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1. Introduction

The common practice in empirical economic models is to assume that the unobserv-

ables are additively separable from the observables, particularly when the latter are

endogenous. This is done because it is recognized that serious identification problems

arise when such interactions are allowed for. However, more often than not such addi-

tivity is, to say the least, contrived and often inconsistent with the overall stochastic

specification of the model. Good examples are demand functions, where either the

price or the total expenditure impacts are likely to be heterogeneous; wage equations,

where the returns to education are likely to vary with unobserved ability; labor supply,

where wage effects may be heterogeneous; or production functions, where the technol-

ogy may vary across firms, at least in the short run. In all these examples the model

one may want to estimate includes a continuous endogenous variable whose impact

varies over the population. In this paper we address the non-parametric identification

of such models.

There has been a growing theoretical and empirical literature on models where the

impact of discrete (usually binary) treatments are heterogeneous in the population.1

This leads to important identification questions and questions relating to the inter-

pretability of standard methods such as instrumental variables.2 Within this context

the issue of parameter of interest has arisen, since the heterogeneity in impacts implies

a whole distribution of effects, rather than one fixed parameter as in the traditional

literature. Parameters that have received a great deal of attention include the average

treatment effect (ATE) which is the expected impact of the treatment on a randomly

chosen individual, and the impact of treatment on the treated, which is the expected

impact on a randomly chosen individual among those who chose to have treatment. In

1see, e.g., Roy, 1951; Heckman and Robb, 1985, 1986; Björklund and Moffitt, 1987; Imbens and
Angrist, 1994; Heckman, 1997; Heckman, Smith and Clements (1997); Heckman and Honoré, 1990;
Card, 1999; 2001; Heckman, 2001a,b; Heckman and Vytlacil 2000, 2001, who discuss heterogeneous
response models.

2see, for example, Heckman and Robb (1986), Imbens and Angrist (1994), and Heckman (1997).
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this paper we focus on continuous treatments, such as years of education, expenditure,

income, prices etc.. In this context we discuss parameters of interest and we focus on

the identification and estimation of ATE, pointwise for the entire observed support of

the treatment. For example we consider the impact of expenditure on budget shares

at each value of expenditure.

It should be obvious that some structure has to be imposed on the nature of

heterogeneity and the way it interacts with the endogenous variables. We express the

model in counterfactual notation by specifying it as a stochastic process indexed by d,

the endogenous treatment variable. The outcome we observe is then an endogenous

realization of d. We then put some structure on how the unobservables evolve with d.

We consider a linear and a quadratic random functions in d as well as a more general

structure.

We investigate identification using existing methods, such as instrumental vari-

ables (IV ) and the control function method (see Heckman and Robb, 1985) as well

as a more recently developed method Local IV (LIV , see Heckman and Vytlacil,

2000). We show that IV assumptions are not in general sufficient not identify ATE

(or treatment on the treated). We then proceed to derive conditions under which

the various approaches are equivalent. We also provide a more general LIV based

approach to identification with different degrees of heterogeneity. We also derive a

testable restriction with which to identify the “degree of unobserved heterogeneity.”

2. The model, some parameters of interest and the observables.

We consider models in the class

Yd = ϕ(d,X) + Ud

where we define ϕ(d,X) = E(Yd|X) which implies by construction that E(Ud|X) = 0.
d defines the level of treatment intensity. It can be binary, which is the case that has

been studies extensively in the literature; it can be discrete ordered. However, in the
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paper we focus on the case where d is continuous. An example would be a demand

function, where d is the price of a good and where unobservables are not additively

separable.

For the purposes of economic evaluation we are interested in certain aspects of ϕ

as well as potentially in the joint distribution of the Ud. A parameter of interest that

follows naturally from the definition of the model is the Average Treatment Effect,

∆ATE(d, x) =
∂

∂d
E(Yd|X = x) =

∂

∂d
ϕ(d, x) (2.1)

or higher order derivatives of the average.3

Some of the proofs will have the structure of first identifying E(Yd|X = x) ≡
ϕ(d, x), and then using identification of ϕ(d, x) to identify ∂

∂d
E(Yd|X = x) = ∂

∂d
ϕ(d, x).

Some of the proofs will have the same structure but with ϕ(d, x) only identified up to an

unknown, additive function of x. We will thus need conditions under which ∂
∂d
ϕ(d, x) is

well defined to have identification of ∂
∂d
ϕ(d, x) a.s. follow from identification of ϕ(d, x)

a.s. up to an additive, unknown function of x. The assumption that E(Ud|X) = 0 is
just a normalisation; in other words we do not assign any causal interpretation related

to changes in the value of X. Thus the derivatives of ϕ(d,X) with respect to X need

not have any causal interpretation. This is very much in the spirit of the treatment

effects literature, where no causal interpretation is attached to the impact of X. In

this sense we are not identifying a complete structural model here.

In general identification results require some structure to be imposed on the stochas-

tic process Ud. Typically we will require some continuity and possibly additional

smoothness conditions. In general we can think of approximating Ud by a sum of

3An equivalent expression is

lim
∆d→ 0

E(Yd+∆d − Yd|D = d,X = x)

∆d
,
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known functions of d weighted by random coefficients, i.e.

Ud =
KX
j=0

αj(d)εj, (2.2)

where αj(d) are the first elements of suitable basis of the space of functions and the

εj are the random components of the stochastic process. A special case where this

would arise naturally is a polynomial model for Yd with random coefficients. It is

beyond the scope of this paper to consider the most general case. We will consider

the case of a power series in d.We will start by considering the usual zero order case,

including summarizing existing results. We will then consider identification in the

more general higher order cases. We subsequently discuss diagnostic tests for higher

order heterogeneity.

We now complete the model by introducing a description of the mechanism assign-

ing a particular treatment level to each individual, denoted by D. We define

D = P (X,Z) + V

where we define E(D|X,Z) = P (X,Z). In the sequel we will use the variables Z as
instruments, which only determine the level of treatment (D), in ways that will be

defined precisely.

At this point it is useful to define the notion of an expected outcome at treatment

intensity d1 given that the individual chose/was assigned to treatment d2.This is de-

noted by E (Yd1|D = d2, X = x) .Given this and the model of treatment assignment

we can also define a commonly used parameter, which is the treatment on the treated
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(TT )4

∆TT (d, x) = [
∂

∂d1
E (Yd1|D = d2,X = x)]d=d1=d2

= [
∂

∂d1
ϕ(d1, x) +

∂

∂d1
E(Ud1 |D = d2,X = x)]d=d1=d2.

Clearly if we can observe all outcomes (actual and counterfactual) independently

of the choice of treatment d, there is obviously no identification issue. Thus, to set

the scene for the discussion of identification we assume we observe realizations of the

random variable Y = YD and of D as well as the relevant X and Z. Thus we can never

observe the counterfactual outcome, i.e. the outcome Yd0 for some value d
0 different

from the actual chosen treatment level.

In order to better understand the issues of identification we need to define

g(d1, d2, z, x) = E(Ud1|D = d2,X = x,Z = z) (2.3)

In other words the function g(d1, d2, z, x) is the conditional expectation of the random

error term corresponding to treatment level d1 when the choice that is made by the

individual is to take the treatment level d2. Thinking of an education choice example,

g(d1 = 9, d2 = 10, z, x) would be the expected value of the unobservable part of the

outcome at say 9 years of education for someone choosing, say, 10 years. In the case

where d1 = d2 we get the conditional expectation of the outcome at d when the choice

is in fact d. Thus

E(Y |D = d,X = x,Z = z) = ϕ(d, x) + g̃(d, x, z) (2.4)

where we have defined g̃(d, x, z) = g(d, d, z, x). Since the data itself only identifies the

above conditional expectation, ϕ1(d, x) and ϕ2(d, x) are observationally equivalent if

4An equivalent expression is

lim
∆d→ 0

E(Yd+∆d − Yd|D = d,X = x)

∆d
,
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we can find two functions g1(d1, d2, z, x) and g
2(d1, d2, z, x) such that ϕ

1 + g̃1 = (as)

ϕ2 + g̃2. The average treatment effect, ∂
∂d
ϕ(d, x) is identified, if any two observa-

tionally equivalent functions ϕ(d, x) and ϕ1(d, x) have the same first derivative, i.e.

