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Abstract

In this paper, we define different concepts of non-causality for continuous-
time processes, using conditional independence and decompostion of semi-
martingales. These definitions extend the ones already given in the case
of discrete-time processes. As in the discrete-time setup, continuous-time
non-causality is a property concerned with the prediction horizon (global
versus instantaneous non-causality) and the nature of the prediction (strong
versus weak non-causality). Relations between the resulting continuous-time
non-causality concepts are then studied for the class of decomposable semi-
martingales, for which, in general, the weak instantaneous non-causality does
not imply the strong global non-causality. The paper then characterizes these
different concepts of non-causality in the cases of counting processes and
Markov processes.

KEYWORDS :
Non-causality, continuous-time, semi-martingales, Doob-Meyer decomposi-
tion.

Résumé

On définit dans ce texte différents concepts de non-causalité en temps
continu fondés sur la notion d’indépendance conditionnelle et sur les décom-
positions de semi-martingales. Ces définitions étendent au temps continu
différents concepts déja introduits en temps discret. Comme en temps dis-
cret la non-causalité est une propriété mettant en jeu un horizon de prévision
(global contre instantané) et la nature de la prévision (non causalité faible
ou forte). Les relations entre les différents définitions sont obtenues dans
la classe des semi-martingales décomposables pour lesquelles par exemple
la non-causalité faible instantanée n’implique pas la non causalité globale
forte. Différents exemples sont enfin étudiés, notamment les processus de
dénombrement et les processus de Markov.

MOTS-CLEFS :

Non-causalité, temps continu, semi-martingale, décomposition de Doob-Meyer.



1 Introduction

Following the seminal papers by Granger (1969) and Sims (1972), the non
causality concept plays an increasing role in Econometrics and a mostly com-
plete study of the relations between diverse forms of this notion has been
yet performed. Non-causality expressed in terms of orthogonality in the
Hilbert space of squared integrable random variables has been firstly studied
by Hosoya (1977) and extensively treated by Florens and Mouchart (1985),
while definitions in terms of conditional independence have been given, for
example, by Florens and Mouchart (1982) and by Bouissou, Laffont and
Vuong (1986). Non-causality is, in any case, a prediction property and the
central question is : is it possible to reduce the available information in order
to predict a given stochastic process? In these previous papers, two distinc-
tions between various non-causality concepts appear, sometimes implicitely.
One can first oppose a one-step ahead (or instantaneous) analysis (Granger’s
type definition) to a prediction property valid for any horizon (global non-
causality or Sim’s type definition). On the other hand, the definition may
be focused on the prediction of the mean of the process (weak non-causality)
or of any function of the process (strong non-causality). However, in any
of these previous papers, the underlying processes are indexed by a discrete
time set, which implies, in particular, that the notion of a one-step ahead
forecast is defined unambigously.

Continuous-time models become more and more frequent in econometric
practice. Let us mention two important fields of applications. In labor eco-
nomics, duration models, markovian and, more generally, counting processes
appear to be powerful tools describing individual mobilities between partic-
ipation states (e.g. Flinn and Heckman, 1982, Heckman and Singer, 1984,
Geweke, Marshall and Zarkin, 1986, Lancaster, 1990, Fougere and Kamionka,
1992a, 1992b) or to analyze cohort data in demographics (e.g. Heckman and
Walker, 1990). In the same time, modern finance theory uses extensively
diffusion processes (see, e.g., Merton, 1990, Melino, 1994).

The goal of our paper is to consider the different non-causality properties
in continuous-time models and to analyze their relations. General definitions
and results are provided, but a special attention is paid to counting and
Markov processes. In the previous literature, Schweder (1970) obtained a
first result for discrete state-space Markov processes, in which properties of
transition rates and of transition probabilities are compared. Subsequently,
Bremaud and Yor (1978) gave some very general results about changes of
information sequences related to stochastic integration. Non-technical con-
siderations about non-causality in continuous-time can be found in Aalen
(1987). More recently, Comte and Renault (1996) analyze non-causality in
continuous invertible moving average (CIMA) processes.

The paper is organized in three sections. First global non-causality is con-



sidered, i.e. non-causality involving prediction to any horizon. A subsection
is devoted to the relations between martingale properties and non-causality.
The second section introduces the concept of instantaneous non-causality
and gives the main theorem concerning relations between instantaneous and
global concepts. The last section presents three classes of examples : the
counting processes, the CIMA processes and the Markov processes.

