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Abstract
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Bayesian games, including games without analytically tractable solutions.
Finally, we illustrate the �exibility of the CSE approximation with a series
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1. Introduction

Nash equilibrium (hereafter NE) is the most widely accepted game theoretic solu-
tion concept in economics. It is not only used by theorists to solve non-cooperative
games, but it also provides practitioners with a benchmark to explain behavior
observed in the �eld. As we shall see however, the extension of the NE concept to
Bayesian games is often analytically intractable. In the present paper, we propose
an alternative equilibrium concept that enables one to approximate an analytically
intractable NE in a broad class of Bayesian games.
The use of numerical techniques to solve increasingly complex models (e.g. dy-

namic or general equilibrium models) has now become widespread in economics.
These techniques have not only been employed in empirical applications, but
they have also been used both as complement and substitute to economic the-
ory.1 Likewise, numerical approximations have been adopted in the analysis of
Bayesian games, and most notably, auctions. Indeed, as discussed later, auction
models typically do not possess a closed form solution, except under simplifying
but often empirically questionable assumptions.2 Numerical methods have been
used in the analysis of auctions i) to gain insights about the properties of an equi-
librium strategy, ii) to estimate complex structural models, and iii) to conduct
counterfactual analyses based on structurally estimated parameters.3 Essentially,
two approaches have been proposed to approximate NEs in auction games. The
�rst consists in discretizing the action space (e.g. Athey 2001), while the second
consists in solving the set of di¤erential equations generated by the �rst order con-
ditions of the problem (e.g. Marshall et al. 1994, Li and Riley 1999, Bajari 2001).4

In the present paper, we propose a new method consisting in �nding a solution in

1See the numerous examples in Amman, Kendrick and Rust (1996), Judd (1998), Miranda
and Fackler (2002), and Tesfatsion and Judd (2006). See also Judd (1997).

2The class of Bayesian games with intractable NEs extends well beyond auctions. It includes
in particular, Cournot and Bertrand oligopolies with incomplete information on cost and/or
demand, non-linear pricing models, search models, principal-agents models, and noisy signaling
models.

3For examples of i) see e.g. Engelbrecht-Wiggans and Kahn (1998), Fibich and Gavious
(2003), or Gallien and Gupta (2007). For examples of ii) see e.g. Bajari and Hortaçsu (2003),
Eklöf (2005), or Marshall et al. (2006). For examples of iii) see e.g. Eklöf (2005), Krasnokutskaya
and Seim (2006), or Armantier and Sbaï (2007).

4To the best of our knowledge, the �rst approach has only been adopted in practice as a mean
to prove the existence of an equilibrium (e.g. Athey 2001, McAdams 2003). In the remainder
of the paper, we will therefore concentrate on the second approach when comparing numerical
techniques.
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a simpli�ed strategy space.5 As we shall see, two of the most notable advantages
of this approach, are that i) beyond auctions, it is applicable to a broad class of
Bayesian games, and ii) it enables one to solve even the most complex models.
We de�ne a Constrained Strategic Equilibrium (hereafter CSE) as a NE of a

modi�ed game in which strategies are constrained to belong to an appropriate
subset typically indexed by an auxiliary parameter vector. We show that any
sequence of CSEs has a subsequence that converges toward a NE when the strategy
space is compact. The compacity condition is standard in the Bayesian games
literature, and it is satis�ed in the class of models for which existence of an
equilibrium has been established. The CSE approximation method is therefore
relevant in a large number for games of interest to economists.
We also show how the approximation principle may be implemented in prac-

tical applications. In particular, the parametrization of the constrained strategies
enables one to calculate the CSEs numerically in a broad class of Bayesian games,
including complex games without NE in closed form. In addition, we develop
several criteria to evaluate in practice the quality of the CSE approximation. Be-
yond the traditional measures used in numerical analysis, we propose two original
criteria with game theoretic interpretation. The �rst criterion compares the CSE
to its unconstrained best-response, either in terms of distance or payo¤s. In the
second criterion, the CSE is reinterpreted as a NE in a slightly perturbed game.
The approximation quality is then evaluated by a measure of the distance between
the original and the perturbed games.
Although the CSE approximation may be applied to most Bayesian games,

we illustrate its advantages with a series of private-values auction examples. In
the �rst example, an independent private-values auction, the NE may be calcu-
lated analytically. Therefore, we can illustrate the accuracy of the method by
comparing the CSE approximation with the actual NE. In the second example,
an asymmetric �rst-price auction, the NE cannot be expressed in closed form, but
it may be approximated by other numerical techniques developed speci�cally for
such a situation. This asymmetric example therefore gives us the opportunity to
compare the CSE approach to existing approximation methods. Finally, we con-
sider a complex multi-unit auction model which, to the best of our knowledge, has
never been solved, either analytically or numerically. This last example therefore
illustrates how the CSE approximation provides a new tool to analyze games with
considerable, but yet still poorly understood, economic implications.

5In a sense, our approach could be considered as a generalization of Athey (2001). A notable
di¤erence, however, is that we constrain the strategy space, not the action space.
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We believe our paper contributes to the existing literature in at least three
ways. First, we de�ne formally the CSE concept, and we propose su¢ cient con-
ditions under which a sequence of CSEs converges toward a NE (Section 2). Sec-
ond, we propose an algorithm to calculate the CSE approximation and evaluate
its precision (Section 3). Third, we illustrate the practical relevance of the CSE
approach with a series of auction examples, including a complex multi-unit model
that cannot be solved with existing numerical techniques (Section 4).

2. Approximation with Constrained Strategic Equilibria

Before we introduce the model, let us brie�y summarize the basic notations used
throughout the paper. Sets are denoted with capital letters, while a generic ele-
ment of a set is denoted with the same lower case letter (e.g. t 2 T ). The subscript
i denotes a speci�c player i, while the subscript �i refers to the set of all players
except i (e.g. t�i = (t1; ::; ti�1; ti+1; ::; tN)). Unless mentioned otherwise, a letter
without subscript represents the vector or the Cartesian product across all play-
ers of the corresponding individual variable (e.g. t = (t1; ::; tN) or T = �N

i=1Ti).
Finally, the set f1; :::; Ng is denoted by N .

