = 1 and the distribution of the noise & is
independent of £. Let us also suppose that for every £,, the
associated schedule is a polynomial in £, of degree smaller or equal
to m. Then there exists a noisy reward schedule ¢ which, for a given
£, . is a polynomial of degree smaller or equal to m (in E;). the
coefficients of which only depend on the moments of the noise

distribution of order smaller or equal to m.
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Proof : Suppose ¢(¢,,£,) = :E ap(£2)£§ and let us look for a soluticn of
pP<m

the form w(ﬂ;,ez) = :E bp(ez)eip . Denoting Cg the binomial coefficient
p<m

P
al|. the convolution equation can be written : vie, .2, )el,

> a (g, J > b, (£,) (£ -€)Pr(e)de
p<a p<z

p
> jbp(ﬂz)[z cgeg(-a)P-q]f(s)de
p<m q=0

m
o> e, (e (—6)5"‘f(£)de}
r<m =r

Identifying each coefficient in this triangular, non-degenerate, linear
system only requires the knowledge of all moments of &€ of order at most m.

Q.E.D.

Proposition 4 shows that when there exists a (£°(.),t"(.))-
associated schedule which is a surface such that all sections by an
hyperplane £, = C (where C is a constant) are polynomial of order smaller

than m, then one only needs to know the m first moments of the distribution

of & to compute a noisy reward schedule that implements the DICM. This is
much less demanding than knowing the whole distribution f(.) of &, as would
be required to compute a reward schedule using e.g. a Fourier transform.
Note that the independence assumption could be relaxed. What is only needed

is that the m first moments of & do not depend on £.
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1V. NECESSARY AND SUFFICIENT CONDITIONS FOR UNIVERSAL IMPLEMENTATION

IV.A/Ruled Schedules and Universal Implementation

The less exhaustive the information on f{.) required to compute a
reward schedule, the more robust the reward schedule to mispecifications in the
observation disturbance. Robustness is typically a major concern in contract
theory, since applications to the real world cannot reasonably assume a complete
knowledge of the distributign of noises in the economy. There are then strong
motivations for finding simple associated schedules, and thereby simple noisy
reward schedules, so that implementation under noisy observation be possible
despite a limited knowledge of the distribution f{.). In particular, from the
proof of Proposition 4, a noisy reward schedule derived from a linear-in-section
(affine in ¢, for each £,) associated schedule is itself linear-in-section and
is obtained by moving upwards the associated schedule by an amount equal to the
expectation of €. This implies that a linear-in-section associated schedule is

itself a noisy reward schedule for any unbiased noise. The schedule has then

some "universal" validity as defined below :

Definition 6 : A noisy reward schedule is universal if it implements the
8

DICM for any unbiased noise of observation.
We saw that linear-in-section associated schedules are universal noisy
reward schedules. We now show that they are in fact the only possible ones.
For simplicity we will assume n, =n, =1, but now again £ and £ may be

correlated. We will also assume that the agent's preferences are smooth :
(D) U(.) is twice continuously differentiable.

We will also focus on a DICM (& (.}.t"(.)) that satisfies the

following monotonicity property :
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(MO) £,(.) is one-to-one from ® to £,(®) C L,.

Assumption (M0O) is made partly for ease of presentation : we shall
later discuss its precise role in the analysis.

In the present setting, there is essentially a unique candidate for
being a linear-in-section associated schedule. We call it the "ruled

schedule” and define it as follows.

Definition 5 : Under (D), (MO) and (B), the "M-ruled schedule" is defined

for M > M" as. the surface
t = (g, ,8,) =t (8) - aJIU(e’(e);e)[el- ¢ (8)]
if £, = £,(8) for some Be®

n
]
=

otherwise

The ruled schedule 1is built as follows. For every £, that can be
attained by the DICM, i.e. that is a contractual action for some type O
(unique by (MO)), consider the intersection between the tangent hyperplane
to this type O's indifference surface passing through (£°(8),t"(8)), and
the hyperplane of cocrdinate £,. The intersection defines a line, and as £,

varies in E;(@), these lines generate a ruled surface. This ruled surface

is then extended using a penalty as described in the discussion of (B). In
the following, we will omit the details of the extension outside e;(®)and
we will refer to the ruled surface. This construction is visualized in
Figure 3.