2 Global non-causality

A non-causality property requires the specification of the relevant stochastic
process, the available information and the reduced information. Let us begin
with the process z, indexed by t € I C IRT = [0,00). We essentially consider
the case where I = IR* but some concepts will also be presented with ¢ €
IN = {0,1,---} in order to relate our definitions to the previous ones. The
case of a right bounded time set (¢ € [0,T]) or the case of a both left and right
unbounded time set (¢ € IR) would not raise particular problems relative to
the topic of this paper.

For any t, z; is a real valued measurable function defined on a probability
space (2, A, P). Extensions of the definitions to vector processes are usually
straightforward. We will analyze the non-causality as a property of a given
probability P. In statistical applications, P is an element of a family of
sampling probabilities and the usual statistical problem of non-causality is
to test if the true sampling probability satisfies the non-causality condition.

The information available at time ¢ is described by a sub-o-field F; of 4
and it is natural to assume :

1) That the family (Fi)ier, is a filtration , ie. t <t' = F, C Fy,

ii) That z, is adapted to (Fi)ier, 1.€. 2 is Fi-measurable for any ¢. In-
tuitively, F, incorporates the knowlegde of the history of z; up to t. Equiv-
alently let us define Z; as the sub-o-field of A generated by the family of
25,0 < s < t.(Z¢)ser is the canonical (or self exciting) filtration associated to
the process z;. Then z is adapted to (F;)ies if and only if Z, C F,Vt € 1.

Finally we introduce a subfiltration (G;)ies of (Fi)ses representing the re-
duced information. We assume that z; is still G;-measurable which is equiv-
alent to :

2, CGCF , Vtel (2.1)

In applications, F; is often the canonical filtration associated to a large
multivariate stochastic process (z,y:,w;) where y, and w, are vector pro-
cesses, G, is the canonical filtration of (2, w;) only and 2, is still the canon-
ical filtration of z;. An important particular case, which will be analysed in



the sequel of this paper, is the case where G; = Z,. In terms of stochastic
processes, the process w; disappears.

2.1 Definitions and elementary properties

Definition 2.1 . (Weak global non-causality):
(Fi): does not weakly globally cause z; given (G), if :

E(ztlfs) = E(Ztlgs) V.S,t € I
|

The definition of strong non-causality uses the conditional independence
notation which is :

My LM, | Ms, (2.2)

where M;(1 = 1,2,3) are sub-o-fields of A. This concept is in particular
defined in Dellacherie and Meyer (1980a, chap. II) and the basic properties
are collected e.g. in Florens and Mouchart (1982, appendix) and in Florens
et al. (1990, chap.2).

Definition 2.2 (Strong global non-causality) :
(F): does not strongly cause z; given (Gy), if :

Z, 1L F,|G, Vs,t € 1.
||

Note that this independence is trivially satisfied if ¢ < s. This property
means in particular that :

Vf:Q— IR , Z;measurable and P-integrable,
E(fIF,) = E(fIG,) P-as.. (2.3)

In this paper we identify the forecast of f given F; with E(f|F;) and the
property (2.5) means that G, is sufficient to forecast f given F,. If Z, = G,
we say that F; does not cause z; (or Zy).

Obviously the strong global property implies the weak one : property
(2.5) is in particular true when f is the identity function. The weak global
non-causality only involves the conditional expectation of z; while the strong
concept is a property of the whole conditional distribution of the process.

We will give now alternative characterizations of strong global non-causality,
using in particular o-fields associated to stopping times. Let us recall that a



stopping time relative to a filtration (F;); is a real valued measurable func-
tion ¢ such that ¢7'([0,t]) € F;,Vt € I. For a given stopping time o, the
associated sub-o-field of A, F,, is defined by :

F,={Xe A/ XNno"'([0,t]) € F.} (2.4)
(for details, see Dellacherie and Meyer (1980b, chap. IV)).
Theorem 2.1 (F;); does not strongly globally cause (2;); given (G;); if and
only if one of the following properties is satisfied :
i) Zoo LLF;|Gs Vse I

where Zo = \/ Zy te. Zo 15 generated by U Z,.

tel tel

W)Vpe N |, Vi, -, t, €1 , Ve IRP — IR measurable and bounded :

E(p(2ey, 5 2e)|Fs) = E(@(2e,, 5 21,)|Gs) P-a.s..
i) For any stopping time o relative to the filtration (G,
ZoolLF,|G,.

w) For any stopping time 7 relative to (2,); and any stopping time o
relative to (Gy)::
Z, 1L F,|G,.