2.1. The Model and the Constrained Strategic Equilibrium

We consider a single play of a N -person simultaneous move game.6 Each player
is endowed with a privately known �type� ti, with Ti � Rp compact. The vector
of types t is drawn from a joint distribution with cumulative distribution function
(hereafter c.d.f.) F (t).7 Player i selects an action ai, where Ai � Rp

0
denotes the

set of possible actions that player i can take. Players are endowed with individual
Von Neuman-Morgenstern utility functions Ui (a; t). A strategy pro�le s consists
inN measurable functions transforming signals into actions (ai = si (ti) ; 8i 2 N),
and it is said to be feasible if U (s (t) ; t) is integrable with respect to F .8 We
assume in the remainder that S = �N

i=1Si is a subset of all feasible strategy
pro�les. Finally, fN;F; U; Sg is assumed to be common knowledge.9

6The methodology developed below extends naturally to a broader class of games including
sequential moves or repeated games.

7This general framework includes as special cases of interest i.i.d., exchangeable (or a¢ liated),
asymmetrically distributed, and multi-dimensional types.

8Although our approach generalizes to mixed-strategies, this paper concentrates exclusively
on pure strategies.

9In standard symmetric games, (Si; Ti) = (Sj ; Tj) 8i; j 2 N , and (U;F ) are exchangeable.
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Following (e.g.) Reny and Zamir (2004), we adopt the ex-ante formulation of
the Bayesian game. The set of NEs (S� � S) is then composed of strategy pro�les
s� such that eUi �s�i ; s��i� � eUi �si; s��i� 8si 2 Si and 8i 2 N ; (2.1)

where eUi (s) = Et [Ui (s (t) ; t)] is the expected utility of player i.10 In practice, a
NE is typically calculated under the interim formulation of the Bayesian game as
a solution of the following �xed point problem,

s�i (ti) 2 ArgMax
ai2Ai

bUi �ai; s��i; ti� 8ti 2 Ti and 8i 2 N ; (2.2)

where bUi (s; ti) = Et�ijti [Ui (si (ti) ; s�i (t�i) ; ti; t�i)] is the expected utility of player
i conditional on his type ti.11 When possible, the corresponding First Order Con-
ditions (hereafter FOC) are reformulated for each i 2 N as

Bi [s
�] (ti) = 0, where Bi [s] (ti) =

d

dai
bUi (ai; s�i; ti)jai=si(ti) 8ti 2 Ti ; (2.3)

which typically produces a set of di¤erential equations characterizing the solution.
Except under fairly restrictive assumptions whose empirical validity is often ques-
tionable (e.g. symmetry, independence, risk neutrality, linearity of the demand or
cost functions), it is in general impossible to solve (2.2) analytically. Numerical
methods have been proposed in the speci�c context of the �rst-price single-unit
asymmetric auction (e.g. Marshall et al. 1994, Li and Riley 1999, Bajari 2001).
These methods consist essentially in �nding a solution to the set of di¤erential
equations produced by the FOC (2.3). In many complex games however, such
as the multi-unit auction example presented in Section 4, these methods are not
applicable because the FOC (2.3) cannot be expressed in closed form, or they are
too complex to be solved numerically.
We now consider an alternative equilibrium concept that enables the approxi-

mation of NEs even in the most complex games. The de�nition of a CSE parallels

10There is now an extensive literature providing su¢ cient conditions under which a NE exists
(i.e. S� 6= ?) in a variety of Bayesian games. See e.g. Milgrom and Roberts (1990), Vives
(1990), Lebrun (1996), Reny (1999), Maskin and Riley (2000), Athey (2001), Reny and Zamir
(2004), McAdams (2006), Van Zandt and Vives (2007), and Reny (2007).
11As demonstrated by (e.g.) Schlaifer (1959), the ex-ante and interim formulations of a

Bayesian game yield the same set of NEs under standard assumptions. This is the case in
particular when Si consists of non strictly dominated strategies. For more general conditions
see Proposition (2.3) in Armantier, Florens and Richard (2004).
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that of a NE in the ex-ante game, except that the strategies are now restricted
to constrained sets Ski � Si. More formally, Sk� � Sk, the set of CSEs in Sk, is
composed of strategy pro�les sk� such that

eUi �sk�i ; sk��i� � eUi �ski ; sk��i� 8ski 2 Ski and 8i 2 N . (2.4)

The CSEs may also be expressed as a �xed point solution of the constrained
best-response correspondence

sk�i 2 ArgMax
ski 2Ski

eUi �ski ; sk��i� 8i 2 N : (2.5)

As we shall see in the next section, the determination of this �xed point is greatly
simpli�ed under a parametrization of the strategies in Ski . As a result, a CSE may
be determined in the most complex Bayesian games, even when the FOC (2.3)
characterizing the NEs do not have an explicit expression.

2.2. Approximation of Nash Equilibria

We now identify conditions under which a sequence of CSEs converges toward a
NE. To this end, we assume in the remainder that S is endowed with an appropri-
ate topology, and we consider a family of constrained sets

�
Sk
	
k=1!1 such that

i) Sk � Sk+1 8k > 0, and ii) [
k�1
Sk is dense in S.12

Proposition 2.1. If eU is continuous and if a sequence of CSEs �sk�	
k=1!1 has

a subsequence with limit s 2 S, then s 2 S�.

Proof: see Appendix 1.

Corollary 2.2. If S is compact, eU is continuous and there exists a CSE sk�

8k > 0, then there exists a NE in S, and any sequence of CSEs
�
sk�
	
k=1!1 has

a subsequence that converges toward a NE.