∂
∂d
ϕ(d, x) = ∂

∂d
ϕ1(d, x). Moreover, the effect of treatment on the treated [ ∂

∂d1
ϕ(d1, x)+

∂
∂d1
g(d1, d2, z, x)]d=d1=d2 is identified, if, for any functions ϕ

1(d1, x), g
1(d1, d2, z, x) such

that, ϕ+ g̃ = (as) ϕ1 + g̃1 iff [ ∂
∂d1

ϕ+ ∂
∂d1
g]d=d1=d2 = (as) [

∂
∂d1

ϕ1 + ∂
∂d1
g1]d=d1=d2.

We now discuss the identification of certain parameters of interest under differ-

ent assumptions. The way we approach the problem is first to start by looking at

identification in the simpler homogeneous impact model. In that context we consider

identification under the standard orthogonality conditions, under a control function

assumption and by assuming that the function we wish to identify satisfies the Lo-

cal Instrumental Variables equation. In general, these conditions are not equivalent,

though we proceed to derive conditions under which these assumptions are equiva-

lent. This leads to a set of assumptions under which ATE is identified by any of these

conditions.

We then proceed to look at a model with heterogeneous impacts of a particular

kind, i.e. where the first derivatives of the function of interest are additive in the unob-

servables. We show that the usual orthogonality conditions no longer identify ATE (as

is well understood in the treatment effects literature); we then proceed to show that

the model is identified using an extension of the control function assumption we made

earlier in the homogeneous impact model. An alternative to this is to assume directly

that the model satisfies the Local Instrumental Variables condition. We then derive

conditions under which the assumptions imposed in the control function approach and

the assumptions imposed in the LIV approach are equivalent.

In the next section we approach the problem in a more general fashion and we

derive conditions on the control function which imply that LIV can be used to identify

ATE. The conditions are not easy to interpret. However, in a special case we show

that these conditions imply that the continuous treatment that we consider can be
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modelled as a single index.

3. The common treatment effects model

We start discussing identification within the more conventional common treatment

effect model where Ud ≡ U. Of course in this context the Average Treatment Effect
and the Treatment on the Treated are identical. The main issue that arises in this

context is that of the non-parametric identification of an otherwise standard simulta-

neous equations model. Below we consider instrumental variables, control function,

and Local instrumental Variables approaches. All these approaches are based on al-

ternative assumptions and we will show that they all identify the average treatment

effect, given the validity of their assumptions. Nevertheless they are different and no

one implies the other. However, we show below that suitable independence assump-

tions unify all these approaches. The distinction between the approaches will become

particularly interesting when we deal with the heterogeneous treatment effects model.

Traditionally, researchers have focused on instrumental variables, which will be our

point of departure. Hence we assume that

A1. Regularity condition ϕ(D,X) is differentiable in D (a.s.), and the support

of D conditional on X does not contain any isolated points (a.s.).

This regularity condition (A.1) will be assumed throughout and we do not mention

it explicitly in the theorems that follow.

A2. E(U |X,Z) = E(U |X) (Exclusion restriction)
Given the definition of ϕ(d,X) ≡ E(Yd|X), we have by construction thatE(U |X) =

0 and thus E(U |X,Z) = 0.
We also need a rank condition which ensures that our instrument has explanatory

power. In linear models this assumption takes a relatively simple form, requiring

that the instruments are correlated (conditional on X). However, in the context of

nonparametric identification, we need to take into account that we do not generally

know the form of the function ϕ(d, x); here we require a more general dependence
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condition between D and the instruments Z that, loosely speaking, ensures that any

function of D is correlated with some function of Z. Hence we say that D is strongly

identified by Z given X if E(λ(D,X)|X,Z) a.s.= 0 =⇒ λ(D,X)
a.s.
= 0.5 This assumption

can be viewed as a non-parametric extension of the rank condition. An interpretation

is that any conceivable function of D is correlated with some function of Z. Thus we

state the following assumption.6

A3. D is strongly identified by Z given X.

We now state the first result in terms of a theorem:7

Theorem 3.1. Assume that the exclusion restriction (A2) holds, that D can be

strongly identified by the instrument Z given explanatory variables X (A3). Then

E(Yd|X = x) ≡ ϕ(d, x) is identified.

Proof. See Appendix.

In order to contrast with the identification results in the heterogeneous treatment

effects section, we should emphasize that here identification does not require indepen-

dence of the unobservables from the instrument; just mean independence of U from

Z. It imposes no structure on the model driving the treatment choice D, other than

the strong identifiability condition A3. The first stage equation, D = P (X,Z) + V ,

has played no role in this analysis. The only restriction on the relationship between

Z and D needed by the theorem is the strong identification assumption (A3).

Theorem 3.1 provides identification of the function ϕ(d, x) (a.s.), while our param-

eter of interest is the derivatives of this function with respect to d. Combining Lemma

3.3 and Theorem 3.1, we immediately have the following result.

Corollary 3.2. Assume (A1), (A2), and (A3). Then ∂
∂d
E(Yd|X = x) = ∂

∂d
ϕ(d, x) is

identified.

5Equivalently we can write that E(Ψ(D,X)|X,Z) = Ψ0(X) ⇒ Ψ(D,X) = Ψ0(X)
6Newey and Powell (1989) and Darolles, Florens, and Renault (2002) use a similar condition.
7An analogous result is proved by Newey and Powell (1989) and Darolles, Florens and Renault

(2002)
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This corrolary follows from the following lemma

Lemma 3.3. Assume (A1). Then identification of ϕ(d, x) (a.s.) up to an additive

function of x implies identification of ∂
∂d
ϕ(d, x).

Proof. See Appendix.

Heckman and Vytlacil (1999) propose a new approach to the identification of

causal effects, the Local Instrumental Variables (LIV ) approach. Under suitable as-

sumptions, this identifies E( ∂
∂X

ϕ(D,X)|Z = z,X = x). In the case whereD is discrete

and takes only two values, integrating out Z from this expression identifies the average

treatment effect, ATE, because the latter is not a function of D. However, when D

takes on more than one value, or indeed it is continuous, this equivalence does not

follow automatically since now ATE is a function D.

The key LIV assumption is

A4 (LIV ).

E(
∂

∂D
ϕ(D,X)|Z = z,X = x) =

∂E(Y |X,Z)
∂zj

∂E(D|X,Z)
∂zj

∀j

In the standard linear IV model this condition holds immediately. However, in non-

linear models, this does not follow from the usual orthogonality conditions. It states

that the causal effect averaged over all values of the treatment, and at a given value

of the instrument is a scaled version of the marginal effect of the instrument on the

expected outcome. We now show that ATE is identified under this assumption.

Theorem 3.4. If D is strongly identified by Z given X (A3), and if the expecta-

tion of ATE conditional on Z and X satisfies the LIV condition (A4), then ATE

(∆ATE(d, x) = ∂
∂d
ϕ(d, x)) is identified.

Proof. See Appendix.

It should be stressed that this assumption is generally not implied and does not im-

ply assumptions (A2) and (A3), which characterize instrumental variables. Of course
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the problem is that assumption (A4) is unusual and possibly difficult to relate directly

to economic theory. However, an additional assumption unifies the IV and LIV ap-

proaches and makes them equivalent. Thus let p(D|Z,X) be the conditional density
of D given Z and X. Then we assume that

A5 Single Index: V is independent of Z given X. This implies p(D|Z,X) = p(D−
P (X,Z)|X).
We will also consider the following, stronger condition.

A50 (V,U) are jointly independent of Z given X.

Theorem 3.5. Assume that:

1. Z and X are measurably separated,

2. the support of the conditional distribution of D given X = x, Z = z is an

interval (DL
x,z,D

U
x,z) (possibly infinite) and any instrumental regression ϕIV sat-

isfies: ϕIV (x,D
L
x,z)p(D

L
x,z|x, z) = ϕIV (x,D

U
x,z)p(D

U
x,z|x, z) = 0 where p(d|x, z) is

the conditional density w.r.t. the Lebesgue measure of D given X = x,Z = z.

3. all functions involved are smooth and square integrable,

4. V is independent of Z given X (A5).

Then the exclusion restriction (A2) and the LIV assumption (A4) are equivalent.