All proofs are given in the appendix.

The property (i) means that G, is sufficient to forecast any function of
the whole trajectory of z; given F;.

Property (ii) shows that it is sufficient to check the equalities between
conditional expectations (given G, and F;) for any function depending on a
finite set of realizations of the z-process only. Property (iii) extends property
(1) from fixed times to stopping times. For example, the analysis of non-
causality in counting processes crucially relies on (iii). Property (iv) extends
the definition to stopping times.

Remark :

Let us consider a process f; which is Z;-adapted. We have implicitely
taken (E(fi|F;))s as the natural sequence of the predictions of f; given the
sequence of information (F;);. However it is well known that E(f;|F;) is
only almost surely defined and the sequence of the predictions obtained by
selecting a version of E( f;|F;) for any s could have non regular sample paths.
The concept of optional projection (see Meyer (1968) and Dellacherie and
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Meyer (1980b, chap. VI-2)) avoids this selection problem. In our case, the
optional projection of f; on F; is the unique process f; (up to an evanescent
process) such that : for any stopping time 7 adapted to (F;)s,

E(f, - I{r < c0}|F;) = f, - I{r < o0} (2.5)

Recall that an evanescent process has almost all its sample paths equal
to zero at any time.

It follows from proposition 2.1 iii) that the non-causality assumption im-
plies that f, and fr (the optional projection of f; on the filtration (G;)s)
are equal up to an evanescent process. An identical property occurs with
the predictable projection in which the stopping time is constrained to be
predictable. ]

2.2 Martingale property and non-causality

Let us recall that a stochastic process ¢ is a (F;); martingale if & is (F3)s-
adapted and if :
E(&|Fs) =& P-a.s.. (2.6)

If & is (Gi)i-adapted and if G, C F, &, is still a (Gy);-martingale : the
martingale property remains valid if the filtration decreases. However this
property is in general not preserved if the filtration increases. When the
filtration is getting larger, the preservation of the martingale property is
strongly connected to the non-causality concept. The intuitive reason of the
interest of the martingale property in a non-causality analysis is the following.
The variation of a martingale relative to a given filtration is "unpredictable”
given the information provided by this filtration (the best prediction in the
L? sense is zero). It is then natural to study the processes which remains
unpredictable even if the information o-fields increase.

This paragraph is concerned by the analysis of the connection between
the preservation of the martingale property and the non-causality concept.
Moreover, the following results will be the corner stone of the relations be-
tween global and instantaneous non-causality definitions.

Theorem 2.2

i) If (F.): does not strongly globally causes z, given (Gi):, any (Z:)-
adapted (Gi)¢-martingale process is a (Fi)¢-martingale.,

i) If any (Z;).-martingale is a (Fi);-martingale, (F;), does not strongly
globally cause z;. n

In the case Z, = G, strong global non-causality is then equivalent to the
preservation of the martingale property. Without references to non-causality



considerations, a first proof of this result is given by Bremaud and Yor (1978).
A proof in our framework is provided in the appendix.

The next theorem is more original and is especially interesting in relation
with the Sims (1972) non-causality definition . This theorem will be stated in
the case where G; = Z; and involves in the reciprocal theorem an assumption
of initial non-causality.

Theorem 2.3

i) If (F3)¢ does not strongly globally cause z;, for any ty € I, any stochastic
process 1y, t € [0,t0], which is a (24, V F)i-martingale, is a (25 V F);-
martingale.

i) Under the assumption : Zo LLFy|Z,, if any ny,t € [0,t0], (24 V Fy)s-
martingale is a (24, V F;);-martingale, then (F;); does not strongly globally
cause z;. |

The hypothesis Z.,LLF5|2Z; was introduced in Florens and Mouchart
(1982) and analysed in the linear case in their (1985) paper. Let us only
remark here that this conditional independence is implied by the strong
global non-causality but remains a very weak assumption. It is in partic-
ular satisfied if the initial conditions are deterministic (¥, then becomes the
trivial o-field Fo = {¢,Q}) or if Fo = 2. If the time index is replaced by
IR, 7o becomes N, jp F: and this o-field is trivial for the purely stochastic
processes. However this extension is useful for discrete time processes but is
not common for continuous-time analysis.