12Observe that if a NE s� belongs to a constrained set Sk, then it also belongs to the set of
CSEs Sk

0�, 8k0 � k. The traditional independent private-values auction with types uniformly
distributed on [0; 1] provides an example of such a situation. Indeed, the unique NE s� (t) =
t=(N + 1) belongs to any constrained set of polynomial or piecewise linear strategies for k � 1.
As a result, s� is also a CSE in any of these constrained sets.
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Proof: see Appendix 2.
The compacity of the strategy space is standard in Bayesian games. In par-

ticular, this condition is veri�ed in all Bayesian games for which existence has
been established (e.g. Lebrun 1996, Reny 1999, Athey 2001, McAdams 2006). As
a result, Proposition 2.1 applies to a large class of games including several auc-
tion models (e.g. �rst-price, asymmetric, all-pay), di¤erent forms of Cournot and
Bertrand oligopolies with incomplete information on cost and/or demand, noisy
signaling games or search models with incomplete information, and some models
with multi-dimensional types and/or actions (e.g. multi-markets oligopoly compe-
tition, and multi-units auctions).13 In practical applications of these games analyt-
ical tractability is often obtained at the expense of more realistic assumptions. By
o¤ering the possibility to approximate with arbitrary precision intractable NEs,
the CSE approximation technique therefore enables one to analyze these models
under richer and empirically more relevant assumptions.
As an example of a general strategy space for which the compacity condition

is satis�ed, consider the set of functions of bounded variation.14 To keep the nota-
tions from obscuring the point, consider a symmetric Bayesian game in which Ti =

[0; 1] and Ai = R.15 Let us denote V (s) = sup
0=t1<::::<tJ+1=1

JP
j=1

js (tj)� s (tj+1)j, the

total variation of a function s, and consider the BV norm kskBV = js (0)j+V (s).
Then, Sv, the closure of Sv = fs j kskBV � vg is compact under the norm L1 for
any v 2 R.16 This set of functions with uniformly bounded variation includes
most well de�ned bounded functions such as the continuous monotonic functions
over [0; 1], the bounded functions with a countable number of discontinuity points,
or the di¤erentiable functions with bounded �rst derivative. In other words, Sv
includes the set of monotonic bounded strategies considered in many Bayesian

13Observe that several of the games mentioned (e.g. the �rst price auction) are often con-
sidered �discontinuous�, as the utility function Ui is not continuous. Nevertheless, Proposition
2.1 may be applied to those games as long as the (unconditional) expected utility function eU is
continuous.
14In Armantier et al. (2004) we propose an even more general strategy space endowed with

the Sobolev norm for which we show that the compacity condition is satis�ed. For compactness
criteria in di¤erent functional spaces see also Dör�er, Feichtinger, and Gröchenig (2002).
15To simplify, we omit the player�s subscript in the remainder of this section.
16A proof of this statement is given by (e.g.) Ziemer (1989) in Corollary 5.3.4 (p 227). Note

also that the Rellich-Kondrachov compact embedding theorem generalizes this results to the
case Ti � Rp and Ai � Rp

0
(see Theorem 2.5.1, p 62 in Ziemer 1989).
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games, such as auctions, non-linear pricing models, or Cournot oligopolies.
Finally, we propose a family of constrained strategies which is dense in Sv. For

a given � 2 N, consider Skv , the constrained set of piecewise polynomial strategies
sk 2 Sv of highest degree � de�ned on a partition �k of [0; 1] in k disjoint intervals
�j (j = 1; ::; k).17

Proposition 2.3. [
k�1
S
k

v is dense in Sv with respect to L1:

Proof: see Appendix 3.

3. Numerical Implementation

Although the optimal implementation of the CSE approach is context speci�c, we
show in this section how one may evaluate the CSEs in a wide range of games,
including games without closed form NE. We also develop a set of criterion to
evaluate the approximation quality in practical applications.

3.1. Numerical Determination of the CSEs

To start, consider a family of parametrized constrained strategies: ski (ti) =
si
�
dki ; ti

�
2 Ski , with dki 2 Dk

i � R(k) where  (k) is a function of �nal dimension.
This parametrization provides a major computational advantage as the determi-
nation of a CSE reduces to �nding dk� 2 Dk solving the system of non-linear
equations

@

@dki
eUi �dki ; dk�i� = 0 8i 2 N : (3.1)

The expected utility functions in (3.1) are often di¢ cult (if not impossible) to
express analytically even when si

�
dki ; ti

�
has a simple functional form. In other

words, the system of non-linear equations (3.1) must typically be solved numeri-
cally. We di¤erentiate two cases.
Continuous Games: when Ui

�
dk; t

�
is C1 in dki , we can approximate the inte-

grals in (3.1) with standard Monte Carlo techniques. For instance, one can simply

replace the expected utility by its empirical analog eUMi �
dk
�
= 1

M

MP
m=1

Ui
�
dk;etm�

17To guarantee that S
k

v � S
k+1

v we implicitly assume that �k is a thinner partition than �k
0

8k > k0.
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where etm denotes hereafter a vector of N random types generated from F , andM
is the size of the Monte Carlo approximation.18 In practice, one may reduce con-
siderably the computational burden by selecting a family of constrained strategies
such that @

@dki
Ui
�
dk; t

�
may be expressed analytically.

Discontinuous Games : Consider the class of games in which actions may be
ranked according to a scoring rule � (ai) 2 R, and the highest score wins and takes
all.19 Such games include auctions, Bertrand oligopolies, or patent race models.
The utility functions may then be written

Ui
�
dk; t

�
= Vi

�
dk; t

�
If�(si(dki ;ti))���ig ; (3.2)

where ��i = Max
j 6=i

�
�
sj
�
dkj ; tj

��
, I is the indicator function, and Vi is the utility

function of player i when she wins the game. A general approach to evaluate the
CSE in discontinuous games consists in approximating the expected utility with

eUMi �
dk
�
=
1

M

MX
m=1

Vi
�
dk;etm�Gi �� �si �dki ;eti;m��� ; (3.3)

where Gi, the c.d.f. of ��i, represents the probability that player i wins the game.
In most applications Gi cannot be calculated analytically and needs to be ap-
proximated by simulations. For instance, Gi may be replaced by a nonparametric
approximation of the form

bGi [� (ai)] = 1

M

MX
m=1

K

�
� (ai)� �m�i

h

�
; (3.4)

where �m�i =Max
j 6=i

�
�
sj
�
dkj ;etj;m��, K denotes an arbitrary c.d.f.,M is the Monte

Carlo size, and h is a �bandwidth� controlling the smoothness of the kernel.
Horowitz (1992) shows that when the derivative of K is a second order kernel,
and h _ M� 1