Conversely, if (A2) and (A4) are equivalent for any function ϕ then the single index

assumption (A5) holds

Proof. See Appendix.

In other words if all the dependence of D on Z comes through a single function

(conditional on X) then the LIV and Instrumental Variables can be used to identify

ATE under the same conditions. Note that the single index assumption A5, is im-

posing both that the treatment can be written as an additively separable function of
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observables and unobservables and that the unobservables are independent of Z. This

assumption is not innocuous.

The literature on selection models and non-linear simultaneous equations models

have also used the control function approach to identify ATE. Generally the assump-

tions that allow identification using a control function are not equivalent to those that

justify the IV and LIV approaches. The control function can be defined as follows:

Let Ṽ be a real valued (square integrable) function of (D,X,Z) such that the σ-field

generated by (D,X,Z) is identical to the σ-field generated by (Ṽ , X, Z).8 The function

Ṽ is called a control function (see Heckman and Robb, 1985). Formally, we assume

A6. Control Function: There exists a real valued function h(Ṽ ,X) such that

E(Y |D,Z,X) = ϕ(D,X) + h(Ṽ , X).

Essentially this imposes that the dependence of the distribution of the unobserv-

ables in the outcome equation on the unobservable in the assignment equation (V )

and on the instrument Z operate through the same channel, i.e. through this function

Ṽ . This in usually will turn out to be the residual of the assignment equation. For

identification purposes we need to be able to distinguish these two functions. Thus

we will also need to impose that the control function has some independent variation

from D conditional on X. This notion is formalised in the following assumption.

A7. Rank condition: D and Ṽ are measurably separated givenX, i.e., any function

of D and X almost surely equal to a function of Ṽ and X must be a function of X

only.

A necessary condition for assumption A.7 to hold is that the instruments Z have

an impact on D.9

Theorem 3.6. Assume that we can write E(Y |D,Z,X) = ϕ(D,X) + h(Ṽ , X) (A6),

8This property is obtained if Ṽ is a one to one measurable function of D given X and Z.
9Measurable separability, which we maintain in this paper is just one way of achieving this.

Alternatively, one could restrict the space of functions ϕ(D,X) not to contain h(Ṽ ,X) functions;
this in turn can be achieved for example by assuming that ϕ(D,X) is linear in D and h is non-linear
as in the Heckman (1979) selection model.
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and that D and Ṽ are measurably separated given X (A7). Then E(Yd|X = x) =

ϕ(d, x) is identified up to an additive function of x.

Proof. See Appendix.

Applying Lemma 3.3, we state the following result,

Corollary 3.7. Assume (A1), (A6), and (A7). Then ∂
∂d
E(Yd|X = x) = ∂

∂d
ϕ(d, x) is

identified.

Finally independence unifies all approaches and makes them equivalent. Thus we

present two equivalence results

Theorem 3.8. The independence assumption (A5) and the control function assump-

tion (A6) with Ṽ = V imply the exclusion restriction (A2) and the LIV assumption

(A4). Hence under independence (A5) and the control function assumption (A6)

with Ṽ = V , as well as under the rank condition (A7) the control function approach

provides a solution which satisfies the IV , LIV assumptions.

Proof. See Appendix.

Theorem 3.9. Assume that (V,U) are jointly independent of Z given X (A50). Then

the exclusion restriction (A2), the control function restriction (A6) and the single index

assumption (A5) hold. Hence under independence (A50) (and the rank conditions) the

three approaches (control function, IV and LIV) are equivalent and all identify ATE.

Proof. See Appendix.

4. Models with heterogeneous treatment effects

We now discuss the class of models that were the original motivation of this paper,

namely models where the impact of the treatment D is heterogeneous. We focus on

the case where the realization of the treatment is correlated with the impact of the
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treatment. This can happen, for instance, when the allocation to treatment depends

on the individual’s potential benefit from the treatment intensity.

In general identification results require some structure to be imposed on the stochas-

tic process Ud. Typically we will require some continuity and possibly smoothness. In

general we can think the Ud can be approximated by a sum of known functions of d

weighted by random coefficients, i.e.

Ud =
KX
j=0

αj(d)εj, (4.1)

where αj(d) are the first elements of suitable basis of the space of functions and the εj

are the random components of the stochastic process. It is beyond the scope of this

paper to consider the most general case. We will study the case where K is finite and

αj(d) = d
j, so that Ud is given by a finite order polynomial in d,

Ud =
KX
j=0

djεj, (4.2)

which can be viewed as an approximation to more general non-separable models.

Usually, models allow just the level of the outcome variable to be random. However,

here we also allow the higher order derivatives to be random. For the binary treatment

case a linear form (K = 1) is completely general. However, with more than one

outcome for D or in particular for D continuous this specification is constraining.

Therefore, we develop our analysis for K of any finite order.

We now discuss the assumptions we will be using. All our specifications require

the exclusion of a continuous instrument from the outcome equation. Thus we impose

A20. E(Ud|X,Z) = E(Ud|X) ∀ d (Exclusion restriction)
Imposing equation (4.2), restriction A20 is equivalent to E(εk|X,Z) = E(εk|X) for all
k = 0, ...,K.

In equation (2.3), we defined the conditional expectation of the unobservable for

outcome d1 when the choice made is d2. Under linear heterogeneity on the unobserv-
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ables (equation 4.2 with K = 1), this function takes the form

g(d1, d2, z, x) = d1r1(d2, z, x) + r0(d2, z, x),

where each term is defined by

r1(d2, z, x) = E(ε1|D = d2, Z = z,X = z),

r0(d2, z, x) = E(ε0|D = d2, Z = z,X = x),

and hence the conditional expectation of the outcome at level of intensity d when d

was actually chosen (see 2.4) becomes

E(Y |D = d,X = x, Z = z) = ϕ(d, x) + dr1(d, z, x) + r0(d, z, x). (4.3)

Hence identification relates to our ability to characterize (some aspects) of ϕ(d, x),

r1(d, z, x) and r0(d, z, x). Note that the parameter, Treatment on the Treated can now

be expressed as

∆TT (d, x) =
∂

∂d
ϕ(d, x) +E[r1(d, z, x)|D = d,X = x].

This framework is fundamentally different from the one earlier on and generally stan-

dard exclusion restrictions are not sufficient to identify all the parameters of interest.

We show by an example that ATE is not identified generally just with exclusion

restrictions.

Note that identification is equivalent to the implication that for any functions

ϕ∗(d, x), r∗(d, z, x) and h∗(d, z, x) that satisfy

ϕ∗(d, x) + dr∗(d, z, x) + h∗(d, z, x) = 0 (4.4)

it must be that10

∂ϕ∗

∂d
= 0.

10To see this take two values of ϕ(d, x), r1(d, z, x) and r0(d, z, x),e.g. ϕ
s, rs, and hs for s = 1, 2.

These are observationally equivalent if they generate the same E(Y |D = d,X = x,Z = z). Let us
take the difference which gives ϕ1−ϕ2+d( r1−r2)+h1−h2 = 0, or ϕ∗+d r∗+h∗ = 0. Identification
condition of ATE requires that under the orthogonality conditions, this equation implies that ∂ϕ1

∂d −
∂ϕ2

∂d ≡ ∂ϕ∗
∂d = 0. For the TT parameter, the corresponding condition is that ϕ∗+d r∗+h∗ = 0 implies

∂ϕ∗
∂d +E(r

∗|D,X) = 0. Note that neither condition is stronger or weaker than the other.
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We have extended the definition of g to the case of linear heterogeneity specified by

equation 4.2 with K = 1. The definition further extends in the obvious way to the

case of higher order polynomial heterogeneity.

4.1. Instrumental Variables

First consider instrumental variables in the case of linear heterogeneity, taking equa-

tion 4.2 with K = 1. Imposing the exclusion restriction A2’ restricts the set of

admissible functions r1 and r0 defined above. Thus we have that E(r1(D,X,Z)|X,Z)
= E(r1(D,X,Z)|X) and E(r0(D,X,Z)|X,Z) = E(r0(D,X,Z)|X). The question is
whether the functions that satisfy these conditions and solve equation (4.4) are such

that ∂ϕ∗
∂d
= 0. In this case IV would identify the model, subject to the strong iden-

tification condition. In general this is not the case as the following counter example

shows.

