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1 Introduction

There is a large and growing theoretical and empirical literature on models where the impacts

of discrete (usually binary) treatments are heterogeneous in the population.1 The objective of

this paper is to analyze non-parametric identification of treatment effect models with contin-

uous treatments when the treatment intensity is not randomly assigned. This generally leads

to models that are non-separable in the unobservables and produces heterogeneous treatment

intensity effects. Imposing a stochastic polynomial assumption on the heterogeneous effects, we

use a control function approach to obtain identification without large support assumptions. Our

approach has applications in a wide variety of problems, including demand analysis where price

elasticities may differ across individuals; labor supply, where wage effects may be heterogeneous;

or production functions, where the technology may vary across firms.

Other recent papers on semiparametric and nonparametric models with nonseparable er-

ror terms and an endogenous, possibly continuous, covariate include papers using quantile

instrumental variable methods such as Chernozhukov and Hansen (2005) and Chernozhukov,

Imbens, and Newey (2007), and papers using a control variate technique such as Altonji and

Matzkin (2005), Blundell and Powell (2004), Chesher (2003), and Imbens and Newey (2002,

2007). Chesher (2007) surveys this literature. The analysis of Imbens and Newey (2002, 2007)

is perhaps the most relevant to our analysis, with the key distinction between our approach

and their approach being a tradeoff between making a stochastic polynomial assumption on

the outcome equation versus assuming large support. We discuss the differences between our

approach and their approach further in Section 3.2.

2 The Model, Parameters of Interest and the Observ-

ables.

Let Yd denote the potential outcome corresponding to level of treatment intensity d. When

the treatments are discrete this notation represents the two possible outcomes for a particular

individual in the treated and non-treated state. In this paper, there are a continuum of alter-

natives as the treatment intensity varies. Define ϕ(d) = E(Yd) and Ud = Yd − ϕ(d), so that, by

1See, e.g., Roy (1951); Heckman and Robb (1985, 1986); Björklund and Moffitt (1987); Imbens and Angrist
(1994); Heckman (1997); Heckman, Smith, and Clements (1997); Heckman and Honoré (1990); Card (1999,
2001); Heckman and Vytlacil (2001, 2005, 2007a,b), who discuss heterogeneous response models.
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construction,

Yd = ϕ(d) + Ud. (1)

We restrict attention to the case where the stochastic process Ud takes the polynomial form

Ud =
K∑

j=0

djεj, with E(εj) = 0, j = 0, ..., K, (2)

where K < ∞ is known.2

Let D denote the realized treatment, so that the realized outcome Y is given by Y = YD.

We do not explicitly denote observable regressors that directly affect Yd. All of our analysis

implicitly conditions on such regressors. We assume

(A-1) ϕ(D) is K times differentiable in D (a.s.), and the support of D does not contain any

isolated points (a.s.).

This allows for heterogeneity of a finite set of derivatives of Yd. This specification can be seen

as a nonparametric, higher order generalization of the random coefficient model analyzed by

Heckman and Vytlacil (1998) and Wooldridge (1997, 2003, 2007). The normalization E(εj) = 0,

j = 0, ..., K, implies that ∂j

∂dj E(Yj) = ∂j

∂dj ϕ(d).3

Equations (1) and (2) can be restated as follows to emphasize that we analyze a nonseparable

model:

Y = h(D, ε) = ϕ(D) +
K∑

j=0

Djhj(ε) (3)

where ε need not be a scalar random variable. The notation of equation (3) can be mapped into

the notation of equations (1) and (2) by setting εj = hj(ε). Notice that do not assume that ε is

a scalar random variable, and h need not be monotonic in ε.

One parameter of interest in this paper is the Average Treatment Effect,

∆ATE(d) = lim
∆d→0

E(Yd+∆d − Yd)

∆d
≡ ∂

∂d
E(Yd) =

∂

∂d
ϕ(d) (4)

which is the average effect of a marginal increase in treatment if individuals were randomly

assigned to base treatment level d. Note that the average treatment effect depends on the

2As discussed later, we can test for the order of the polynomial as long as a finite upper bound on K is known.
The question of identification with K infinite is left for future work.