5 , one can make bGi arbitrarily close to Gi by selecting M su¢ -
ciently large. Therefore, an accurate approximation of a NEmay be systematically

18Note that acceleration techniques such as Quasi Monte Carlo methods should typically be
used to speed-up computation (see Press, Flannery, Teukolsky and Vetterling 1992).
19In some discontinuous games the losers receive a compensation, or an outside option. The

payo¤ allocated to the losers is normalized here to zero.
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achieved since we fully control the Monte Carlo sizes M andM .20

The computational burden may be greatly reduced when the scoring rule and
the strategies are monotonic. Indeed, the system of FOC in (3.1) may then be
written for all i 2 N

E

�
@

@dki
Vi
�
dk; t

�
Ifsi(dki ;ti)�s�ig

�
+Et�ijti

" @
@dki
si
�
dki ; ti

�
@
@ti
si
�
dki ; ti

� Vi �dk; t� fi (ti)
#
jti=s�1i (dki ;s�i)

(3.5)
where s�i = ArgMax

j 6=i
�
�
sj
�
dkj ; tj

��
, Et�ijti is the expectation with respect to t�i

conditional on ti, and fi is the marginal distribution of ti.
21 Once again, the

expectations in (3.5) may be approximated with arbitrary precision by simula-
tions, and the computational burden may be reduced considerably by choosing an
appropriate family of constrained strategies.22

3.2. Approximation Criteria

In this section, we propose several criteria to evaluate how well a CSE in Sk

approximates a NE. Our objective is not to study the exact theoretical properties
of each criterion. Instead, we intend to provide practitioners with a set of tools that
will allow them to decide in practical applications when to stop the approximation
procedure consisting in calculating CSEs in expanding constrained sets Sk. These

20In the nonparametric estimation of an econometric model,M cannot exceed the size of the
sample available. Accurate estimates are therefore not necessarily guaranteed in small samples,
even when an optimal bandwidth is selected. This issue is not relevant here since we can select
an arbitrary large value for M , and therefore, reach any precision level desired. Note, that
this remains true when the CSE approximation technique is used to estimate a structural model
without an analytically tractable NE (see e.g. Eklöf 2005, or Armantier and Sbaï 2006). Indeed,
the size of the Monte Carlo simulation M , remains independent of the size of the sample used
to estimate the structural model.

21The result is a direct application of the formulas: @
@x

xZ
g1(x)

' (x; y) dy = �g01 (x)' (x; g1 (x))+

xZ
g1(x)

@
@x' (x; y) dy and @

@x'
�1 (x; z) = �

@
@x'(x;y)
@
@y'(x;y)

, where ' (x; y) = z.

22In particular, the computational burden is reduced considerably when the constrained strate-

gies are easily invertible, and when
@

@dk
i

si(dki ;ti)
@
@ti

si(dki ;ti)
can be expressed analytically.
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approximation criteria therefore complement the algorithm just presented to form
a fully implementable numerical approximation technique.
In numerical analysis, an approximation procedure typically stops when the

approximate solution or the objective function does not change signi�cantly from
an iteration to the next. In the present context, these stopping rules are de�ned
as

C1 (k) =
sk� � sk�1� and C2 (k) =

B �sk�� , (3.6)

where B is the FOC operator de�ned in (2.3). Note that C1 (k) is directly related
to Proposition 2.1 stating that when a sequence of CSEs converges, its limit is a
NE. We now propose two additional classes of criteria with game theoretic inter-
pretation. Although not implementable in all games, these criteria are particularly
relevant as they represent natural measures from a game theoretic perspective of
the quality of a NE approximation.

3.2.1. The Unconstrained Best-Response to a CSE

To keep the notations from obscuring the point, suppose that the game under
consideration is such that the unconstrained best-response operator is a contin-
uous function.23 Let us also denote BR (s) the vector of dimension N , whose
ith component represents player i ex-ante unconstrained best-response strategy
in Si, when her opponents play s�i: BRi (s�i) = Argmax

si2Si
eU (si; s�i). The ap-

proximation quality may then be evaluated by C3 (k) =
sk� �BR �sk��, the

distance between the CSE and its unconstrained best-response in S.24 Moreover,
�eUki = eUi �BRi �sk��i� ; sk��i� � eUi �sk�� is the highest bene�t player i can expect
when she deviates from her CSE strategy sk�i . An alternative measure of the CSE

approximation quality is then given by C4 (k) =
�eUk.25

In most games, the ex-ante best-response does not have an explicit solution.
Nevertheless, the criteria C3 (k) and C4 (k) may be approximated in general situ-

23The criteria proposed below have been generalized in Armantier et al. (2004) to the case
of multiple best-responses. In this case, the method consists in measuring the distance between
the CSE strategies and the corresponding sets of unconstrained best-responses.
24Note that unconstrained best-responses are considerably easier to calculate than actual NEs.

Indeed, a player�s unconstrained best-response is characterized by an independent maximization
problem since the strategies of the other players are known. NEs on the other hand, require
solving a multidimensional �xed point problem involving N maximizations.
25It is trivial to generalize this criterion to measure the gains from joint deviations by subsets

of players.
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ations by:

CM3 (k) =
1

NM

NX
i=1

MX
m=1

�
sk�i
�eti;m�� a�i;m�2 ; (3.7)

CM4 (k) =
1

NM

NX
i=1

MX
m=1

�
Ui
�
a�i;m; s

k�
�i;etm�� Ui �sk�;etm��2 ;

where the action a�i;m = ArgMax
ai2Ai

PM
m0 6=m Ui

�
ai; s

k�
�i;eti;m;et�i;m0

�
is player i�s in-

terim best-response when she receives the private signal eti;m and her opponents
use the strategy pro�le sk��i.