The next proposition shows that the ruled schedule is the only

possible schedule leading to universal implementation.

Proposition 5 : Under (B), (D) and (MO), there exists an universal noisy
reward schedule if and only if the ruled schedule is an assocciated
schedule. In this case, the ruled schedule is itself an universal

noisy reward schedule.
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Proof : The "if" part has been already proved. We therefore focus on the

"only if" part.

For any unbiased distribution of €, a universal schedule  must

satisfy
(4) we®, E[u(e](8)-¢,£5(8))1£°(8)] = t*(8)
By choosing the Dirac distribution at &€ = 0 , the previous equality
implies :
(5) WOe®, w(£;(0),£;(8)) = t"(8)

Next, it is easy to show that if ¢ is universal, then it must be
affine in £, i.e. for any (€,.€,)eRE,, the points {e;(e).w(e;(e).e;(e))},
{e](0)-¢, . wie](8)-¢,.2;(8))} and {e;(8)=¢, (€] (8)+¢,,25(8))} are on the
same line. If this were not the case, then one could find a probability
distribution putting almost all the weight on neighborhoods of €, and &,,
of zero mean, and such that (4) is wrong.

So & is universal only if : w(€,,£;(8)) = t"(8)+k(B)(£;- £;(8)).
Finally the condition that a 8-agent chooses £°{6) (i.e. that y be a noisy
reward schedule) implies that k(8) = —allU(E'(B);G).

Q.E.D.

IV.B/Sufficient Conditions for Universal Implementation

We can now come to the heart of the analysis : For a given DICM when
is the ruled schedule an associated schedule ? We first give sufficient

conditions for having this property.

Proposition 6 : Assume that (B), (D), (MO) hold. If one of the following
set of properties holds, then the ruled schedule is a (£°(.),t"(.})
-associated schedule (and hence is a wuniversal noisy reward
schedule)
either : il) Preferences are independent of £,.

i2) The DICM (£°,t") is continuously differentiable.
i3) 3 an associated schedule ¢ independent of £, and convex
in £, on L,.
or : iil)The restriction of the ruled surface to £;(®) is a subset
of an hyperplane.

ii2)The agent's preferences are convex.
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Proof : i)As the agent's utility does not depend on £,, we simply write it
as U(el,a). Let us define

D(8) = {(£,.t)eR | t = £*(8) - 2, U(g;(8):0) [£,- £](8)]}

P() = {(£,. )R | t + U(£,:8) > t"(8) + U(e] (8):0)}

P(9) is the set of points (¢,,t) that are strictly preferred to

(£/(6),t"(8)) by a 6-agent. D(8) is the projection in the plane (£,,t) of
the generating line of the ruled surface passing through (£°(8),t"(6)).
Since U is independent of £, ., the agent's indifference surfaces are
cylinders parallel to the 82—axis ; then, the ruled schedule is an

associated schedule if and only if : DN P = g, where D = U D(8) and
0ec®

P= U P(8). (See Figure 4).
Be®
Consider the associated schedule ¢, and let Z be its epigraph on L,,

(i.e. {(el,t)ele RIlt> 5(81)}). Using the definition of an associated
schedule, it can be shown by contradiction that P(8)cintZ. |

Moreover from (D) and the regularity of the DICM, D(8) is the tangent
line to the lower boundary of Z at point (£I(9),t'(9)). Then from the
convexity of Z, D(8) N Int Z is empty. It follows that for any ©

D(8) "P = gand then DN P = g .

ii) If an agent chooses ({(£°(8),t"(8)), where £;(8)e Int (£,(®)), the
corresponding indifference surface is tangent to the hyperplane. As P(8) is
convex for all O, it never intersects the hyperplane.

In the case where (£°(8),t"(8)) is such that £,(8) is on the boundary

of £;(®). the conclusion remains if M is large enough.
Q.E.D.