3To see that E(εj) = 0, j = 0, ..., K, is only a normalization, note that ϕ(d) +
∑K

j=0 djεj =[
ϕ(d) +

∑K
j=0 djE(εj)

]
+

∑K
j=0 dj(εj−E(εj)) = ϕ̃(d)+

∑K
j=0 dj ε̃j . Note that this is the appropriate normalization

for ∂
∂dϕ to denote the ATE.

3



base treatment level, and for any of the continuum of possible base treatment levels we have a

different average treatment effect. The average treatment effect is the derivative of the average

structural function of Blundell and Powell (2004).

We also consider the effect of treatment on the treated (TT), given by

∆TT (d) = lim
∆d→0

E(Yd+∆d − Yd|D = d)

∆d

≡ E(
∂

∂d1

Yd1|D = d2)

∣∣∣∣
d=d1=d2

=
∂

∂d
ϕ(d) +

K∑
j=1

jdj−1E(εj|D = d)

which is the average effect of treatment for those currently choosing treatment level d of an incre-

mental increase in the treatment holding their unobservables fixed at baseline values. This pa-

rameter corresponds to the local average response parameter considered by Altonji and Matzkin

(2001, 2005).

We denote the choice equation (the assignment mechanism to treatment intensity) as

D = g(Z, V ) (5)

where Z are observed covariates that enter the treatment choice equation but are excluded from

the equation for Yd and V is a scalar unobservable. We make the following assumption:

(A-2) V is absolutely continuous with respect to Lebesgue measure; g is strictly monotonically

increasing in V ; and Z ⊥⊥ (V, ε0, ...εK).

As long as D is a continuous random variable (conditional on Z), we can always represent

D as a function of Z and a continuous scalar error term, with the function increasing in the

error term and the error term independent of Z. To see this, set V = FD|Z(D|Z) and g(Z, V ) =

F−1
D|Z(V |Z). Thus, D = g(Z, V ) where g is strictly increasing in the scalar V which is distributed

unit uniform and independent of Z. However, the assumption that g(Z, V ) is monotonic in a

scalar unobservable V with Z ⊥⊥ (V, ε0, ...εK) is restrictive. The construction V = FD|Z(D|Z)

and D = F−1
D|Z(V |Z) = g(Z, V ) does not guarantee Z ⊥⊥ (V, ε0, ...εK).

Given assignment mechanism (5) and assumption (A-2), without loss of generality we can

impose the normalization that V is distributed unit uniform. Given these assumptions and

the normalization of V , we can follow Imbens and Newey (2002, 2007) and recover V from

V = FD|Z(D|Z) and the function g from g(Z, V ) = F−1
D|Z(V |Z). Assignment mechanism (5) and

assumption (A-2) will not be directly used to prove identification. However, we use it to clarify

the primitives underlying our identification assumptions.
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2.1 Education and Wages: A Simple Illustration

To illustrate the type of problem we analyze in this paper, consider a simple model of educational

choice. Suppose that the agent receives wages Yd at direct cost Cd if schooling choice d is made.

We work with discounted annualized earnings flows. We write wages for schooling level d, Yd,

as

Yd = ϕ0 + (ϕ1 + ε1)d +
1

2
ϕ2d

2 + ε0

and the cost function for schooling as

Cd = C0(Z) + (C1(Z) + v1)d +
1

2
C2(Z)d2 + v0 (6)

where εs and vs (s = 0, 1) are, respectively, unobserved heterogeneity in the wage level and in

the cost of schooling. These unobserved heterogeneity terms are the source of the identification

problem considered in this paper. We impose the normalizations that E(εs) = 0, E(vs) = 0, for

s = 0, 1. We implicitly condition on variables such as human capital characteristics that affect

both wages and the costs of schooling. The Z are factors that only affect the cost of schooling,

such as the price of education.

Assume that agents choose their level of education to maximize wages minus costs. Let D

denote the resulting optimal choice of education. D solves the first order condition

(ϕ1 − C1(Z)) + (ϕ2 − C2(Z)) D + ε1 − v1 = 0.