The application of theorems 2.2 and 2.3 to instantaneous non-causality
definitions require an extension of these theorems to local martingales. As
usual in the stochastic process litterature (see Dellacherie and Meyer (1980b)
or Protter (1990) for examples), local martingales are introduced with some
regularity conditions.

We assume that the filtrations satisfy "les conditions habituelles”, i.e. :

1) The probability space (£, .4, P) is completed in the Lebesgue sense and
all the o-fields contain all the null sets.
ii) The filtrations are right continuous, i.e. for a filtration (F;),

Fe=Fu =[)Fs (2.7)
s>t
A stochastic process ¢;, adapted to (F;); with almost surely right continu-
ous left limit trajectories (cadlag process) is a local martingale if there exists
an increasing sequence of stopping times (0,),>o such that : o, — 400 and
that :
ine, = Ell(t < o) + &, A(t > 0,) (2.8)



is a uniformly integrable martingale for any n > 0. However, in this section,
regularity conditions (conditions habituelles, cadlag process and uniform in-
tegrability) are not essential.

Using this definition, we obtain the following corollary :

Corollary 2.1 In theorems 2.2 and 2.3, martingales may be replaced by local
martingales.

3 Granger instantaneous non-causality

To introduce concepts of instantaneous non-causality, we begin by consider-
ing discrete-time processes.
In discrete time, a weak concept of instantaneous non-causality may be

defined as :

E(z|Fic1) = E(2:]Gi—1) as. Vt € NN, (3.1)

with F_; = Fo and G_; = Gy. A strong extension of this definition would
be :
ZALF 1]|Gioy YVt e IN. (3.2)

Properties (3.1) and (3.2) can be viewed as restatements of the seminal
Granger (1969) definition. These properties are respectively restrictions of
definitions (2.1) and (2.2) to the case s =t —1. However, it has been proved
that, if G; = F;, definition (2.2) and property (3.2) are equivalent (see Florens
and Mouchart, 1982, theorem 1).

We first extend the weak instantaneous non-causality to continuous-time.
Note that (3.1) is equivalent to

Vt € N s E(Azt|f‘t__1) = E(Azt|gt_1) a.s. , (33)

where Az = zy — z,_1 and Azg = zg.
If hy = E(Azn|Fizi),ho = 0 and m; = Az, — hy,my is a martingale
difference and the process can be reconstructed by :

2y = Ht + -[Wt (34)

where M, = Y!_,m; is a martingale with respect to the filtration (F;); and
H, = ¥y h; is F;_;-measurable.

An analogous decomposition as (3.4) can be reconstructed with respect
to the filtration (G;); :

2= Hr + M (3.5)



where M is a martingale with respect to (G;); and H; is G,_;-measurable.

Using these decompositions the property (3.3) may be restated by : the two

decompositions (3.4) and (3.5) are identical (H, = H; or M, = M} as.).
Heuristically (3.3) may be generalized in continuous-time models by :

Vi E(dz|F.-) = E(dz|G;_) as. (3.6)
or by the equality between H; and H; now defined by

t t
H, = / E(dz|F,-) and H; = / E(dz,|G,-) (3.7)
0 0
Here Fi_ =V, F;s (the o-field generated by all the F,s < t) replaces F;_;

and dz; replaces Az,. This heuristic approach can be formalized using the
notion of special semi-martingale.

We still assume the validity of the "conditions habituelles”. The process
z; is a special semi-martingale with respect to the filtration F; if z, may be
decomposed into :

gy = ZO+Ht+Mt, (38)

where H, is a (F,).-predictable process and M, a zero mean (F,);-local mar-
tingale. Let us recall that a predictable process is measurable (as a function
of (¢,w)) with respect to the o-field on I x Q) generated by all the left continu-
ous processes with right limits. Intuitively, if H, is predictable, the knowledge
of H, for any s < t determines the knowledge of H;. It is usually assumed
that H; has bounded integrable variations , i.e. FE(f;°|dH;|) < oo. The
decomposition (3.8) is unique up to an evanescent process.