In 6i), the requirement that preferences be independent of 82 is
restrictive, but the assumption that 6 does not depend on £, is innocuous.

One could take the projection of the contract curve on an hyperplane of
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coordinate &, = o) (wﬁere C denotes a constant), and construct a cylinder
orthogonal to that hyperplane with identical section ; this cylinder would
be an associated schedule independent of 82. A crucial assumption however,
is that 6 be convex (in 81). Given that any generating line of the ruled
surface, tangent to the section of ©'s indifference surface 1in the
hyperplane £, = C, is also tangent to @ in (£;(8),t"(8)), the convexity of
@ guarantees that no type @' has a preferred point below (or on) the
generating line, therefore below (or on) the ruled surface. The
independence of preferences “on 82 makes our model eguivalent to Picard
[1987]'s unidimensional problem of implementation via a family of linear
schedules, and our condition of convexity is similar to his condition. It
should be noted that the case is more general than it might appear. Indeed
if U(£;8) = U1(£1.£2)+ U,(£,:8), a similar argument would apply : what
matters is that the cross derivative of U with respect to 22 and 8 be zero,
for 1in this case, the problem is essentially a one~dimensional incentive
problem with action £, and transfers t + Ul(el,zz).

Proposition 6ii) allows the agent's preferences to depend on £, but at
the cost of strong conditions on the ruled surface, namely the fact that it

is an hyperplane.

IV.C/Necessary Condition for Universal Implementation

Thus we have identified a small subset of problems for which universal
implementation holds. We now characterize a broader class of problems where
this property might hold. These . problems are those for which a necessary
condition for implementation is satisfied. The intuition behind this

necessary condition is first explained.
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Consider the hyperplane £, = 35(8) and the sections in this hyperplane
of all O'-indifference surfaces going through (£°(8'), t'(8')) , for
8' close to 8. Three of these sections are depicted on Figure 5, one for ©
and two for 8' and 8" close to 8. Note that these sections are (implicitly)
defined by eguation (6)

(6) £ =T(L,,0") =tT(8') + UL (8');8") - Ule,,£;(8) ; 0)

The diagram suggests that the family of curves so defined has a lower
envelope. The necessary condition which we will stress is that the lower
envelope be locally above the section of the ruled schedule, i.e. above the
tangent in (8;(8).t'(8)) to the section of ©6's indifference surface in
(£°(8),t"(8)) : Figure 5 shows that if this condition were not satisfied,
one agent 6' would prefer some point on the generating line of the ruled
surface going through (e°(0),t"(8)) to his own bundle (£°(8°),t"(8')).
Therefore this condition is needed for universal implementation. The
necessary condition will express the requirement that the epigraph of the
lower envelope be convex i.e. that the second derivative of the function
defining the envelope be positive.

Assuming enough regularity, we know that the eguation of the lower
envelope is t = T(el.é(el)). where 5(81) is implicitly defined by (7)

(7) 8,.T(£,.8(¢;)) =0

We can now compute the second derivative of the equation of the lower
d?t
envelope, which we denote — . With straightforward notation, we have :

2
ag?
d’t d ad
— = — [3, T + 0 T —
ael deg, 1 8 dg, -
1 (41,9(11))
=
- L 0s, 1]
del 1 (II.B(II))

A A b
341411‘(31'9(51” + 8, 9. T4 808} 5~
1

Moreover, differentiating (7) yields : R
a - de
ae'elT(El'e(gl)) + BB.S.T(ZI.B(Zl)) EZ: =0
So that :
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- 2

12 ) 60 6.702, 802, )]
(8) _2- = a,e 2 T(El ve(‘el)) = .
aed bl d9.9.T(£,,6(£,))

an expression that only depends on the derivatives of T and therefore of U.