Let us consider for simplicity a case without X variables, Z is a positive random

variable and the distribution of D conditional on Z satisfies: E(D|Z) = V ar1(D|Z) =
E((D − Z)3|Z) = Z. The above implies that E(D2|Z) = Z2 + Z and E(D3|Z) =
Z+3Z2+Z3. Now we suppose that r∗(d, z) = d2−(z+z2) (hence E(r∗(D,Z)|Z) = 0)
and that ϕ∗(d) = −2d2 + d. Now suppose h∗ satisfies

h∗(d, z) = −[ϕ∗(d) + dr∗(d, z)]

= 2d2 − d− d(d2 − (z + z2))
One can easily check that E(h∗(D,Z)|Z) = 0. With these chosen functions the

orthogonality conditions are satisfied and equation (4.4) is satisfied, but clearly ∂ϕ∗
∂d
6=

0. Note that this example is not in contradiction with the assumption thatD is strongly

identified by Z.

With additional conditions, Instrumental Variables will identify ATE. Heckman

and Vytlacil (1998) analyzed instrumental variables applied to a linear model with a

random coefficient. Their model is a special case of that considered here, with a linear

structure imposed on ϕ(D,X) and with K = 1 in equation 4.2. They considered the
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following assumption,

A200. E(²1V |X,Z) = E(²1V |X) (Covariance restriction)
Note that the example of nonidentification considered above violates A200. Under

A200, it is possible to obtain positive results for IV for the case of linear heterogeneity

as shown by the following theorem.

Theorem 4.1. Assume that equation 4.2 holds with K = 1. Assume that the exclu-

sion restriction (A20) holds, that the covariance restriction A200 holds, and that D can

be strongly identified by the instrument Z given explanatory variables X (A3). Then

E(Yd|X = x) ≡ ϕ(d, x) is identified up to an additive function of x.

Proof. See Appendix.

Combining Lemma 3.3 and Theorem 4.1, we immediately have the following result.

Corollary 4.2. Assume (A1), (A20), (A200) and (A3). Then ∂
∂d
E(Yd|X = x) =

∂
∂d
ϕ(d, x) is identified.

The assumption that E(²1V |X,Z) = E(²1V |X) is not innocuous. Consider, for
example, the model D = P̃ (X,Z, Ṽ ) with Z ⊥⊥ (²1, Ṽ )|X. The independence property
stated in terms of Ṽ in the “structural” model does not imply that E(²1V |X,Z) =
E(²1V |X) where V is defined as a deviation from a conditional expectation. For

example, consider P̃ (X,Z, Ṽ ) = P (X,Z) + σ(X,Z)Ṽ , so that V = σ(X,Z)Ṽ . In this

case, E(²1V |X,Z) = σ(X,Z)E(²1Ṽ |X), so that A200 does not hold.
In particular, if the unobservables in the equation determining the level of the

treatment are additively separable from the observables and the unobservables in

the outcome equation and the treatment equation are jointly independent from the

instruments Z then IV identifies ATE. In the additive separability case this means

that the impact of the instrument Z on treatment intensity is the same across people

with different unobservables. Interestingly, a purely randomly assigned value of the

instrument Z would not be sufficient to identify ATE using IV , unless the separability

condition held in the model.
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We now outline identification approaches based on Local Instrumental Variables

and on the control function approach.

4.2. The control function approach

We begin with the case of linear heterogeneity, given by equation 4.2 with K = 1.

The definition of the control function is as above. However we extend the analysis of

the earlier section on homogeneous treatment effects, by replacing assumption (A4)

with

A8. Control function II. There exist two real valued functions r0(Ṽ , X) and

r1(Ṽ ,X) such that

E(Y |D,Z,X) = ϕ(D,X) +Dr1(Ṽ ,X) + r0(Ṽ , X). (4.5)

where Ṽ be a real valued (square integrable) function of (D,X,Z) such that the σ-field

generated by (D,X,Z) is identical to the σ-field generated by (Ṽ ,X,Z). Alternatively,

this expression is obtained by assuming that E(ε0|D,X,Z) = E(ε0|Ṽ ,X) = r0(Ṽ ,X)
and E(ε1|D,X,Z) = E(ε1|Ṽ , X) = r1(Ṽ , X). The assumption is distinct from the

standard orthogonality condition, unless we assume that (ε0, V ) and (ε1, V ) are both

conditionally independent of Z given X in which case (A8) holds with Ṽ = V .

A9. Normalization: E(r1(Ṽ , X)|X) = 0.11 In addition, we will need a smooth-

ness/support condition similar to A1, but now assumed to hold conditional on (Ṽ ,X).

A10. ϕ(D,X) is differentiable in D (a.s.), and the support of D conditional on

(X, Ṽ ) does not contain any isolated points (a.s.).

Theorem 4.3. Assume equation 4.2 holds with K = 1. Under assumptions (A5)

(rank condition), control function II (A8) the normalization restriction A9, and the

11To see that A9 is only a normalisation, note that

ϕ+Dr + h =
(ϕ+DE(r|X)) +D(r −E(r|X)) + h =eϕ+Der + eh

Note that A9 is the appropriate normalisation for ∂
∂dϕ to denote the ATE.
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smoothness and support condition A10, ATE and TT are identified in the heteroge-

neous treatment effects model presented above.

Proof. See Appendix.

The analysis can be extended to higher order heterogeneity. Thus, consider the

more general where K ≥ 1. Consider
A80. Control function III. There exist real valued functions rk(Ṽ , X) for k =

0, ..., K, such that

E(Y |D,Z,X) = ϕ(D,X) +
KX
k=0

Dkrk(Ṽ , X). (4.6)

where again Ṽ be a real valued (square integrable) function of (D,X,Z) such that the

σ-field generated by (D,X,Z) is identical to the σ-field generated by (Ṽ ,X,Z). We

also impose

A90. Normalization: E(rk(Ṽ ,X)|X) = 0 for k = 0, ...,K.
A100. ϕ(D,X) is K-times differentiable in D (a.s.), and the support of D condi-

tional on (X, Ṽ ) does not contain any isolated points (a.s.).

Theorem 4.4. Assume equation 4.2 holds with finite K ≥ 1. Under assumptions

(A5) (rank condition), control function III (A80) the normalization restriction A90,

and the smoothness and support condition A100, ATE and TT are identified in the

heterogeneous treatment effects model presented above.

Proof. See Appendix.

The case of the control function with Ṽ = V can be directly related to the Marginal

Treatment Effect of Heckman and Vytlacil (2001). Consider the case where d is a

continuous scalar variable. We have that

∂

∂d
E(Y |D = d, V = v,X = x) =

∂

∂d
ϕ(d, x) +

KX
k=1

kdk−1rk(v, x)

= E(
∂

∂d
ϕ(d, x)|D = d, V = v,X = x)
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Thus, given the control function assumptions, a change in d holding V and X constant

identifies the average effect of a change in the treatment level among those with the

given values of (V,X). In this case, the derivative of E(Y |D = d, V = v,X = x) with

respect to d identifies the average effect of treatment for a particular subgroup, in a

manner similar to the marginal treatment effect of Heckman and Vytlacil (2001).

5. Local Instrumental Variables

An alternative approach for identification of ATE is based on Local Instrumental

Variables. We develop this now and then show the link with the control function and

IV approach.

We simplify the analysis by assuming that both d and z are scalars. As mentioned

above the model implies that

E(Y |D = d,X = x,Z = z) = ϕ(d, x) + g̃(d, x, z) (5.1)

where we have defined g̃(d, x, z) = g(d, d, z, x). We do not explicitly assume at this

point that the underlying Ud process is linear in d. In fact it may not be. We do

assume, however, that the conditional distribution of d given z and x is characterized

by its density p(d|z, x) which is assumed continuously differentiable with respect to d
and z.

Since LIV is based on the expected value of the marginal effect of the instrument

on the observed outcome we start by deriving the implications of this for the right

hand side of 5.1. Thus

∂E(Y |X=x,Z=z)
∂zj

= ∂
∂z

R
[ϕ(d, x) + g̃(d, x, z)] p(d|z, x)dd

=
R
[ϕ(d, x) + g̃(d, x, z)] ∂

∂z
p(d|z, x)dd

+
R

∂
∂z
g̃(d, x, z)p(d|z, x)dd.