Assuming that ϕ2 − C2(Z) < 0 for all Z, the second order condition for a maximum will be

satisfied. This leads to an education choice equation (assignment to treatment intensity rule)

D =
ϕ1 − C1(Z) + ε1 − v1

C2(Z)− ϕ2

.

This choice equation is produced as a special case of the model given by equations (1), (2) and

(5), with

ϕ(d) = ϕ0 + ϕ1d +
1

2
ϕ2d

2

Ud = ε0 + ε1d

g(z, v) =
ϕ1 − C1(z) + F−1

ε1−v1
(v)

C2(z)− ϕ2

where V = Fε1−v1(ε1 − v1) with Fε1−v1 the cumulative distribution function of ε1 − v1. The

goal is to identify the average return to education: ∆ATE(d) = ϕ1 + ϕ2d, or TT, which is

∆TT (d) = (ϕ1 + E(ε1|D = d)) + ϕ2d.

5



In this example, the treatment intensity is given by equation (5) with g strictly increasing

in a scalar error term V = Fε1−v1(ε1 − v1). The structure of the treatment intensity mech-

anism is sensitive to alternative specifications. Consider the same example as before, except

now the second derivative of Yd is also stochastic: Yd = ϕ0 + (ϕ1 + ε1)d + 1
2
(ϕ2 + ε2)d

2 + ε0.

The choice equation becomes D = ϕ1−C1(Z)+ε1−v1

C2(Z)−ϕ2−ε2
. In this case, the structural model makes D

a function of V = (ε1 − v1, ε2), which satisfies Z ⊥⊥ (V, ε0, ε1, ε2) but V is not a scalar error.

We can still define Ṽ = FD|Z(D|Z) and the function g̃ by g̃(Z, Ṽ ) = F−1
D|Z(Ṽ |Z). With this

construction, D is strictly increasing in a scalar error term Ṽ that is independent of Z. How-

ever, Z is not independent of (Ṽ , ε0, ε1, ε2). To see why, note that Pr(Ṽ ≤ v|Z, ε0, ε1, ε2) =

Pr
[
v1 : ϕ1−C1(Z)+ε1−v1

C2(Z)−ϕ2−ε2
≤ F−1

D|Z(v)
∣∣Z, ε0, ε1, ε2

]
6= Pr(Ṽ ≤ v|ε0, ε1, ε2). This is a case where as-

sumption (A-2) does not hold. The fragility of the specification of equation (5) where g is

strictly increasing in a scalar error term arises in part because, under rational behavior, het-

erogeneity in response to treatment (heterogeneity in the Yd model) generates heterogeneity in

selection into treatment intensity. This heterogeneity is absent if agents do not know their own

treatment effect heterogeneity, which can happen if agents are uncertain at the time they make

participation decisions (see Abbring and Heckman, 2007).

3 Identification Analysis.

IV does not identify ATE in the case of binary treatment with heterogeneous impacts (Heckman,

1997; Heckman and Robb, 1986) unless one imposes covariance restrictions between the errors in

the assignment rule and the errors in the structural model. Following Newey and Powell (2003)

and Darolles, Florens, and Renault (2002), consider a nonparametric IV strategy based on the

identifying assumption that E(Y − ϕ(D)|Z) = 0. Suppose K = 0, which is the special case of

no treatment effect heterogeneity. In this case, UD = ε0 so that YD = ϕ(D) + ε0. We obtain

the standard additive-in-unobservables model considered in the cited papers. The identification

condition is E(ε0|Z) = 0. However, in the general case of treatment effect heterogeneity (K > 0),

the IV identification restriction implies special covariance restrictions between the error terms.

For example, suppose K = 1 and that D = g(Z) + V . Then E(Y − ϕ(D)|Z) = 0 requires

E(ε0|Z) = 0 and E(ε1D|Z) = 0, with the latter restriction generically equivalent to E(ε1|Z) = 0

and E(ε1V |Z) = 0. In other words, in addition to the more standard type of condition that

ε0 be mean independent of the instrument, we now have a new restriction in the heterogeneous
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case that the covariance between the heterogeneous effect and the unobservables in the choice

equation conditional on the instrument does not depend on the instrument.4 Instead of following

an instrumental variables approach, we explore identification through a control function.5 We

assume the existence of a (known or identifiable) control function Ṽ that satisfies the following

conditions:

(A-3) Control Function Condition: E(εj | D,Z) = E(εj|Ṽ ) = rj(Ṽ ).6

and

(A-4) Rank condition: D and Ṽ are measurably separated, i.e., any function of D almost surely

equal to a function of Ṽ must be almost surely equal to a constant.