26

3.2.2. The CSE as a NE of a Neighboring Game

Before presenting the criterion, let us introduce some necessary notations. To
simplify, let us denote �(F ), the Bayesian game characterized by fN;F; U; Sg.
Let F be the set of c.d.f. with common support T . Let us also generalize the
notation S� (F ) to denote the set of NEs in the game �(F ). The inverse corre-
spondence S�

�1
is then such that s� is a NE in the game �(Fs�) for any c.d.f.

Fs� 2 S�
�1
(s�). Finally, let us assume that the game under consideration is such

that S� (F ) is a continuous function with respect to a given topology (e.g. L
p
or

Sobolev).27 Note that the continuity assumption may be interpreted as a stability
condition imposed on the game in the sense that slight perturbations of the types�
distribution generate neighboring NEs.28

We can now characterize the last approximation criterion. Consider a game
�(F ) where F 2 F, and sk� a CSE in Sk. An alternative measure of the distance
between the CSE and a NE is given by

C5 (k) = kF � Fsk�k where Fsk� = S
��1 �sk�� : (3.8)

In other words, a CSE may be considered a good approximation of a NE when
C5 (k) is close to zero, since in that case sk� is not only a CSE in �(F ), but it is
also a NE in a virtually identical game �(Fsk�).
26Since sk��i is given, the determination of a

�
i;m is straightforward with any numerical optimizer.

27See Armantier et al. (2004) for a generalization of the criterion to the case where S� (F ) is
a correspondence.
28The continuity of S� (F ) is veri�ed in several Bayesian games. In particular, Lebrun (2002)

shows that the equilibrium bid function is continuous in the types�s distribution in the symmetric
�rst-price private-values auction. Lebrun (2002) also shows that this result extend to asymmetric
�rst-price private-values auction when the players�types have common support.
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The computation of S�
�1
might be far from trivial in practice. One may

however apply standard econometric techniques to approximate Fsk� in a given
parametric class.29 For instance, consider a symmetric game and a family of dis-
tributions F (: j �) parametrized by a vector � 2 � � Rq. Let us denote �0 the
true parameter characterizing the game�s distribution F (: j �0), and s��0 the cor-
responding NE we wish to approximate. The FOC characterizing a NE may be
used as moment conditions to characterize the parameter �1 that makes the CSE
sk� a NE in the game with distribution F (: j �1). Indeed, observe that the FOC in
(2.3) are veri�ed for any ti 2 Ti. Therefore, we can write the moment conditions
E�1

�
B
�
sk�
�
(ti)
�
= 0, where E�1 denotes the unconditional expectation when the

types�distribution is set to F (: j �1).30 The method of simulated moments estima-
tor of �1 is based upon the empirical counterpart of this orthogonality condition:

b�1 = Argmin
�2�

[C 0
C] where C =
MX
m=1

NX
i=1

Bi
�
sk�
� �et�i;m� , (3.9)

where et�m is a vector of N types simulated from the distribution F (: j �), and 
 is
a symmetric de�nite positive matrix that may be chosen in order to improve the
quality of the estimation. The criterion C5 (k) may then be replaced by a similar

measure CM5 (k) =
�0 � b�1.

4. Examples

The object of this section is to illustrate the relevance of the CSE approximation
method through di¤erent examples. To do so, we consider an auction model
proposed by Reny (1999). There are four risk-neutral bidders competing for L
units of a homogenous good. Bidder i receives a bi-dimensional type ti = (ti;1; ti;2)
according to a continuous distribution function Fi with support [0; 1]

2. Each
bidder is assumed to have strictly decreasing marginal values for the successive
units. More speci�cally, bidder i marginal valuation for the lth unit of the good

29It is important to understand that the objective here is not to estimate the unknown struc-
tural parameters of the game (as in e.g. Guerre, Perrigne and Vuong 2000), but rather to apply
econometric techniques to address a game theoretic problem. Note in particular that no sample
of observations is involved in the calculation of the criterion, as it relies only on simulated types.
30To simplify, we assume here that q < N and the N FOC are not redundant. Otherwise,

to generate the appropriate number of moment conditions, one could nonlinearly transform the
FOC (which are veri�ed for any ti 2 Ti), or interact them with an appropriate set of instruments.
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is ti;1 � (ti;2)l�1.31 The type ti;1 may be interpreted as the value allocated by
bidder i to the �rst unit of the good, while ti;2 represents a discount factor applied
to additional units. Knowing only his own type, bidder i submits a nonnegative
sequence of bids si (ti) = (si;1; ::; si;L), verifying si;1 � ::: � si;L. The L highest bids
among the LN submitted are winning bids, with ties broken equiprobably. The
auction belongs to the class of discriminatory payment mechanisms, as winning
bidders pay the seller their winning bid for each unit won.
Reny (1999) proves that this Bayesian game possesses a NE in pure and non-

decreasing strategy. The set of admissible strategy pro�les S may then be re-
stricted to the non-decreasing strategies de�ned over the support [0; 1]2 and ver-
ifying s(0) = 0. As explained in Section 2, S is then compact, and any strategy
pro�le in S may be approximated with arbitrary precision by a piecewise linear
function. In other words, we know that any converging sequence of piecewise
linear CSEs we can construct, converges toward a NE of the game.32

4.1. First-Price Independent Private-Values Model

Consider �rst the case L = 1, and let us assume that the private-values ti = ti;1
are scalars independently drawn from a Beta distribution with parameters (3; 3).
In this traditional �rst-price independent private-values model, the NE has a well-
known closed form solution. We are therefore in a position to compare the actual
NE, with its CSE approximation. We consider here a piecewise linear family of
constrained strategies of the form:33

si
�
dki ; ti

�
=

2k�1X
j=1

�
dki;2j�1 + d

k
i;2j � ti

�
Ifti2[tj�1;tj]g ; (4.1)