Roughly speaking the decomposition (3.8) is obtained by integrating the
decomposition dz; = F(dz|F;-) + dM;, or in the case of derivable processes,
one has :

aH, = lim B~ 2l (3.9)
In this expression processes are assumed to be square integrable and the
limits taken in quadratic norm. Important special cases of semi-martingales
are cadlag super-martingales or sub-martingales. A cadlag process is a
super- martingale (resp., a sub-martingale) with respect to F; if £(z|F;) <
z5, Vs <t (resp. E(z|Fs) > z5). For such processes, the Doob-Meyer the-
orem (see Ito and Watanabe (1965) , Dellacherie and Meyer (1980b, chap.
VII) or Karr (1986, Appendix B)) guaranties the special semi-martingale de-
composition. Moreover H, is decreasing for a supermartingale and increasing
for a submartingale.
We can now define instantaneous non-causality in the Granger sense.

Definition 3.1 Let us assume that z; is a special semi-martingale with re-
spect to (G;):, characterized by the decomposition z, = zo + H + M. Then
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(F:)¢ does not weakly instantaneously cause z, given (G;); in the Granger
sense if z, remains a semi-martingale with respect to (F,); with the same
decomposition.

The Stricker theorem (see Dellacherie and Meyer, 1980b, VIL.60) states
that the semimartingale decomposition is preserved through reduction of the
filtration. Definition 3.1 requires a stronger property, i.e. the identity of the
two decompositions. For the unicity of the decomposition of z,, we obtain
immediately the following lemma :

Lemma 3.1 The three following properties are equivalent :

i) (F:): does not weakly instantaneously cause z, given (G); in the Granger
sense.

i) Hy is (F)i-predictable.

i) M} is a local (F;);-martingale.

Definition 3.2 (F,), does not strongly instantaneously cause z, given (G;);
in the Granger sense if any (Z;):-adapted (G;);-special semi-martingale is a
(Fi)i-special semi- martingale with an identical decomposition with respect to
the two filtrations.

It follows immediately from the previous definition that the strong con-
cept implies the weak one. Global and instantaneous concepts of non-causality
are connected by the following relations:

Theorem 3.1

(1) Strong global non-causality implies strong instantaneous non-causality in
the Granger sense.

(1) If G, = 2, the strong instantaneous non-causality implies the strong
global non-causality.

|

This theorem is an immediate application of the corollary (2.6). However

there is in general no equivalence between the weak concepts, except for
particular but very important processes.
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4 Examples

We briefly apply our previous concepts to three classes of processes.

Example I : Counting processes.
Let N; = (N}, N?) be a bivariate counting process characterized by N} =
Sso H(r} < t)and N} = T ,50 H(72 < t), where 7} and 772 are two increasing
sequences of positive random variables, which represent the jump times of
N/} and N7, respectively. We define Z, = G, as the filtration generated by
N} and F; the filtration generated by NZ. In this case, the four previous
definitions of non-causality are equivalent.

A precise statement of this theorem and its proof is given in the appendix.

Example II : Continuous invertible moving average (CIMA) processes.
Following Comte and Renault (1996), let z, be a continuous time gaussian
process admitting a CIMA representation :

t
T = / A(t, 8)dW, + m,
0

where W, is a multidimensional Brownian motion, A(t, s) is a determinis-
tic triangular matrix function of class C' and m(t) is a deterministic function.
The matrix A is chosen canonically, i.e. such that A(t,t) is lower triangular.
This process is a semimartingale with decomposition :

=20+ H + M,

where :

‘ t s 0A
M, :/0 A(s,s)dW, and H, :mt_m0+/o ds/o g(‘S’u)dW"‘

Let us now decompose z; into a vector (y;,2;), so as A is partitioned
accordingly to this decomposition and A,, is the block of A corresponding
to this partition. Then it follows immediately that, if A,, = 0, the filtration
(F:): generated by z; does not cause strongly globally the z; process.

Moreover, using properties of gaussian processes, Comte and Renault
show that if A,, = 0, y, does not weakly instantaneously cause z;. They
deduce the equivalence of the four definitions of non-causality in the case of
CIMA processes.
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Example III : Markov processes.