(5.2)

We now define a function ρ(d, x, z) by

∂p

∂z
+ ρ(d, x, z)

∂p

∂d
= 0. (5.3)
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The functions ∂p
∂z
and ∂p

∂d
are identified, and thus p is identified. As we show below the

function ρ characterizes the dependence between d and z given x. Using this definition

we can rewrite expression (5.2) as

∂E(Y |X=x,Z=z)
∂zj

= − R [ϕ(d, x) + g̃(d, x, z)] ρ ∂
∂d
p(d|z, x)dd

+
R

∂
∂z
g̃(d, x, z)p(d|z, x)dd

=
R h∂[ρ(d,x,z)ϕ(d,x)]

∂d
+ ∂[ρ(d,x,z)g̃(d,x,z)]

∂d

i
p(d|z, x)dd

+
R

∂
∂z
g̃(d, x, z)p(d|z, x)dd

(5.4)

where the second equality is obtained by applying integration by parts.12 Recall

that g̃(d, x, z) = g(d, d, x, z). The interpretation of this is that g is the expectation

of the error for the outcome equation when the level of treatment is d given that

the individual chooses treatment intensity d. We now consider the derivative of this

function with respect to d. This will involve varying both of the first two arguments

of g(d1, d2, x, z). The first argument relates to the particular outcome under intensity

d and the second to the choice of that level of intensity by the individual. Hence,

dropping the arguments of the functions for notational simplicity, we obtain that
∂(ρg)
∂d

= ∂ρ
∂d
g + ρ∂1g

∂d
+ ρ∂2g

∂d

= ∂1(ρg)
∂d

+ ρ∂2g
∂d
,

where ∂ig
∂d
, i = 1, 2, represents the derivative with respect to the ith argument. Hence

we can rewrite equation (5.2) as

∂E(Y |X=x,Z=z)
∂zj

=
R ∂1[ρ·(ϕ+g)]

∂d
p(d|z, x)dd I

+
R £

∂g
∂z
+ ρ∂2g

∂d

¤
p(d|z, x)dd. II

(5.5)

Our next step is to discuss the two parts of the expression in 5.5 (I and II). These

expressions include the parameters of interest as well as confounding terms due to the

endogeneity of choices.

12We have assumed that neither of the bounds of the integrals depends on z. However in practice
this may arise in interesting cases where policies affect the support of the distribution of the treatment
variable (such as compulsory schooling rules). We will consider this generalization later. We also
need the assumptions of Theorem 3.5.
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First consider expression I. This can be written in two partsR ∂1[ρ·(ϕ+g)]
∂d

p(d|z, x)dd = E
h
∂1(ρφ)
∂d

|x, z
i

IA

+E
h
∂1(ρg)
∂d
|x, z

i
IB

(5.6)

Identification of ATE through the LIV assumption will be achieved if II and IB are

zero.13 A sufficient condition for II to be true is that·
∂

∂z
g(d1, d2, x, z) + ρ

∂

∂d2
g(d1, d2, x, z)

¸
= 0, (5.7)

i.e. that the g function satisfies the same differential equation that defines ρ in equation

(5.3). A straightforward interpretation now can be obtained if ρ is not a function of d.

In this case it follows that we can write p(d|z, x) = p∗(d− P (z, x)|x). Then condition
(5.7) implies that we can also write

g(d1, d2, x, z) = g
∗(d1, d2 − P (z, x), x),

which is a control function condition on the slope heterogeneity; it implies that the

dependence of the residual on the instrument passes through a single function P.

For the purpose of clarifying the assumptions consider the case where Ud = dε1 +

ε0.Setting term IB to zero is equivalent to a normalization restriction. In particular

suppose now that ρ does not depend on d. Then setting term (IB) to zero is equivalent

to assuming that E(ε1|x, z) = 0.In addition the assumption that II is zero is a control
function assumption on the distribution of ε1.

Thus setting terms IB and II to zero we get that LIV can be written as

∂E(Y |X = x,Z = z)

∂zj
= E

·
∂1 (ρφ)

∂d

¯̄̄̄
X = x,Z = z

¸
.

Under the hypothesis A3 this identifies the derivative of ρφ with respect to d, i.e.

∂1(ρφ)
∂d

. In the case where ρ does not depend on d, ATE is identified.14 Identification

of TT can be shown as well under the same conditions.
13In fact their sum has tobe zero.
14Even if (A3) is not assumed we can still identify an averaged version of the average treatment
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However if ρ is not constant then we identify we identify ρφ+ a(x, z); in this case

further information is required for identification of ATE.

To summarise the LIV assumption identifies ATE if the heterogeneity in slopes

satisfies a control function assumption. No assumption over and above excluded is

requird for the additive heterogeneity component. In this sense the LIV approach

to identification is distinct from the control function one. However the additional

assumption of independence shown below makes the approaches equivalent.

Remark 1. If Ud = dε1+ε0,under the assumption that (ε1, ε0) are jointly independent

of Z given X, (V, ε0) are jointly independent of Z given X, the control function II and

LIV approaches are equivalent.

6. Generalized Local Instrumental Variables

In the previous sections we derived conditions for identifying the ATE in models with

heterogeneous treatment effects of a particular type, namely that Ud is linear in d.

We argued that the assumptions required restrict the control function or assume (A6)

which relates the conditional expectation of the ATE parameter (given Z andX) to the

local instrumental variable estimator. We also present conditions under which the two

approaches are equivalent. We then showed how the control function approach can be

used to identify models with more general forms of heterogeneity. We also show that

using Local Instrumental Variables ATE can be identified without explicitly restricting

the relationship between Ud and d. These conditions, under certain circumstances,

are equivalent to a single index assumption on the determination of d. Thus we have

shown that LIV can be a very fruitful approach for identifying quite general models of

treatment effects with heterogeneous impacts. However, either explicitly or implicitly

effect. In particular, assume that ρ is a constant, in which case we identify ρE

·
∂1(ρφ)
∂d

¯̄̄̄
X = x,Z = z

¸
.

Since ρ identified, we thus identify E

·
∂φ
∂d

¯̄̄̄
X = x,Z = z

¸
. This is an averaged version of the average

treatment effect, averaged over treatment levels.
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this has involved restrictions on Ud although these do not always imply linearity in

Ud. However, there are forms of Ud where we know that LIV does not identify ATE.

An example is the case where

Ud = dε1 + d
2ε2 + ε0 (6.1)

In this case LIV does not identify ATE even under the conditions we discussed earlier.

However, a generalized version of LIV using higher order derivatives can identify the

first derivative of ATE under suitable assumptions which we develop below and when

the degree of heterogeneity in the model is greater than the one assumed by LIV in

a way that will become specific as we develop this identification argument.

Under 6.1 we can write

E(Y |D = d,X = x,Z = z) = ϕ(d, x) + dr1(d, z, x) + d
2r2(d, z, x) + r0(d, z, x)

(6.2)

We start by assuming the following orthogonality conditions

E(ε0|Z,X) = a(X)

E(ε1|Z,X) = 0

E(ε2|Z,X) = 0

(6.3)

Define the function ρ as in equation 5.3. Here we will assume directly that ρ does not

depend on d. Thus we assume that

I ∂ρ
∂d
= 0 Single Index

II
R
d(∂r1

∂z
+ ρ∂r1

∂d
)pdd = 0 Mean Control Function

III
R
d2(∂r2

∂z
+ ρ∂r2

∂d
)pdd = 0 Mean Control Function

IV
R
d(∂r2

∂z
+ ρ∂r2

∂d
)pdd = 0.

(6.4)

Now consider the conditional expectation of Y given X and Z

E(Y |X = x, Z = z) =
R
ϕ(d, x)p(d|x, z)dd

+
R
dr1(d, z, x)p(d|x, z)dd

+
R
d2r2(d, z, x)p(d|x, z)dd+ a(X),
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which when differentiated with respect to z (as suggested by LIV ) yields

∂E(Y |X=x,Z=z)
∂z

= ρ
R ∂ϕ(d,x)

∂d
p(d|x, z)dd

+ ∂
∂z

R
dr1(d, z, x)p(d|x, z)dd

+ ∂
∂z

R
d2r2(d, z, x)p(d|x, z)dd.

Now, by conditions (6.4, I, II) and (6.3) we get that

∂

∂z

Z
dr1(d, z, x)p(d|x, z)dd = 0.