Differentiating repeatedly (6) one finds
a,l,lT(el,e') = -341,1U(el.£;(9).9')
3, e.T(.el,e') -a,IQU(el.eg(e),e')

1 .
Differentiating (6) and using the incentive compatibility condition on the

contract curve (that implies that the derivative of the agent's objective
function with respect to his anncuncement is identically equal to zero,
i.e. (1)) one gets :

aa.T(el,e‘) = 3gU(e"(8'),8") - dgU(2,,£,(8),0")
So that

5,., T(£](8),8) = T(6)

-

. ae; . de,
where I'(8) = 8419U(£ (8),8) = 3,29U(e (8),8) Ty

Finally taking all derivatives in £, = £(8) , 8' = §(£;(8)) = 6 , one

obtains :
2
- [azleU(e’(e),e)]
— = -9, , U(£(8),8) -
8
def 1%1 I(e)

where as recalled after definition 1, I'(8) has to be positive, for

incentive compatibility reasons.
The necessary condition we are looking for, is obtained by requiring
d?t

that —— is positive. The proof sketched above is made fully rigorous in
dae?

appendix and justifies our main theorem :

Theorem : Assume that (B), (D) and (MO) hold. Consider a DICM (£ (.),t"(.))
which is continuously differentiable and a.e. twice differentiable.
The ruled schedule is an associated schedule (allowing universal
implementation) only if the following condition holds :

(9) V 6¢0, [a,leuw'(e),e)]2 < - 9, 4 UL (6),0) T(8)

de, . ae;
o + a,zeU(e (9),0) %

where I'(8) = 8418U(£'(9),9)
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Before going further, we should convince ourselves that the above
formula fits the intuition of the phenomenon, as developed throughout the
proof. For that let us consider the three terms in (9) and check that they
indeed play in the direction one should expect.

First the LHS of (9) is non negative, and if (£ (.).t’(.)) is a DICM,
then necessarily I'(8) is non negative. So the term [-BllllU(E'(G);G) must
be non negative for the ruled schedule to be a (2" (.),t"(.})-associated
schedule. Indeed, if the indifference surface of a 8-agent had a section in
the hyperplane ¢, = E;(G) which were not locally concave around the
contractual point (£°(8),t*(8)) , then the ruled surface would not be an
associated schedule since it would require the agent to choose an action £,
that minimizes {locally) his utility. Now, given that -a£1£IU(z'(e);e)]
must be positive, it increases with the curvature of the indifference
surface of the agent in £,. Everything else being givén, the higher the
curvature of the family of curves, the better the chance that the lower
envelope of this family be itself convex., When the term
[-aeieIU(z‘(e');e')] increases, a O'-agent will require a higher
compensation to deviate to the point £°(6) for ' close to 6, and, for
highly convex preferences in El. local implementation by the ruled schedule
will be possible.

Second, it has already been said that the term I'(6) is non-negative.
Coﬁsider now the transfer needed to make a 6'-agent choose (£ (8).t7(9))
instead of his contractual point : it is given by

(£°(8") + U(L°(8") ; 8')} - {t*(8) + U(£ (8);0")}
For ©' close to 6, this expression is equal to I'(8)(d8)2 to the second
order. Thus I'(.) "measures" the distance in terms of transfers between the
point chosen by 6-agents and the indifference curve of neighbor agents.
Increasing this distance is a favorable factor for the convexity of the

epigraph of the lower envelope of all these curves, i.e. for the ruled
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schedule not to allow this amount of transfers that would trigger local
deviations. This phenomenon conforms to expression (9) in the theorem.

Finally 13419U(e'(e);e)| must be as small as possible for the ruled
schedule to be an associated schedule. The intuition here can be understood
as follows. a,1U(.) measures the slope of the ruled surface or/and of the
indifference surface of ©-sgents in the hyperplane 8;(6). so that |az19U|
measures the speed of rotation of the generating 1lines of the ruled
schedule when 8 varies. Given the (local) convexity of 8's indifference
surface, it is clear that a high speed of rotation will imply that close to
(£°(8),t"(8)), the generating lines of the ruled surface will intersect 8's
indifference surface, thereb} ruling out the ruled surface as an associated
schedule.