A necessary condition for assumption (A-4) to hold is that the instruments Z affect D.7 We

return later in this section to consider sufficient conditions on the underlying model that implies

the existence of such a control variate Ṽ . Under these assumptions, ATE and TT are identified.

Theorem 1. Assume equations (1) and (2) hold with finite K ≥ 1. Under assumptions (A-3)

(control function condition), (A-4) (rank condition), and the smoothness and support condi-

tion (A-1), ATE and TT are identified.

Proof. See Appendix.

The control function assumption gives the basis for an empirical determination of the relevant

degree of the polynomial in (2). If the true model is defined by a polynomial of degree ` we have

that for any k > `
∂k

∂dk
E(Y |D = d, Ṽ = v) =

∂kϕ(d)

∂dk

4See Heckman and Vytlacil (1998) and Wooldridge (1997, 2003, 2007).
5See Newey, Powell, and Vella (1999) for a control function approach for the case of separable models (K = 0).

See Heckman and Vytlacil (2007b) for a discussion of the distinction between control functions and control
variables. Technically “control function” is a more general concept. We adopt the recent nomenclature even
though it is inaccurate. See the Matzkin (2007) paper for additional discussion.

6Note that our normalization E(εj) = 0, j = 0, ...,K, implies the normalization that E(rj(Ṽ )) = 0, j =
0, ..., K,

7Measurable separability, which we maintain in this paper is just one way of achieving identification. Alterna-
tively, one could restrict the space of functions ϕ(D) not to contain rj(Ṽ ) functions; this in turn can be achieved
for example by assuming that ϕ(D) is linear in D and rj is non-linear as in the Heckman (1979) selection model.
See also Heckman and Robb (1985, 1986) who discuss this condition.
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which does not depend on v and thus is only a function of d. This property can be verified by

checking whether the following equality holds almost surely:

∂kE(Y |D, Ṽ )

∂Dk

a.s.
= E

[
∂k

∂Dk
E(Y |D, Ṽ )

∣∣∣∣D
]

, k > `.

3.1 Primitive Conditions Justifying the Control Function Assump-
tion.

In the previous section a control function is assumed to exist and satisfy certain properties.

The analysis in the previous section did not use assignment rule (5) or condition (A-2). In this

section, we use assignment rule (5) and condition (A-2) along with the normalization that V is

distributed unit uniform. Under these conditions, consider using V = FD|Z(D|Z) as the control

function. This leads to the following corollary to Theorem 1:

Corollary 3.1. Assume equations (1) and (2) hold with finite K ≥ 1 and assume smoothness

and support condition (A-1). If D is generated by assignment equation (5) and condition (A-2)

holds, and if V and D are measurably separable, (A-4), then ATE and TT are identified.

In order for the conditions of Theorem 1 to be satisfied it is sufficient to verify that under the

conditions in the corollary the control function assumption (A-3) is satisfied. Given that D

satisfies assignment equation (5) and condition (A-2), from Imbens and Newey (2002, 2007) we

obtain that V = FD|Z(D|Z) is a control variate satisfying assumption (A-3).

Next consider measurable separability condition (A-4). Measurable separability is a relatively

weak condition, as illustrated by the following theorem.

Theorem 2. Assume that (D, V ) has a density with respect to Lebesgue measure in R2 and

denote its support by S and let S0 be the interior of the support. Further, assume that i) any

point in S0 has a neighborhood such that the density is strictly positive within it and ii) any two

points within S0 can be connected by a continuous curve that lies strictly in S0. Then measurable

separability between D and V (A-4) holds.

Proof. See Appendix.