Moreover, substituting in ρ and using integration by parts,

∂
∂z

R
d2r2(d, z, x)p(d|x, z)dd =

R
d2 ∂r2

∂z
p(d|x, z)dd+ ρ

R
∂d2r2
∂d
p(d|x, z)dd

=
R
d2(∂r2

∂z
+ ρ∂r2

∂d
)p(d|x, z)dd+ 2ρ R dr2p(d|x, z)dd.

Hence, using condition (6.4, III),

1

ρ

∂E(Y |X = x,Z = z)

∂z
=

Z
∂ϕ(d, x)

∂d
p(d|x, z)dd+ 2

Z
dr2p(d|x, z)dd.

Differentiating this again with respect to z and repeating the same arguments we get

that
1

ρ

∂

∂z

½
1

ρ

∂E(Y |X = x, Z = z)

∂z

¾
=

Z
∂2ϕ(d, x)

∂d2
p(d|x, z)dd.

As we mentioned above the quadratic case is just an example we used to make the

presentation of the identification argument less abstract. However we can characterize

more generally the degree of heterogeneity that allows identification of certain aspects

of the model successively by IV, LIV and GLIV. In particular recall the way we write

the model in 5.1. Under the conditions stated below in 6.5, IV identifies the level,

LIV identifies ATE and GLIV identifies the first derivative of ATE

Assumption Method Parameter Identified
I E(g̃(d, x, z)|z, x) = 0 IV ϕ(d)

II ∂
∂z
E(g̃(d, x, z)|z, x) = 0 LIV ∂

∂d
ϕ(d)

III ∂
∂z

n
1
ρ

∂
∂z
E(g̃(d, x, z)|z, x)

o
= 0 GLIV ∂2

∂d2
ϕ(d)

(6.5)
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where ρ is defined by 5.3. Even if estimating derivatives of ATE is not always of

interest unless it can be used to get back to ATE, this argument turns out to be very

useful for specification testing, as we see in the next section.

7. Testing for the degree of heterogeneity

We have shown how the degree of unobserved heterogeneity affects the identification

strategy and the aspects of the model that can be identified. We now propose a

testing technique within the LIV and the Control function frameworks that allows

us to assess the degree of heterogeneity.

Consider first the identification strategy that relies on IV. Under the null hypothe-

sis of assumption I in equation (6.5), we can estimate ∂
∂d
ϕ(d) using either IV or LIV .

Testing the equality of the estimated functions will be a test of the null hypothesis

that assumption I holds. Moreover, suppose we wish to test for the null hypothesis of

assumption II in equation (6.5). Then the second derivative of ATE ( ∂2

∂d2
ϕ(d)) can

be estimated consistently using both LIV and GLIV. A comparison of the two will

generate a test of the null hypothesis that II is true in 6.5. Obviously one can con-

tinue. However, the rates of convergence for the estimation of higher order derivatives

will be perhaps too slow for most practical estimations.

A similar idea can be developed for the control function approach: Testing that the

degree of heterogeneity already allowed for is sufficient is equivalent to testing that the

control function associated with an extra degree of heterogeneity has mean zero. So

for example if the null hypothesis is that Ud = ε0 (common treatment effects model)

then we can test this hypothesis by testing that r1(v, x) = 0 in equation (4.5). This

can be repeated for higher order heterogeneity. In fact, within the control function

approach this suggests a way of finding the degree of heterogeneity required.

More generally, within the control function framework we can test for the degree of

heterogeneity without explicitly estimating the model. Consider the null hypothesis

that the degree of heterogeneity is ` versus the alternative that it is k > `. Then under
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the null hypothesis and within the framework of the control function assumptions we

must have that, for all k > `,

E

·
∂kE(Y |D = d, V = v)

∂dk

¯̄̄̄
V = v

¸
= E

½
E

·
∂k

∂dk
E(Y |D = d, V = v)

¯̄̄̄
d

¸¯̄̄̄
V = v

¾
.

(7.1)

Letting k = ` + 1 for example, provides a test of the hypothesis that the degree of

heterogeneity is `.

To see where this expression comes from suppose the degree of heterogeneity is

k − 1, i.e., following assumption (A-8) assume that E(Y |D = d, Z = z,X = x) =

ϕ(d, x)+
Pk−1

j=1 d
jrj(d, z, x)+ r0(d, z, x). Then the k

th order derivative of E(Y |d) must
satisfy

∂k

∂dk
E(Y |D = d, V = v) = ∂kϕ(d)

∂dk
.

Then taking expectations of the above with respect to both d and then v we get that

E

·
∂k

∂dk
E(Y |D = d, V = v)

¯̄̄̄
D = d

¸
=

∂kϕ(d)

∂dk
(7.2)

E

·
∂k

∂dk
E(Y |D = d, V = v)

¯̄̄̄
V = v

¸
= E

·
∂kϕ(d)

∂dk

¯̄̄̄
V = v

¸
. (7.3)

By substituting for ∂kϕ(d)
∂dk

from equation (7.2) into equation (7.3) we obtain the ex-

pression which is the basis of our test.

8. Estimation and Implementation

In our companion paper, Florens, Heckman, Meghir and Vytlacil (20003), we develop

estimation strategies that correspond to the identification strategies considered in this

paper. We now provide an overview of their analysis.

8.1. Local Instrumental Variables

We start by considering LIV.We simplify the problem by ignoring all Xs. Estimation

can be thought of as conditional on X. We suppose the existence of p instruments Z.
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The problem is to solve for ∂ϕ(d,x)
∂d

from the set of integral equations.

E

µ
∂

∂d
ϕ(d)

¯̄̄̄
Z = z

¶
=

∂E(Y |Z)
∂zj

∂E(D|Z)
∂zj

≡ λj(z) ∀j = 1, ..., p. (8.1)

In the presence of more than one instrument z, the problem is overidentified. This

is manifested in two ways. One is the number of equations in 8.1. The other is due

to the fact that E( ∂
∂d
ϕ(d)|Z = z) is a function of “too many” variables. We solve

the first problem by replacing λj(z) for a weighted sum, i.e. λ(z) = Σpj=1γj(z)λj(z).

We discuss below the optimal choice of the weights γj. Now we proceed to discuss the

2nd problem for which one solution was developed in Darolles, Florens and Renault

(2002).

The idea is to replace equation 8.1 by its conditional expectation, given d. Hence

we get

E

·
E(

∂

∂d
ϕ(d)|Z = z)

¯̄̄̄
D = d

¸
= E

·
λ(z)

¯̄̄̄
D = d

¸
(8.2)

This is a Fredholm type I integral equation and it is an ill posed problem. It can be

regularized using the Tikhonov regularization and then a solution for ∂
∂d
ϕ(d) can be

found. In particular regularization takes place by adding α ∂
∂d
ϕ(d) on the left hand

side. In the next step the expectations are replaced by their estimates. In particular

on the left hand side we use kernel functions to represent the expectations, while the

right hand side is estimated by kernel in a first step.

One problem with the approach in Darolles, Florens and Renault (2002) is that it

involves the inversion on a matrix whose dimension is the sample size. For large data

sets, such as those found in administrative sources this may be impractical. We now

suggest an alternative form of regularization.

Write the equation to be solved as

pX
j=1

E

µ
∂

∂d
ϕ(d)

¯̄̄̄
Z = z

¶
=

pX
j=1

γj

∂E(Y |Z)
∂zj

∂E(D|Z)
∂zj
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where p are the number of instruments and γj are known weights. We use the short-

hand notation for this equation

Aψ = λ

where A : ψ → E(ψ|Z = z) is the linear operator mapping from the set of real

square integrable functions of d (L2(D)) to the set of square integrable functions on

z (L2(Z)), in both cases with respect to the true distribution of d and z respectively.

The function ψ = ∂
∂d
ϕ(d). Finally we have defined λ =

Pp
j=1 γj

∂E(Y |Z)
∂zj

∂E(D|Z)
∂zj

which is a

function we estimate directly from the data.

We define the dual operator of A, to be A∗ which is the operator that equates the

scalar products15

< Aψ, µ >=< ψ, A∗µ >

where µ is any square integrable function of z (with respect to the density of d). Hence

A∗ is an operator mapping from L2(Z) to L2(D).