31Reny�s model is more general as bidder i�s marginal valuation for the lth unit of the good,
denoted in Reny (1999) by vli (ti), is a continuous and strictly increasing function of a multi-
dimensional type ti , verifying v1i (:) � ::: � vLi (:), and v1i (0) = ::: = vLi (0). The CSE approx-
imation approach can obviously accommodate di¤erent speci�cations of types and valuations
from the one adopted in this section.
32In Armantier et al. (2004) we discuss in more details how the conditions necessary for the

application of Proposition 2.1 and the convergence criteria are satis�ed in each of the examples
below.
33Although more sophisticated constrained strategies may be considered (e.g. spline or higher

piecewise polynomials, neural networks, wavelets or Fourier transforms), we �nd that simple
piecewise linear functions provide accurate approximations, while being computationally less
demanding. We also refer the reader to Armantier et al. (2004) where the NE in the examples
given in Section 4.1 have been approximated by polynomials.
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where dki;1 is set equal to zero to satisfy the constraint si
�
dki ; 0

�
= 0, and tj�

j = 0; :::; 2k�1
�
are knots corresponding to (e.g.) fractiles of the types�marginal

distributions
�
i.e. tj = F�1i

�
j

2k�1

��
.34

The actual NE as well as the di¤erent piecewise linear CSEs for k varying from
one to �ve are plotted in Figure 1.35 This �gure illustrates the rapid convergence
of the sequence of CSE as k increases. Observe in particular that the approxima-
tions for k � 4 are virtually indistinguishable from the NE. This observation is
con�rmed by the di¤erent approximation criteria reported in Table 1.36 In partic-
ular, the criteria C1 (k) and C2 (k) attest to the rapid convergence of the CSE as k
increases. Criteria C3 (k) and C4 (k) indicate that, with k as low as three, there is
very little di¤erence between the CSE and its unconstrained best-response, both
in terms of distance and expected pro�t.37 Finally, criterion C5 (k) con�rms that
a CSE rapidly becomes a NE in a virtually identical game (i.e. with an almost
identical distribution).38

34Observe that the 2k�1 + 1 knots are de�ned such that Sk � Sk+1. Moreover, note that
for a given k, more accurate approximations than those presented here may be obtained with
an adaptive algorithm that selects a �ner partition of knots where the approximated NE is not
smooth, and a coarser mesh where it is smooth (see DeVore 1998). An example of such an
adaptive method, as well as other illustrative programs may be found on one of the authors�
website at http://www.sceco.umontreal.ca/liste_personnel/armantier/index.htm.
35To solve the system of non-linear equations, we rely on Fortran subroutines developed in

the �eld of �Interval Arithmetic� (see e.g. Neumaier 1990 and Kearfott 1996). We refer the
reader to the GLOBSOL project website (http://www.mscs.mu.edu/~globsol/) for additional
information.
36The approximation criteria are calculated here in percentage in order to facilitate the com-

parison between the di¤erent auction examples. Criteria C1(k) to C4(k) are calculated by

Monte Carlo simulations with the norm L2. For instance, C1 (k) = 1
M

MX
m=1

�
sk�(etm)�sk+1�(etm)

sk+1�(etm)
�2

where the etm are generated with the Common Random Number technique. Finally, C5(k) =� b�1��0
�0

�2
+
� b�1��0

�0

�2
, where (�0; �0) = (3; 3) are the true parameters of the types�distribu-

tion, and
�b�1; b�1� are the GMM estimates of the parameters of a Beta distribution when one

assumes that the CSE in Sk is an actual NE.
37In particular, criterion C4(k) attests to the robustness of the CSE as an equilibrium concept,

as players have little incentives to deviate. Indeed, with k as low as 2, a player can only increase
her expected pro�t by 0:10% when she deviates from her piecewise linear CSE strategy to select
an unconstrained strategy.
38In practice, these �ve criteria should be used to decide the number of knots that provides a

su¢ ciently accurate approximation. Here for instance, one may �nd it appropriate to consider
k = 4, as the approximation quality does not improve substantially with higher values of k.
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Since we know the actual NE in this example, we can also calculate the mean
square error, as well as the di¤erence in expected pro�t between the NE and the
di¤erent CSEs. As indicated at the bottom of Table 1, these two additional criteria
con�rm that the CSE approach provides accurate approximations.39 Moreover,
we report in Table 2 the expected pro�t and the probability of winning of a
representative bidder when using the NE, or the polynomial CSE with k = 5. As
expected, the CSE approximation is so accurate, that the economic outcomes of
the auction are virtually indistinguishable.

4.2. Asymmetric First-Price Auction

We now turn to a single-unit asymmetric �rst-price private-values auction. As in
the previous example, the �rst two bidders draw their values from a Beta (3; 3).
Bidders 3 and 4 on the other hand, receive their types from a more favorable
distribution, a Beta (5; 3).40 This asymmetric auction model does not possess a
NE in closed form. As previously mentioned, the FOC in this model produce
an explicit set of di¤erential equations that may be solved numerically. This
example therefore gives us the opportunity to compare the CSE approach with
the di¤erential equations method proposed by e.g. Marshall et al. (1994), Li and
Riley (1999), and Bajari (2001).
We plot in Figure 2 the piecewise linear CSE for k = 5, as well as the NE

approximation obtained with the di¤erential equations method.41 The shapes of
the bid functions indicate that the bidders with the less favorable type distribution
must compensate by bidding slightly more aggressively. Although subtle, this
di¤erence in behavior has serious economic implications. Indeed, we can see in
Table 2 that bidders 3 and 4 are twice as likely to win the auction, and their
pro�ts are nearly 2:4 time larger.
Figure 2 also indicates that the CSE and the di¤erential equations methods

produce nearly identical results, except possibly for very low types. The approxi-
mation quality may be compared more formally in Table 1 where the approxima-
tion criteria, although all very close to zero, are slightly larger for the di¤erential

39In Table 1, both criteria are expressed in percentage.
40The mean and standard deviation of the values assigned to bidders 1 and 2 are respectively