Measurable separability is a type of rank condition. To see this, consider the following

heuristic argument. Consider a case where the condition is violated at some point in the interior

of the support of (D, V ), i.e. h(D) = l(V ). Hence h(g(Z, V )) = l(V ). Differentiating both
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sides of this expression with respect to Z, we obtain ∂h
∂g

∂g
∂Z

= 0. If measurable separability fails,

∂h
∂g
6= 0 and hence ∂g

∂Z
= 0 which means that g does not vary with Z. Note that the conditions

in Theorem 2 are not very restrictive. For example, the conditional support of D can depend

on V and vice versa.

Assignment rule (5) and condition (A-2) do not imply measurable separability (A-4). To

show this, we consider two examples where equation (5) and condition (A-2) hold but D and

V are not measurably separable. In the first example, Z is a discrete random variable. In the

second example, g(z, v) is a discontinuous function of v.

First, suppose Z = 0, 1 and suppose that D = g(z, v) = z + v, with V Unif[0, 1]. Then

(A-4) fails, i.e., D and V are not measurably separable. To see this, let m1(t) = t and let

m2(t) = 1[t ≤ 1]t + 1[t > 1](t − 1). Then m1(V ) = m2(D), but m1 and m2 are not a.s.

equal to a constant. Now consider a second example. Suppose that D = g1(z) + g2(v), where

g2(t) = 1[t ≤ .5]t + 1[t > .5](1 + t). Let gmax
1 and gmin

1 denote the maximum and minimum

of the support of the distribution of g1(Z), and suppose that gmax
1 − gmin

1 < 1. Then (A-4)

fails, i.e., D and V are not measurably separable. To see this, let m1(t) = 1[t ≤ .5], let

m2(t) = 1[t ≤ .5+gmax
1 ], and note that m1(V ) = m2(D) but that m1 and m2 do not (a.s.) equal

a constant.

Assignment rule (5), condition (A-2), and regularity conditions that require Z to contain

a continuous element and that g be continuous in v are sufficient to imply that measurable

separability (A-4) holds. We prove the following theorem.

Theorem 3. Suppose that D is determined by equation (5). Suppose that g(z, v) is a continuous

function of v. Suppose that, for any fixed v, the support of the distribution of g(Z, v) contains

an open interval. Then, under assumption (A-2), D and V are measurably separated ((A-4)

holds).

Proof. See Appendix.

Note that, for any fixed v, for the support of the distribution of g(Z, v) to contain an open

interval requires that Z contains a continuous element. A sufficient condition for the support

of the distribution of g(Z, v) to contain an open interval is that (a) Z contains an element

whose distribution conditional on the other elements of Z contains an open interval, and (b)

g is a continuous monotonic function of that element. Thus, under the conditions of Theorem
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3, V is identified by V = F (D|Z) and both the control function condition (A-3) and the rank

condition (A-4) hold with Ṽ = V .

3.2 Alternative Identification Analyses.

A general analysis of identification using the control function assumption without the polynomial

structure is related to the work of Heckman and Vytlacil (2001) on identifying the marginal

treatment effect (MTE). That paper considers a binary treatment model, but their analysis may

be extended to the continuous treatment case. Similar approaches for semiparametric models

with a continuous treatment D that is strictly monotonic in V is pursued for the Average

Structural Function (ASF) by Blundell and Powell (2004) and for the Local Average Response

(LAR) by Altonji and Matzkin (2001, 2005). The derivative of the ASF corresponds to our

ATE, and the LAR corresponds to treatment on the treated.

Most relevant to this note is the analysis of Imbens and Newey (2002, 2007). They invoke

the same structure as we do on the first stage equation for the endogenous regressor as our

assignment mechanism (5) and they also invoke assumption (A-2). The control variate is V ,

with V identified, and with a distribution that can be normalized to be unit uniform. By the

same reasoning, we have E(Yd|D = d, V = v)
as
= E(Yd|V = v). Furthermore, they assume

that the support of (D, V ) is the product of the support of the two marginal distributions, i.e.,

they assume rectangular support. Their assumption implies that the conditional support of D

given V does not depend on V (and vice versa). It is stronger than the measurable separability

assumption we previously used to establish identification. From these assumptions it follows

that

E(Y |D = d, V = v) = E(Yd|D = d, V = v) = E(Yd|V = v)

and

E(Yd) =

∫
E(Yd|V = v)dF (v).