¿From the definition of the dual operator A∗ it follows that

A∗µ = E
·
µ(Z)

¯̄̄̄
D

¸
We suppose that all expectations are replaced by kernel estimates. Clearly the prob-

lem bAψ = bλ is ill-posed. Consequently we consider a regularized solution based on
the Landweber-Fridman regularization see, (Kress, 1999). According to this the reg-

ularized solution has the form

bψ(mN ) = a

mNX
k=0

³
I − bA∗ bA´k bA∗bλ

where mN is the number of terms in the sum and depends on the sample size. The

speed of convergence of the estimator depends on the way that mN increases with the

sample size. The parameter a remains to be determined.

15We need to recall the following definitions. < a(z), b(z) >=
R
a(z)b(z)f(z)d(z). Square inte-

grable: The variance of the function is finite. Define the norm of a square integrable function to be

ψ²L2D, ||ψ|| =
£R

ψ2(D)f(d)dd
¤1/2

. The norm of an operator A is defined as ||A|| = sup ||Aψ|| where
ψ is any function such that ||ψ|| ≤ 1
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This can be computed by using the following recursion

bψ(mN ) =
³
I − a bA∗ bA´ bψj−1 + a bA∗bλ

The parameter a is chosen so that the recursion converges and this requires that

0 < a <
1

||A||2 ≡ 1

One possible choice for a is 1/2. The remains the question of the optimal choice of

the weights γj(z) and of a.

We show consistency in the appendix.

8.1.1. Control Function Estimation

There are a number of ways of approaching the estimation problem in this case. One

way would be to extend the Newey, Powell and Vella (1999) approach and use series

estimation. We approach the problem in a different way, much in the spirit of the

backfitting method we suggested for LIV in the previous section.

Under the control function assumptions the functions ϕ, r and h solve the following

problem

S = min
ϕ,r,h

Z
[E (y|d, v)− (ϕ+ dr + h)]2 dP (d|z) (8.3)

which has the following first order conditionsR
ϕ̃[E (y|D = d, V = v)− (ϕ+ dr + h)]dP (d|z) = 0 IR erd[E (y|D = d, V = v)− (ϕ+ dr + h)]dP (d|z) = 0 IIR
h̃[E (y|D = d, V = v)− (ϕ+ dr + h)]dP (d|z) = 0 III

(8.4)

where ϕ̃, er and h̃ are any functions of d and of v respectively. In a next step we
integrate over v in expression 8.4 I and over d in expressions II and III, which

directly imply that

E(y|d) = ϕ+ dE(r|d) +E(h|d) I

E(dy|v) = E(dϕ|v) + rE(d2|v) +E(d|v)h II

E(y|v) = E(ϕ|v) + rE(d|v) + h III

(8.5)

30



The equations in 8.5 can be solved for the unknown functions ϕ, r and h. One way

of doing this is to follow a recursive iterative solution. First we can estimate E(y|d),
E(dy|v) and E(y|v) using kernel from the data. Then starting from an initial value of
ϕ we can use II and III in 8.5 to obtain solutions to the control functions r and h.

We can then use I to update ϕ and we can keep iterating. However it is also possible

to solve this in one shot and we demonstrate this below.

First we can use expression II and III to eliminate h and r from I in 8.5. Following

this we obtain

ϕ− dE
n

1
σ2(v)

(E(dϕ|v)−E(d|v)E(ϕ|v)) |d
o
−

E
n

1
σ2(v)

(E(d2|v)E(ϕ|v)− E(d|v)E(dϕ|v))|d
o
=

E(y|d)− dE
n

1
σ2(v)

(E(dy|v)− E(d|v)E(y|v)) |d
o
−

E
n

1
σ2(v)

(E(d2|v)E(y|v)−E(d|v)E(dy|v))|d
o

(8.6)

where σ2(v) = E(d2|v) − (E(d|v))2 . This expression can be written compactly as
(I − T )ϕ = E(y|d) − Ty, where T is compact. This is a Fredholm type II integral

equation, which can be solved directly by inverting I − T on the set of functions that
satisfy a normalisation rule.

The procedure described above is capable of estimating the function ϕ(d). However,

if we are interested in estimating just the ATE parameter ∂ϕ(d)
∂d
,we can obtain a

computationally simpler problem by noting that

∂

∂d
E(Y |D = d,X = x, Z = z) =

∂

∂d
ϕ(d, x) + r1(v, x) (8.7)

The method we presented above can now be simplified to identify just the two com-

ponents on the right hand side of 8.7. In particular the first order conditions will have

just two equations. These can either be used to derive an iterative algorithm as before

or to write down a one-shot solution, which would be based on a simplified version

of I and II of equation 8.5. This is computationally simpler since we do not need to
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estimate the function h. However we have not established whether the two approaches

differ in efficiency terms.

9. Conclusions

In this paper we have considered the identification and estimation of models with a

continuous endogenous variable (or in any case discrete where the levels have a cardi-

nal interpretation, like years of education) and non-separable errors when continuous

instruments are available. We have presented three methods: Instrumental Variables,

Local Instrumental Variables and Control Function. These methods rely on different

underlying assumptions, which we derive. We also derive conditions under which all

methods are equivalent. These conditions always involve independence assumptions of

the unobservables from the instruments. Our estimation strategy for all our methods

are based on Kernel smoothing and the estimators are solutions of integral equations.

Finally, we provide tests for the degree of heterogeneity which allows us to assess the

overall specification of the model.

10. Appendix I: Proofs of theorems

Proof of Theorem 3.1

Let ϕ2 and ϕ1 be two functions satisfying the assumptions. Then from A2 we get

that

E(ϕ2(D,X)− ϕ1(D,X)|X,Z) a.s.= 0.

Assumption A3 then implies

ϕ2(D,X)− ϕ1(D,X)
a.s.
= 0.

¥

Proof of Lemma 3.3
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The proof is stated for the case where ϕ(d, x) is identified a.s.. The proof extends

trivially to the more general case where ϕ(d, x) is identified a.s. up to an additive

function of x.

ϕ(d, x) is identified a.s. by assertion. We thus need to show that if ϕ1(D,X) =

ϕ2(D,X) a.s., and both ϕ1 and ϕ2 satisfy condition (A3), then
∂
∂d
ϕ1(D,X) =

∂
∂d
ϕ2(D,X)

a.s..

Let Ω denote the set of (d, x) points such that ϕ1(d, x) − ϕ2(d, x) = 0, such that

∂
∂d
ϕ1(d, x) and

∂
∂d
ϕ2(d, x) exist, and such that d is not an isolated point of the support

of D conditional on X = x. Ω is an intersection of sets that occur with probability

one, and thus Pr[(D,X) ∈ Ω] = 1.

Will use proof by contradiction. Let Λ = {(d, x) : ∂
∂d
ϕ1(d, x) 6= ∂

∂d
ϕ2(d, x)}.

Assume that Pr[(D,X) ∈ Λ] > 0, which implies that Pr[(D,X) ∈ Λ
T
Ω] > 0. For

any (d, x) ∈ Λ
T
Ω, ϕ1(d, x) = ϕ2(d, x), and the partial derivatives of each exists,

so that ∂
∂d
ϕ1(d, x) 6= ∂

∂d
ϕ2(d, x) implies that there exists a radius r > 0 such that

ϕ1(d
0, x) 6= ϕ2(d

0, x) ∀d0 ∈ B(d, r) \ d. d is not an isolated point of the support of D
conditional on X = x, and thus Pr[D ∈ B(d, r) \ d|X = x] > 0 so that Pr[ϕ1(D,X) 6=
ϕ2(D,X)|X = x] > 0. This holds for a set of x values with positive probability,

and thus Pr[ϕ1(D,X) 6= ϕ2(D,X)] > 0, contradicting the assumption that the two

functions are equal a.s.. ¥

Proof of theorem 3.4

Let ϕ1 and ϕ2 be two functions satisfying assumption A4. Then

E

µ
∂ϕ1
∂d
− ∂ϕ2

∂d
|Z = z,X = x

¶
a.s.
= 0

which implies ∂ϕ1
∂d
− ∂ϕ2

∂d

a.s.
= 0 under measurable separability assumption A3.

