A hybrid variational principle for the Keller–Segel system in ℝ2

Blanchet, Adrien, Carrillo, José, Kinderlehrer, David, Kowalczyk, Michal, Laurençot, Philippe and Lisini, Stefano (2015) A hybrid variational principle for the Keller–Segel system in ℝ2. ESAIM: Mathematical Modelling and Numerical Analysis, vol.49 (n°6). pp. 1553-1576.

Full text not available from this repository.
Official URL: http://tse-fr.eu/pub/29909


We construct weak global in time solutions to the classical Keller–Segel system describing cell movement by chemotaxis in two dimensions when the total mass is below the established critical value. Our construction takes advantage of the fact that the Keller–Segel system can be realized as a gradient flow in a suitable functional product space. This allows us to employ a hybrid variational principle which is a generalisation of the minimizing implicit scheme for Wasserstein distances introduced by [R. Jordan, D. Kinderlehrer and F. Otto, SIAM J. Math. Anal. 29 (1998) 1–17].

Item Type: Article
Language: English
Date: 12 November 2015
Refereed: Yes
Uncontrolled Keywords: Chemotaxis, Keller–Segel model, minimizing scheme, Kantorovich–Rubinstein–Wasserstein distance
Divisions: TSE-R (Toulouse)
Site: UT1
Date Deposited: 18 Apr 2016 09:57
Last Modified: 08 Oct 2019 23:01
["eprint_fieldname_oai_identifier" not defined]: oai:tse-fr.eu:29909
URI: http://publications.ut-capitole.fr/id/eprint/18725

Actions (login required)

View Item View Item