Then ϕ(d) =
∫

E(Y |D = d, V = v)dF (v) and is identified. Identification of ϕ(d) in turn

implies identification of ∆ATE = ∂
∂d

ϕ(d). The rectangular support condition is needed to replace

E(Yd|V = v) by E(Y |D = d, V = v) for all v in the unconditional support of V in the previous

integral. The rectangular support condition may not be satisfied and in general requires a large

support assumption as illustrated by the following example. Suppose D = g1(Z) + V . Let G1
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denote the support (Supp) of the distribution of g1(Z). If Z and V are independent, then

Supp(V |D = d) = Supp(V |g1(Z) + V = d) = Supp(V |V = d− g1(Z)) = {d− g : g ∈ G1}

where the last equality uses the condition that Z ⊥⊥ V . {d− g : g ∈ G1} does not depend on d

if and only if G1 = <. For example, if G1 = [a, b], then {d− g : g ∈ G1} = {d− g : g ∈ [a, b]} =

[d− b, d− a] which does not depend on d if and only if a = −∞ and b = ∞, i.e., if and only if

G1 = <.

Instead of imposing E(Yd|D = d, V = v) = E(Yd|V = v), one could instead impose

∂

∂d
E(Y |D = d, V = v) = E(

∂

∂d
Yd|D = d, V = v) = E(

∂

∂d
Yd|V = v). (7)

E( ∂
∂d

Yd|V = v) is the marginal treatment effect of Heckman and Vytlacil (2001), adapted to the

case of a continuous treatment. Instead of integrating E(Yd|V = v) to obtain ϕ(d), one could

instead integrate E( ∂
∂d

Yd|V = v) to obtain ATE or TT:
∫

∂
∂d

E(Y |D = d, V = v)dF (v) =
∫

∂
∂d

E(Yd|V = v)dF (v) = ∆ATE(d),

∫
∂

∂d1
E(Yd1|D = d2, V = v)dF (v|D = d2)

∣∣
d=d1=d2

= E
(

∂
∂d1

Yd1|D = d2

)∣∣
d=d1=d2

= ∂
∂d1

E (Yd1|D = d2)
∣∣
d=d1=d2

= ∆TT (d).

This is the identification strategy followed in Heckman and Vytlacil (2001), adapted to the case

where D is a continuous treatment. As discussed in Heckman and Vytlacil (2001), a rectangular

support condition is required in order to integrate up MTE to obtain ATE. Note that one does

not require the rectangular support condition to integrate up ∂
∂d

E(Y |D = d, V = v) to obtain

TT. For TT, one only needs to evaluate ∂
∂d

E(Y |D = d, V = v) for v in the support of V

conditional on D = d, not in the unconditional support of V .

While a rectangular support condition is not required to integrate MTE to recover TT, a

support condition is required for equation (7) to hold. That equation requires that E(Y |D =

d, V = v) can be differentiated with respect to d while keeping v fixed. This property is closely

related to measurable separability between D and V . Assume that there exists a (differentiable)

function of D, h(D) equal (a.s.) to a function of V, m(V ), which is not constant. Then we

obtain

E(Y |D = d, V = v)
as
= E(Yd|V = v) + h(d)−m(V )

and
∂

∂d
E(Y |D = d, V = v)

as
=

∂

∂d
E(Yd|V = v) +

∂

∂d
h(d)
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which implies that equation (7) is violated. Thus, for TT, we still need measurable separability

between D and V in order for equation (7) to hold.

There are trade-offs between the approach presented in this note versus an approach that

identifies MTE/MTE-like objects and then integrates them to obtain the object of interest. The

approach developed here requires a stochastic polynomial structure on UD of equation (2) and

higher order differentiability. These conditions are not required by Imbens and Newey (2002,

2007) or Heckman and Vytlacil (2001). The approach of this note does not require the large

support assumption required to implement these alternative approaches. As shown by Theorem

2, measurable separability between D and V is a relatively mild restriction on the support

of (D, V ). As shown by Theorem 3, measurable separability between D and V follows from

assignment mechanism (5) and Assumption (A-2) combined with a relatively mild regularity

condition.