Proof of theorem 3.5

Note first that assumption A2 (IV) is equivalent to
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∂

∂zj
E(U |X = x,Z = z)

a.s.
= 0 ∀j (10.1)

under smoothness conditions. Condition (10.1) implies that :

∂

∂zj
E(Y |X = x,Z = z) =

∂

∂zj

Z DU
xz

DL
x,z

ϕ(td, x)p(td|x, z)dtd

=

Z DU
xz

DL
x,z

ϕ(td, x)
∂

∂zj
p(td|x, z)dtd

where we used

ϕ(DL
x,z, x)p(D

L
x,z|x, z) = ϕ(DU

x,z, x)p(D
L
x,z|x, z) = 0. (10.2)

The LIV assumption (A4) says that:

∂

∂zj
E(Y |X = x,Z = z) =

∂

∂zj
p(d|x, z)

Z DU
x,z

DL
x,z

∂ϕ

∂td
(td, x)p(td|x, z)dtd.

(10.3)

Integrating by parts and using (10.2), we can write (10.3) as

∂

∂zj
E(Y |X = x,Z = z) = −∂P

∂zj
(x, z)

Z DU
x,z

DL
x,z

ϕ(td, x)
∂

∂td
p(td|x, z)dtd

(10.4)

Then IV and LIV are equivalent if and only if (10.2) and (10.4) are equivalent, i.e.:

Z DU
x,z

DL
x,z

ϕ(td, x)

½
∂

∂zj
p(td|x, z) + ∂P (x, z)

∂zj

∂

∂td
p(td|x, z)

¾
dtd = 0

(10.5)

The assumption A5 (V⊥⊥Z|X) implies that

p(td|x, z) = p̃(td − P (x, z)|x, z) = p̃(td − P (x, z)|x) (10.6)
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where p̃ is the density of V given (X = x and Z = z). Under (10.6), equation (10.5)

is satisfied and the first part of the theorem is proved.

However if IV and LIV are equivalent for any ϕ, (10.5) is satisfied for any ϕ and

then the term between brackets vanishes. The partial differential equations

∂

∂zj
p(td|x, z) = ∂P

∂zj
(x, z)

∂

∂d
p(td|x, z) ∀j (10.7)

implies there exists p̃ verifying (10.6) or equivalently V⊥⊥z|X.¥

Proof of theorem 3.6

Let (ϕ1, h1) and (ϕ2, h2) be two sets of functions satisfying assumption A6. Then

ϕ1(D,X)− ϕ2(D,X)
a.s.
= h2(Ṽ ,X)− h1(Ṽ , X).

By (A7), this implies that ϕ1(D,X)− ϕ2(D,X) is a.s. a function of X alone.¥

Proof of theorem 3.8

Assumption A6 with Ṽ = V means that E(U |D,Z,X) = E(U |V,X) a.s..
Then

E(U |Z,X) a.s.
= E(E(U |D,Z,X)|Z,X)
a.s.
= E(E(U |V,X)|Z,X) Control Function

a.s.
= E(E(U |V,X)|X) Conditional Independence

because V⊥⊥Z|X (which implies (V,X)⊥⊥Z|X). Since E(U |Z,X) is a.s. a function of
X only we have that E(U |Z,X) a.s.= E(U |X)

Proof of theorem 3.9 (V,U)⊥⊥Z|X implies a. V⊥⊥Z|X.(single index assump-
tion), b. U⊥⊥Z|X (IV assumption) and c. U⊥⊥Z|X,V . Moreover E(U |Z,X,D) =
E(U |X,Z, V ) = E(U |X,V ) (control function assumption).

Proof of Theorem 4.1
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Let ϕ2 and ϕ1 be two functions satisfying the assumptions. Then

E(YD − ϕj(D,X)|X,Z) = E(D²1 + ε0|X,Z]
= E((P (Z) + V )²1 + ε0|X,Z]
= P (Z)E(²1|X,Z) +E(V ²1|X,Z) +E(ε0|X,Z)
= E(V ²1|X)

with the last equality following from A20 and A200. Thus,

E(ϕ2(D,X)− ϕ1(D,X)|X,Z) a.s.= M(X).

with M(X) = E(²1V |X). Assumption A3 then implies

ϕ2(D,X)− ϕ1(D,X)
a.s.
= M(X).

¥

Proof of Theorem 4.3

Suppose there are two sets of parameter (ϕ1, r11, r
1
0) and (ϕ

2, r21, r
2
0) such that

E(Y |D = d, Ṽ = v,X = x) =

ϕi(d, x) + dri1(v, x) + r
i
0(v, x), i = 1, 2

Then £
ϕ1(d, x)− ϕ2(d, x)

¤
+ d

£
r11(v, x)− r21(v, x)

¤
+
£
r10(v, x)− r20(v, x)

¤
= 0

Given assumption A10, this implies

∂

∂d
ϕ1(d, x)− ∂

∂d
ϕ2(d, x) +

£
r11(v, x)− r21(v, x)

¤
= 0

A5 implies that if any function of d and x is equal to a function of v and x (a.s.) then

this must be a function of x only. Hence r11(v, x) − r21(v, x) is a function of x only.
Hence,

r11(v, x)− r21(v, x) = E
h
r11(Ṽ ,X)− r21(Ṽ , X)|X = x

i
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The above is equal to zero under A9. Hence

∂

∂d
ϕ1(d, x) =

∂

∂d
ϕ2(d, x)

and thusATE is identified. Since r11(v,X) = r
2
1(v,X),we have

∂
∂d
ϕ1+E[r

1
1(v,X)|X, d] =

∂
∂d
ϕ2 +E[r

2
1(v,X)|X, d] and thus TT is identified as well. ¥

Proof of Theorem 4.4

Suppose there are two sets of parameter (ϕ1, r1K , ..., r
1
0) and (ϕ

2, r2K , ..., r
2
0) such

that

E(Y |D = d, Ṽ = v,X = x) = ϕi(d, x) +
KX
k=1

dkrik(v, x), i = 1, 2

Then

£
ϕ1(d, x)− ϕ2(d, x)

¤
+

KX
k=1

dk
£
r1k(v, x)− r2k(v, x)

¤
= 0 (10.8)

Given assumption A100, this implies

∂K

∂dK
ϕ1(d, x)− ∂K

∂dK
ϕ2(d, x) + (K!)(r1K(v, x)− r2K(v, x)) = 0

A5 implies that if any function of d and x is equal to a function of v and x (a.s.) then

this must be a function of x only. Hence r1K(v, x) − r2K(v, x) is a function of x only.
Hence,

r1K(v, x)− r2K(v, x) = E
h
r1K(Ṽ , X)− r2K(Ṽ , X)|X = x

i
The above is equal to zero under A90. Hence

r1K(v, x)− r2K(v, x) a.s.= 0

Considering the K − 1 derivative of equation 10.8, we have
∂K−1

∂dK−1
ϕ1(d, x)− ∂K−1

∂dK−1
ϕ2(d, x) +

(K!)d

·
r1K(v, x)− r2K(v, x)

¸
+ ((K − 1)!)

·
r1K−1(v, x)− r2K−1(v, x)

¸
= 0
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We have already shown r1K(v, x) = r
2
K(v, x), and thus

∂(K−1)

∂d(K−1)
ϕ1(d, x)− ∂(K−1)

∂d(K−1)
∂

∂d
ϕ2(d, x) + +((K − 1)!)(r1K−1(v, x)− r2K−1(v, x)) = 0

Following a parallel analysis as that used above, we can now show that r1K−1(v, x)−
r2K−1(v, x)

a.s.
= 0. Iterating this procedure for k = K − 2,...,0, we have that r1k(v, x)−

r2k(v, x)
a.s.
= 0 for all k = 0, ..., K. Thus, again appealing to equation 10.8, we

have ϕ1(d, x) − ϕ2(d, x)
a.s.
= 0, and thus ATE is identified. Using that ϕ1(d, x) −

ϕ2(d, x)
a.s.
= 0 and r1k(v, x) − r2k(v, x) a.s.

= 0 for all k = 0, ..., K, we also have that

∂
∂d
ϕ1 +

PK
k=1 kd

k−1E[r1k(v,X)|X, d] = ∂
∂d
ϕ2 +

PK
k=1 kd

k−1E[r2k(v,X)|X, d] = 0, and

thus TT is identified.¥
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