0.5 and approximately 0.19, while the mean and standard deviation of bidders 3 and 4�s values
are approximately 0.625 and 0.16.
41Since the CSE approximations for di¤erent values of k are di¢ cult to distinguish, we only

plot in the remainder of this section the approximation for k = 5.
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equations approximation.42 In other words, the piecewise linear CSEs appear
to provide a slightly more accurate approximation in the sense that i) they are
closer to their unconstrained best-responses, and ii) they are NEs in slightly less
perturbed games.43 Precision however, is only one of the components that one
may take into consideration when selecting an approximation technique. In many
empirical applications, computational speed is also a key concern.44 As indicated
in the last column of Table 1, we �nd that the piecewise linear CSE is nearly 6
time faster than the competing di¤erential equations method.45 In other words,
the CSE approach appears to perform better in this example, not only in terms
of accuracy, but also in terms of computational speed.46

4.3. Multi-Unit Private-Values Auction

We now consider the case N = L = 4. In other words, we have four bidders
competing for four units of a homogenous good in a �rst-price discriminatory
private-values auction. We consider here a symmetric case in which the value
of the �rst unit is independently distributed across bidders from a Beta(3; 3).47

The discount factor ti;2 is assumed to be independently drawn across bidders

42The approximation criteria in Table 1 barely di¤er across both types of players. Therefore,
we only present their average in Table 1.
43This result is consistent with Bajari (1999) and Turocy (2001) who suggest that the di¤er-

ential equations method may be prone to inaccuracies for types with low probability of winning.
The CSE on the other hand, appears to be less prone to this type of inaccuracies, as it is not
calculated for a given type but rather across all types.
44For instance, the structural estimation of a treasury auction model in Armantier and Sbaï

(2006) required to calculate di¤erent CSE approximations for a total of nearly 109 di¤erent types.
Such an estimation is therefore only possible if the approximation technique is su¢ ciently fast.
45The comparison consisted in calculating the approximated asymmetric equilibrium for 106

di¤erent private-values. Note also that once the CSE has been evaluated, the marginal cost
of computing the approximated NE for an additional vector of private types is virtually zero.
Indeed, it only requires calculating a simple piecewise linear function.
46This result is consistent with similar comparisons conducted in Armantier et al. (2004), as

well as Eklöf (2005). As noted by Marshall et al. (1994), the algorithms developed to solve the
two points boundary value problem in the di¤erential equations method, typically rely upon slow
numerical processes, and often su¤er from pathologies at the origin. In contrast, the boundary
conditions reduce to trivial constraints on the parameters under the CSE approach. For instance,
the constant in the �rst portion of the piecewise linear constrained strategies is set equal to zero
to satisfy sk(0) = 0. Likewise, we can easily parametrize the piecewise strategies to guarantee
that all bidders submit the same bid when receiving the highest type ti;1 = 1.
47See Armantier et al. (2004) for an asymmetric example.
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from a normal distribution N (0:75; 0:15) truncated on [0; 1].48 The di¢ culties
in solving such a multi-unit auction model emerge not only from the fact that
types and bids are multi-dimensional, but also from the constraint that bids for
successive units must be non-increasing. In fact, to the best of our knowledge,
this model has not previously been solved in the literature.49 In particular, the
di¤erential equations approach cannot be implemented here, as the FOC of the
model cannot be expressed explicitly. The practical relevance of such a multi-unit
auction model however, is undeniable. Indeed, it provides the means to analyze
some of the auctions with the most considerable, but yet still poorly understood,
economic implications such as treasury, electricity or spectrum auctions.50

A strategy in this multi-unit example is a function of three variables l, ti;1,
and ti;2, where l = 1; :::; 4 represents the successive bids submitted by bidder i for
each of the four units for sale. Therefore, to approximate the intractable NE, we
generalize the constrained strategy in (4:1) to three dimensional piecewise linear
functions in (l; ti;1; ti;2).51 The symmetric bid functions calculated for the mean
discount factor ti;2 are plotted in Figures 3.52 This �gure provides us with a unique
insight into equilibrium behavior in such multi-unit environments. Indeed, Figure
3 indicates that, although the shape of the bid functions are somewhat similar to
the single unit case (Figure 1), participants tend to bid less aggressively when given
the possibility to win several units. Finally, note that the approximation criteria
in Table 1 suggest that the CSE approach still provides an excellent approximation
even in this complex multi-unit auction.

5. Discussion

Because it enables the economist to solve rich and empirically relevant models
without consideration for analytical tractability, the CSE approach has recently

48The distributions of types have not been selected for tractability, but rather to illustrate
that the CSE method can accommodate any class of distributions.
49Engelbrecht-Wiggans and Kahn (1998) propose an algorithm in the speci�c case of a sym-

metric discriminatory auction with only two units, and implement it with uniformly distributed
types.
50Recent econometric analyses of multi-unit auctions include Hortaçsu (2002), Fevrier, Preguet

and Visser (2004), Armantier and Sbaï (2006), and Chapman, McAdams and Paarsch (2006).
51The theoretic constraints ski (l; 0; 0) = 0, ski (l; 1; 1) = ski (l

0; 1; 1) and @ski =@l � 0 consider-
ably reduce the dimension of the problem.
52See Armantier et al. (2004) for additional plots of bid functions calculated for di¤erent

values of the discount factor ti;2.
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been adopted in the theoretical and empirical analysis of several complex Bayesian
games. In particular, Eklöf (2005) applies the CSE approach to estimate the
social cost implied by the ine¢ cient allocation of contracts in �rst-price sealed-
bid procurement auctions with asymmetric bidders. Likewise, Armantier and Sbaï
(2006, 2007), and Armantier and Lafhel (2007) apply the CSE approach to study
Treasury auction models accounting for supply uncertainty, as well as possible
informational and risk aversion asymmetries across bidders.53 The CSE approach
has also generated interest in the �eld of arti�cial intelligence. For instance,
Arunachalam and Sadeh (2003), and Estelle et al. (2005) use a CSE approximation
to study strategic interactions in a supply chain game. Likewise, Reeves and
Wellman (2004), as well as Mackie-Mason and Wellman (2006), advocate the use
of the CSE approach to solve in�nite Bayesian games.
In contrast with the applications just mentioned, the contribution of the