To obtain a better understanding of the theorem, it is useful to
specialize it to the case where preferences are independent of 82. We know
from Proposition (6i) that if the DICM is continuously differentiable, the
convexity in £, of an asscciated schedule is a sufficient condition for the
ruled schedule to implement the DICM as an associated schedule. The next
corollary shows that it is equivalent to condition (9) so that (9) (or the
convexity of an assocciated schedule) is a necessary and sufficient

condition for universal implementation.

Corollary 1. Under the conditions of the Theorem, if preferences are
independent of £, , then condition (9) is a necessary and sufficient

condition for universal implementation,

Proof : (9) is a necessary condition for universal implementation by the
previous theorem. Next we prove that (9) implies the existence of an
associated schedule satisfying 6i3)} (convex in £, , independent of £,).-

For that consider the projection of the contract curve in the plane
(€,,t) : it is a C'-manifold. Moreover as £,(6,)=£;(8,) = t7(8,)=t"(9,),

it can be written as a function ¢t = t(el). From incentive compatibility
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. de
dt . 1 . . .
B + a,lu(el(e);e) 7§;—= 0 . First, since 0d,U is bounded (on the compact
L, x ®, € is c!. Second, for almost all £,, the local inverse

6°(¢,) of £(8) is  defined, and C'(£) = -ailu(el.e‘(zl)) and

. de; . ae,
t"(ﬂl) =1~ allllU(El ,8 (31)) ?9— - allgl}(gl ) (El)) / E-e— exists.
Condition (9) is equivalent to t"(ﬂl) 2> 0 for almost every £,, given that

ae;
a,ISU(el,e'(el)) :i;-z 0 by incentive compatibility.

Now G being ¢! and with a positive second derivative almost every
where is globally convex.

It is now easy to take the cylinder generated by the section
t = €(¢,), i.e. the cylinder embedding the contract curve. It obviously is
an associated schedule, and we showed that it is convex. Hence it satisfies
6i3).

Now applying proposition 6i), we know that the ruled surface is an
associated schedule, hence universal implementation holds. So (9} is also

sufficient.
Q.E.D.

The necessary requirement for universal implementation in the case
where preferences are independent of 82 coincides with the sufficient
condition of Proposition (6i) and can be satisfied only by special DICM
(those with associated schedules which are convex in the sense of
Proposition 6). This stringent restriction relates to the special form of
preferences under consideration, (In féct, for any a priori given DICM, one
can find preferences for which the DICM can be universally implemented.)

Let us examine how our Theorem and Corollary 1 relate to the existing
literature on linear implementation. In Laffont-Tirole's [1986] regulation
model, the manager's objectives only depend upon his personal effort {(e)
and on the regulator's transfef (t) : t-H{e). The effort e reduces the unit

cost of production of the firm, and is moreover assumed to be a perfect

substitute for the cost parameter 6 : the unit cost is equal to c = 6-e.
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Laffont and Tirole assume that the level of production q is perfectly
observable whereas the unit cost is observable with some noise. Setting
£, = 6-e and £,= q, the agent's wutility function does not depend upon £,
and can be writen in our framework with : U(£,,£,,8) = H(8-¢,). Since the
agent's preferences do not depend upon £, , condition (9) is not only
necessary, but alsc sufficient for universal implementation of "smooth"
DICM's (in particular, it implies that there exists an associated schedule
which is convex in £,). Because of the substitutability between 6 and £,
ae;

de
Laffont and Tirole also consider a particular type of objective

v

condition (9) boils down to : 1.
function for the principal, which is linear in €, and independent of 8 (the

regulator's utility function is given by : S(¢,,£,,8) = s(¢,) - (1+r) 2, €,).
ae;
Altogether, these assumptions imply that the optimal DICM satisfies 7&;91'

Ncte however that modifying the principal's objective {e.g., having 9gS > O
or a,llzs > 0 would not affect the necessary and sufficient condition {(9),
but could lead the optimal DICM to violate this condition. In this case,
linear implementation would fail.