4 Estimation

Under the control function assumption we have:

E(Y |D = d, Z = z) = E(Y |D = d, V = v)

= ϕ(d) +
K∑

j=0

djhj(v) .

The method we propose is an extension of Newey, Powell and Vella (1999) and may also be viewed

as an extension of estimation of additive models in a nonparametric context. The estimation

is carried out in two steps: first estimate the residual vi from the nonparametric regression

D = E(D|Z) + V ; then estimate ϕ and the hj’s.

Define the estimation criterion

min
ϕ,h0,...,hK

E
[
Y − ϕ− D̃′h(v)

]2

(8)

where D̃ =
[
1, D, D2, ..., DK

]′
, and h = [h0, h1, ..., hK ]′ . The first order conditions for the

minimisation are




E(Y |D = d) = ϕ(d) + d̃′E(h(V )|D = d)

E(D̃Y |V = v) = E(D̃ϕ(D)|V = v) + E(D̃D̃′|V = v)h

(9)

where d̃ =
[
1, d, ..., dK

]′
.
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This linear system in ϕ and h can easily be solved if the conditional expectations are replaced

by their estimators (by kernels for example). In that case it is easily seen that (9) generates a

linear system with respect to the ϕ(di) and the hj(vi) (i = 1, ..., n; j = 0, ..., K) and this system

may be solved by usual methods of linear equations. The equations in (9) are then used to

compute ϕ(d) and hj(v) at any point of evaluation. If we only wish to focus attention on ϕ, the

vector h may be eliminated from (9) and we obtain:

ϕ(d)− d̃′E
[
E(D̃D̃′−1E(ϕ(D)|V = v)|D = d

]

= E(Y |D = d)− d̃′E
[
E(D̃D̃′−1E(D̃Y |V = v)|D = d

]
.

This equation has the form (I − T )ϕ = ψ where T is, under very general conditions, a compact

operator and ψ may be estimated. It is a Fredholm equation of type II which may be analysed

using the methods in Carrasco, Florens, and Renault (2007, section 7). The original system (9) is

also a Fredholm equation of type II and both systems generate well posed inverse problems. The

asymptotic theory developed in Carrasco, Florens, and Renault (2007) applies with the exception

that the vi are now estimated. A precise analysis of this approach and some applications will

be developed in future work.

5 Conclusions

This paper considers the identification and estimation of models with a continuous endogenous

regressor and non-separable errors when continuous instruments are available. We present an

identification result using a control function technique. Our analysis imposes a stochastic,

finite-order polynomial restriction on the outcome model but does not impose a large support

assumption.

6 Appendix: Proofs of Theorems

Proof of Theorem 1

Suppose that there are two sets of parameters (ϕ1, r1
K , ..., r1

0) and (ϕ2, r2
K , ..., r2

0) such that

E(Y |D = d, Ṽ = v) = ϕi(d) +
K∑

k=0

dkri
k(v), i = 1, 2,

13



where the conditional expectation on the left-hand side takes this form as a result of the control

function assumption (A-3). Then

[
ϕ1(d)− ϕ2(d)

]
+

K∑

k=0

dk
[
r1
k(v)− r2

k(v)
]

= 0. (10)

Given smoothness assumption (A-1), this implies

∂K

∂dK
ϕ1(d)− ∂K

∂dK
ϕ2(d) + (K!)(r1

K(v)− r2
K(v)) = 0.

Measurable separability assumption (A-4) implies that if any function of d is equal to a function

of v (a.s.) then this must be a constant (a.s.). Hence, r1
K(v)− r2

K(v) is a constant a.s.. Hence,

r1
K(v)− r2

K(v) = E
[
r1
K(Ṽ )− r2

K(Ṽ )
]
.

This expression equals zero given our normalization that E(εK) = 0. Hence,

r1
K(v)− r2

K(v)
a.s.
= 0.

Considering the (K − 1)st derivative of equation (10), we find that

∂K−1

∂dK−1
ϕ1(d)− ∂K−1

∂dK−1
ϕ2(d) + (K!)d

[
r1
K(v)− r2

K(v)

]
+ ((K − 1)!)