present paper is to provide the methodological foundations of the CSE approx-
imation method. More speci�cally, we de�ned formally a constrained strategic
equilibrium, and we established su¢ cient conditions under which a sequence of
CSEs converges toward a NE. In addition, we provided a fully implementable
algorithm to calculate the CSE approximations numerically in a broad class of
Bayesian games. Finally, we illustrated the advantages of the CSE approach with
di¤erent auction examples, including a multi-unit auction which, to the best of
our knowledge, has not been previously solved. It has to be noted, however,
that the range of applications of the CSE method is not limited to auctions. In-
deed, the approximation theorem and the algorithm introduce in the paper are
directly applicable in a wide range of Bayesian games relevant to economists (e.g.
principal-agent, non-linear pricing, adverse selection or moral hazard models) for
which closed form NE may be obtained at best under strong simplifying assump-
tions.

53There has been several additional applications of the CSE approach. For instance, Ar-
mantier et al. (1998) analyze a procurement from the French aerospace industry, in which the
good for sale is allocated to the player bidding the highest ratio of quality over price. Armantier
et al. (2004) approximate a similar model under the additional assumption of collusion, or infor-
mational asymmetry. Armantier and Florens (2003) evaluate the welfare implications associated
with the use of a complex redistributive allocation mechanism (known as the �Juste Retour�)
at European Spatial Agency procurements.
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Appendix 1: Proof of Proposition 2.1.
Consider a strategy pro�le s 2 S. Since [

k�1
Sk is dense in S, then there exists�

sk
	
k=1!1

�
with sk 2 Sk

�
such that sk k!1! s. Then, since sk� 2 Sk� we have

8i 2 N and 8k = 1!1 eUi �sk�i ; sk��i� � eUi �ski ; sk��i� : (6.1)

If the sequence
�
sk�
	
k=1!1 has a subsequence with limit s 2 S, then there exists

fkmgm=1!1 such that
�
skm�i ; skm��i

� m!1! (si; s�i) and we still have, 8i 2 N , and
8k = 1!1 eUi �skm�i ; skm��i

�
� eUi �skmi ; skm��i

�
: (6.2)

Finally, since eUi is continuous in s, we can write the previous equation as m tends
toward in�nity, eUi (si; s�i) � eUi (si; s�i) 8i 2 N : (6.3)

Therefore s 2 S�.

Appendix 2: Proof of Corollary 2.2.
The proof is trivial: If S is compact, then any sequence of CSEs

�
sk�
	
k=1!1

has a subsequence with limit s 2 S, and s is a NE from Proposition 2.1.

Appendix 3: Proof of Proposition 2.3.
The proof consists in showing that for any s 2 Sv and any " > 0, we can �nd

a scalar k and a function sk 2 Skv such that
s� sk

L1
< ".

For any s 2 Sv and any " > 0, let us start by considering a function es 2 Sv
satisfying ks� eskL1 < "

2
. Let us also denote esj the restriction of es to the interval

�j, and eskj the projection of esj onto Skv with respect to the BV norm. Finally, let
us de�ne sk as the union of the projections eskj over every interval �j. By property
of the norm, we have

eskjBV � kesjkBV , which implies that skBV � keskBV , and
consequently sk 2 Skv .
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Moreover, from Theorem 3.2 in Birman and Solomjak (1967), we know that
there exists a constant c such that

es� sk
L1
< c 1

k
, and consequently we can �nd

k such that
es� sk

L1
< "

2
. Finally,

s� sk
L1
� ks� eskL1 + es� skL1 � ",

which completes the proof.
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Table 1 
Approximation Criteria 

Single Unit  
Symmetric Asymmetric 

Multi 
Unit 

 

Criteria 
 

k=1 
 

k=2 
 

k=3 
 

k=4 
 

k=5 
Differential 

Equation 
 

CSE (k=5) 
 

CSE (k=5)

C1(k) __ 4.625E-3 6.053E-4 8.398E-5 3.486E-6 __ 8.872E-7 4.741E-6 
C2(k) 7.119E-2 5.292E-3 4.706E-4 3.531E-5 1.643E-6 9.652E-7 8.607E-8 1.491E-6 
C3(k) 1.045E-3 5.585E-5 4.558E-6 2.145E-7 3.533E-8 6.245E-7 9.261E-9 2.889E-8 
C4(k) 8.384E-3 9.988E-4 9.683E-5 7.854E-6 5.762E-7 9.622E-8 9.610E-9 1.068E-8 
C5(k) 3.133E-3 5.895E-5 8.191E-7 7.450E-8 1.423E-8 3.550E-7 1.699E-9 5.482E-8 
MSE 5.794E-3 5.655E-4 6.717E-5 8.204E-6 9.851E-7 __ __ __ 

Δ U~  
 

3.638E-3 
 

6.088E-4 
 

9.668E-5 
 

6.184E-6 
 

7.274E-7 
 

__ 
 

__ 
 

__ 

Time 3s 5s 9s 17s 28s 394s 67s 241s 
 
 
 
 
 

Table 2 
Auctions Outcomes 

 Single Unit 
 Symmetric Asymmetric 

 

Multi Unit 

   Differential Equation CSE (k=5)     
 NE CSE (k=5) Player 1 or 2 Player 3 or 4 Player 1 or 2 Player 3 or 4 Unit 1 Unit 2 Unit 3 Unit 4 

Probability 
of Winning 

 
0.250 

 
0.250 0.167 0.333 0.167 0.333 

 
0.540 

 
0.279 

 
0.128 

 
5.826E-2

Expected 
Profit 

 
3.961E-2 

 
3.961E-2 1.802E-2 4.274E-2 1.802E-2 4.274E-2 

 
0.106 

 
3.517E-2 

 
1.301E-2 

 
5.702E-3

 
 

 



Figure 1
Single Unit Auction
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Figure 2
Single Unit Asymmetric Auction
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Figure 3
Symmetric Multi-Unit Auction

(Type 2 Set to its Mean)
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