Apart from Laffont-Tirole [1986] , most other examples in the
literature dealing with 1linear schemes, focus on n, = 1and n, = 0, and
study reward schedules that depend on an announcement : ¢(£,,6'), and that
lead to truthful revelation. Given (MO), our results still hold in such a

framework, and condition (9) is necessary and sufficient for universal
ae,
implementation and takes the same form except that I'(8)= a,IBU(e'(e),e):i;a

In Picard [1987] , U(¢,.6) = -H(£,+ 0). So that : &, gU = -H"(£](6)+0) < 0

ag; ae;
and therefore :i;-s 0 for implementability.(9) is equivalent to TEY'S -1

i.e. 8;(9) + 8 non increasing, which is precisely the condition stated in

Picard for 1linear implementation (Proposition 2, p 309). Similarly, in

de
1
MacAfee-MacMillan [1987] , a,I,IU < 0, aJIGU > 0, so that :ﬁ;-> 0 for

-

ae;

implementation sc (9) is equivalent to aJIBU £ - 841£1U 5 i.e. to
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de(a,1U(e;(e),e)) < 0 which McAfee and MacMillan (Theorem 2, p 301 and
condition (16)) prove to be necessary and sufficient for Ilinear
implementation.

We now show that a "reasonable" dependence on 82 is a favorable factor
for the possibi%ity of universal implementation.

Consider the family of agent's preferences, indexed by oR":
(10) U, (£,.£,:8) = V(£,:6) + W(e,:8)
where V and W are fixed functions such that
(P) 8, gV >0 . 8, gW>0 . 8,V <O

In this setting it is known (cf Guesnerie-Laffont [1984]) that the

piecewise continuously differentiable functions (£,,£,) which satisfy

ae, ae,
% ®°

are implementable, for any positive o . Let us focus attention on this set

L of implementable functions which are common to all preference parameters

Q.

Condition (9) takes the following form ae
2

2 1
! <€ (-8 3 —_—
(9") [0, 6v])" < [ 2,2V [(azlev) =+ @ (0r,0%) 5
It is easy to check that if for a given (£,,£,), condition (9')} holds

for o, it also holds for any &' > o« . Thus :

Corollary 2 : Consider the class of functions indexed by o defined by (10)
and assume in addition that they satisfy (B) (D) and (P).Then the set

£, = {(£,.£,) € LI condition(9') holds for «} is increasing in o.

Then Corollary 2 provides a clear illustration of the fact that the
dependence of preferences on £, is a favorable factor for universal
implementation, ? Loosely speaking, among preferences which rationalize a
given DICM, the more 1likely to pass the necessary test for universal
implementation are those which depend strongly (and correctly) on £,. Our
test which is very demanding for preferences independent of £, can be less

stringent when preferences depend upon 82. In counterpart, the criterion
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which we have stated and which is (almost) sufficient for preferences
independent of £2 is no longer sufficient when preferences depend upon 82.

Let wus summarize our findings. For a given DICM, condition (9)
provides a description, which we have shown to be intuitively plausible, of
the border between preferences for which universal implementation is
possible and those for which it cannot work. In some sense, the addition of
the dimension 22 to our problem, when it is effective, increases the power
of the ruled schedule for universal implementation.

As final comments, it should be noted first that the condition we have
exhibited, although being only necessary for universal implementation, is

necesgsary and sufficient when one considers the implementation problem

under small noises of observation (small variance and small support). In
CGR, we developed a theory based on the consideration of truncated ruled
schedules for problems with small disturbances.

Second, the fact that £, is one-dimensional does not seem crucial to
our analysis. The important point is the fact that the dimension n, of the
space of observable wvariables £, 1is at least equal to the dimension of
characteristics ©.

Finally, the assumption that £; is one-to-one has an ambiguous effect
on the result of our analysis. The 1local considerations leading to our
necessary condition hold independently of this assumption, but in the
absence of such a condition of strong monotonicity, universal
implementation is likely to be hopeless. The condition remains relevant
however, for the analysis of implementation in the presence of small

noises.

IV.D/Implementation via Quadratic-in-Section Schedules.