[
r1
K−1(v)− r2

K−1(v)

]
= 0.

We have already shown that r1
K(v) = r2

K(v), and thus

∂(K−1)

∂d(K−1)
ϕ1(d)− ∂(K−1)

∂d(K−1)

∂

∂d
ϕ2(d) + ((K − 1)!)(r1

K−1(v)− r2
K−1(v)) = 0.

Using the logic of the previous analysis, we can show that r1
K−1(v) − r2

K−1(v)
a.s.
= 0. Iterating

this procedure for k = K − 2,...,0, it follows that r1
k(v) − r2

k(v)
a.s.
= 0 for all k = 0, ..., K. Again

appealing to equation (10), it follows that ϕ1(d)−ϕ2(d)
a.s.
= 0, and thus ATE is identified. Using

the fact that ϕ1(d) − ϕ2(d)
a.s.
= 0 and r1

k(v) − r2
k(v)

a.s.
= 0 for all k = 0, ..., K, we also have that

∂
∂d

ϕ1 +
∑K

k=1 kdk−1E[r1
k(v)|d] = ∂

∂d
ϕ2 +

∑K
k=1 kdk−1E[r2

k(v)|d] = 0, and thus TT is identified.¥

Proof of Theorem 2

Let (d, v) be a point of the interior of the support S0. Let Nd denote a neighborhood of d

and N v a neighborhood of v such that Nd × N v is included in S0. The distribution of (D,V )

restricted to Nd × N v is equivalent to Lebesgue measure (i.e. has the same null sets). Then

using Theorem 5.2.7 of Florens, Mouchart, and Rolin (1990) (D, V ) restricted to Nd × N v are

14



measurably separated. This implies that if within that neighborhood h(D)
as
= l(V ), then h(D)

and l(V ) are a.s. constants. We need to show that this is true everywhere in the interior of

the support. Consider any two points (d, v) and (d′, v′) in S0. The theorem will be true if

h(d) = h(d′). As S0 satisfies the property (ii) in the theorem and is open by definition, there

exists a finite number of overlapping open sets with non-empty overlaps, i.e. ∃ a finite sequence

of neighborhoods Nd
j × N v

j , j = 1, ..., J such that each Nd
j × N v

j ⊂ S0 and Nd
j ∩ Nd

j+1 6= ∅ and

similarly for N v
j . The first point (d, v) is in Nd

1 ×N v
1 and the second point (d′, v′) is in Nd

J ×N v
J .

Take d1 ∈ Nd
1 and in the next overlapping neighborhood d2 ∈ Nd

2 . From the previous result

(D, V ) are measurably separated on Nd
1 ×N v

1 and on Nd
2 ×N v

2 . Thus h(di) i = 1, 2 is constant

on each and thus constant on the union implying h(d1) = h(d2). Iterating in this way along

the sequence of neighborhoods until Nd
J × N v

J , it follows that h(d) = h(d′). Hence h(D) is a.s.

constant and, because h(D)
as
= l(V ), l(v) is a.s. constant.

¥

Proof of Theorem 3

Let Z denote the support of the distribution of Z. Consider any two functions m1 and m2

such that m1(D) = m2(V ) a.s. For (a.e. FV ) fixed v0, using the assumption that Z and V

are independent, it follows that m1(g(z, v0)) = m2(v0) for a.e. z conditional on V = v0 implies

that m1 is (a.s. FZ) constant on {g(z, v0) : z ∈ Z}. Likewise, for a v1 close to v0, we have

m1 is constant on {g(z, v1) : z ∈ Z}. Using the fact that g(z, v) is continuous in v and that

{g(z, v) : z ∈ Z} contains an open interval for any v, we can pick v1 sufficiently close to v0 so

that {g(z, v0) : z ∈ Z} and {g(z, v1) : z ∈ Z} have a nonnegligible intersection, and we thus

conclude that m1 is constant on {g(z, v) : z ∈ Z, v = v0, v1}. Proceeding in this fashion, we

conclude that m1 is (a.s.) constant on {g(z, v) : z ∈ Z, v ∈ [0, 1]}, and thus that m1 is a.s. equal

to a constant. ¥
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