Let us consider now the problem of implementation via noisy reward
schedules which are quadratic-in-section. As shown by proposition 4, such
an implementation is possible whenever there exist associated schedules

that are themselves quadratic-in-section. In fact, as shown by Picard
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[1987] the noisy reward schedule that implements a given quadratic

associated schedule, is deduced, by translation, from the associated

schedule : in particular it has the same "curvature” ‘as the associated
schedule.
Implementation via noisy reward schedules which are

quadratic-in-section is less appealing, although easier, than universal
implementation. The design of a quadratic-in-section schedule requires the
knowledge of the variance of the noise. May be more importantly, it has the
inconvenience of leading to a rather high variance of the agents
remuneration, a fact which the recent theory of contracts has shown
undesirable for self enforcement of contracts (See for example the debate
on penalties enforcement).

Keeping this problem in mind, it is useful to look for the associated
schedules with the smallest possible curvature (as measufed by the inverse
of the radius of curvature of the associated schedule at the point of the
DICM on this schedule - which is alsc the radius of curvature at the
corresponding point of the noisy reward schedule). Indeed, our analysis

provides a lower bound to such a curvature.

Proposition 7 : Assume {B), (D) and (MO) hold, and that (£(.),t’(.}) is C!
a.e. twice differentiable DICM. A necessary condition for a M
quadratic-in-section schedule to be an associated schedule, is that
its curvature in section in the hyperplane £,(8), is

[2., suce"(8) )]’

r{e)

1 .
at least larger than : 5 + 3, JlU(E {8);8)
1
The expression is reminiscent of condition (9) and the proof of
Proposition 7 given in Appendix is a by-product of the proof of the
Theorem. The differentiability assumptions guarantee that the lower
envelope presented in the previous subsection is smooth around

(£°(8);t°(8)), so that its curvature is bounded from below. Any parabola
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passing through (£°(8),t (8)), tangent to the envelope at this point, and
with high enough curvature will lie below this envelope curve : the surface
generated by all these parabolas fulfills all local incentive compatibility
constraints. Proposition 7 gives a precise bound for the minimal curvature.

Proposition 7 has two consequences. Since a formal statement would be
somewhat heavy, we only provide the intuition of the straightforward
arguments underlying them.

First, for small noises, {(with £ independent of £) , there always
exists a quadratic-in-section associated schedule : any one generated by a
family of parabolas which satisfy the curvature condition of the
proposition {(See CGR).

Second, for general noises, Proposition 6'only gives the right local
curvature, but global incentive compatibility constraints (i.e. between B8
and 8' not close) might not hold. However, the reader will convince himself
that "generically" cne can increase the curvature of the parabola beyond
the lower bound exhibited above, up to a point where the corresponding
quadratic-in-section schedule 1is globally incentive compatible and
therefore an associated schedule (compactness, uniform continuity).

This remark as well as the above proposition generalizes the results
obtained by Picard [1987] for one-dimensional action variable,

principal-agent problems.

V. CONCLUSION

As stressed on the introduction the present paper can be viewed as
developing a possible argument for the usefulness of simple and linear
schemes, namely that such schemes allow a robust implementation of optimal
pure adverse selection schemes in the context of a multidimensional problem
where "noise" signicantly affects a subset of the contractual variables. It
is hoped that the analysis has informed the reader on both the significance

and the limits of this argument.
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APPENDIX : PROOF OF THE THECREM AND OF PROPOSITION 7.

Consider the quadratic-in-section surface defined by :

£ =u
(A1) <8, = £;(v)

1

t = t'(v)walU(ﬂ'(v);v)[u-ﬂi(v)]-q(v)[u-£I(v)]2

which is parametrized by (u,v) € £,(8) x ® and quadratic in u. Let us
consider some agent 8 in ® and call Fq'e(u.v) the value of his utility over

the surface : Fq'e(u.v) = t+U(£,,£,;6), where t, £, and £, are derived from

u and v by (Al).

It is first obvious that (€;(0),8) is a stationary point of F_ g.
Computing the Hessian quadratic form of the function F and using the

incentive compatibility constraints fulfilled on the contract curve, one

gets

2.U(£°(8),8) - 2q(8},

82 |F_ 5(£;(6);0)

de;
-[82,uce" (8),0) - 2q(9)]--(9) - 825U(£" () ,8)

& £;(9).8)

uvqe(

»*

da¢

de 1 .
(8) + —5-(8) 374U(£7(8).8)

L]

32 F, g(£;(8),8) = [87,U(£"(8),8) - zq(e)]

ae;
- -——19) 325U(£° (8),8)

A necessary condition for the surface defined by (Al) to implement the

DICM (2°{.), t"{.)) is that the Hessian quadratic form be negative semi

definite :

3;,U(£"(8),8) - 2q(8) <0 (A2)
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. de; . de; .
-[32,U(2"(8).8) - 2q(0)] —5-(8) 8feU(£7(8),8) + 3(0) 935U(£7(8).8)
> [a,u(e" (8),8)]° (a3)

From second-order incentive compatibility condition of the DICM :

* -

dae, de¢,
Wed, ——(8) 5]4U(£"(0),0) + —5(8) 35U(£7(6),8) > 0, so that (A3) implies
(A2).
Take gq{.) = 0. (A3) is a necessary condition for the ruled schedule to

implement the DICM, and is identical to (9). Hence the theorem.
Take g{.) mnon null, (A3) is a necessary condition for the
quadratic-in-section schedule to be an associated schedule, and it gives a

lower bound for the value of the curvature q(.). Hence Proposition 7.
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FOOTNOTES

1. For this, consider any {(£(.),t{.)) - associated schedule ¢, and take two
compact sets K, and K, , such that the interior of K, contains K, and
K, contains £{@). Consider then the function ¢ defined by :

(L) = o(8), ¥V £ €K,

@) = -M, V £ e R/K

and by piecing together these parts on KI/KZ. It is obvious that 6 is an

(e(.),t(.)) = associated schedule, and it can be constructed to be as

regular as desired on R"/K,

2. This is well defined because incentive compatibility on the DICM
implies :

£{(6) = £(B8') == t(B) = t(6 )

3. Given that the signal has the same dimension as £,, the additive form

involves no loss of generality.

4. Although we focus on situations where the observation noise does not
induce any efficiency loss, it should be stressed that this need not be
always the case. In particular, implicit here is the assumption that the
noise satisfies some kind of "spanning" condition, such as E(Zilel) = £,
Otherwise, the noise reduces drastically the available information and is
thus likely to generate some 1loss of efficiency. (For example, in the
extreme case where (E(eilﬂl) =K (i.e., E(¢1¢,) = K-¢,), then clearly

observing £, has no value).

5. E denotes the expectation operator with respect to the distribution of

£.
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6. When n, > 1, the one-to-one assumption stated in proposition 2 is
stronger than required. What is needed is that whenever there is "pooling"
in €, for the desired DICM (£(.),t{.)), there is also pooling in the reward
function (that is, £,(8) = £,(0') implies H(.,8) = H(.,8"') (for (cne of)

the revelation mechanism implementing (£(.)},t(.))).

7. Another desirable property would be that the variance of transfers
actually paid to the agent be limited, or that transfers be stochastically
bounded. Unlimited transfers (as in a Mirrlees Scheme) or highly variable
transfers may limit the enforceability of contracts, and will cease toc be
optimal when a swmall amount of risk aversion is introduced, so that it is
reasonable to try to implement an allocation without using them. This
requirement also leads us to favor linear rather than quadratic schedules,

as witnessed in section IV.

8. This definition applies even if € is correlated with 8 provided

E(el1e) = 0.

9. Some technical comments are in order : first condition (P) and the
monotonicity of the DICM could be generalized to a constant sign assumption
(see Guesnerie-Laffont [1984] ). Second, the set [ is only a subset of all
implementable functions. It is the only one, in the present state of
knowledge, for which one can be sure that it belongs to the intersection

over , of the sets of implementable functions.
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