Relations between non-causality and Markov assumptions were consid-
ered in discrete time in Florens et alii (1993). In this third example, we
extend some of the results given in their paper to continuous-time Markov
processes, but homogeneity and stationarity assumptions will be introduced
in order to characterize non-causality by properties of the canonical semi-
group and of the infinitesimal generator of the process (see e.g. Hansen and
Scheinkman (1995)). Let z; = (yi,2:) € R*(y. € IRP,z € IR,p+ q = n)
be an homogeneous stationary vector valued Markov process whose marginal
distribution is denoted Q. We denote by L2 the Hilbert space of ) square
integrable random variables on IR" and by L? the subspace of L% of func-
tions which depend on the last ¢ coordinates only (or equivalently of IRF x B,
measurable functions where B, is the Borelian o-field of IR?).

Let us briefly summarize definitions given in Hansen and Scheinkman
(1995) :

i) Yu > 0, T, is a linear operator from L2 to L2 defined by T,(p) = ¢
where ¢ € L2 and ¥(¢) = E(p(zy)|zo = £). The collection T, satisfies the
properties To(¢) = ¢ and T,(7,) = Tu4» and is the canonical semigroup
agssociated to the process.

We assume that T, satisfies a continuity condition :

imTu(e) =¢ Vo€ L}

i1) The infinitesimal generator is defined by the limit :

Alg) = lim ~(L.(¢) ~ ¢) = = Tuli)hums

ul0 U

and D, is the (dense) subset of L2 in which A is defined. We denote
D, = D,N L?. The generator characterizes the semi group. If A is bounded,
this characterization is obtained through the exponential formula:

AFyk

— LUuA
Lo=e=2, =

k>0

The generator deduced from Markov processes is in general unbounded
and the exponential formula must be extended using Yosida approximation
A, of the generator :

A

T, = lim e
A=—00

where Ay = MA(M — A)™! (I is the identity operator). (See Pazy (1983)
section 1.3).
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In this context, the filtration (F,); is generated by the z,-process and
(Z:): by the z,-process only. We restrict our attention to the case Z; = G,.
Moreover let (J,); be the filtration generated by the y;-process. A (minor)
technical assumption is required. Let o(z;) (resp. o(z:)) be the o-field gener-
ated by z; (resp z;). We assume that Z; and o(z,) are measurably separated
given o(z;). This means (see Florens et alii (1993)) that any Z,-measurable
function a.s. equal to a o(z;)-measurable function is a.s. equal to a o(z;)-
measurable function. This assumption concerns the null sets of the product
of Z; and o(z;). In particular, if the joint distribution of (z;)sc0,q and ye
is equivalent to a distribution such that they are independent, the measur-
ability condition is satisfied. Then we get the following characterizations of
non-causality :

- Property 1 : F; does not weakly globally cause ¢(z)(¢ € L?) if and
only if T,(p) € L? Vu > 0.

- Property 2 : (F:): does not strongly globally cause 2, if and only if
T.(L?) Cc L? Yu>0.

- Property 3 : (F}); does not weakly instantaneously cause ¢(z;)(¢ € D,)
if and only if A(p) € L2

- Property 4 : (F;): does not strongly instantaneously cause Z, if and
only if A(D,) C L%

In this Markov case, the general theorem of equivalence between strong in-
stantaneous and strong global non-causality is an elementary corrolary of the
(exact or approximated) exponential formula, as first remarked by Schweder
(1970) in the finite state case.

Contrary to the previous examples, weak instantaneous non-causality
does not imply strong non-causality. However, for particular processes, prop-
erty 4 may be weakened. For example, let us assume that z, is a multivariate
diffusion model defined by the stochastic differential equation

dz, = pdt + STdW,

where p and ¥ are functions of z; and W, is the multivariate Wiener pro-
cess. Regularity conditions implying the existence of a stationary markovian
solution (See Hansen and Scheinkman (1995) example 4.4) are assumed to
be satisfied and the infinitesimal generator is :

1
A(p) = ulyp + Etrﬁach

Oy and 0%y denoted the vector of partial derivatives and the matrix of second
order derivatives respectively. The set D, contains at least fonctions ¢ €
L% which dp and 9% are continuous. Let us assume that the coordinate
functions C,, : ¢ = (y1," -, ¥p, 21, "+, 2¢) — 2z (1 = 1,---,q) are square
integrable respectively to @ (the second order moments of the z; process
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exist). Then F; does not globally cause z; if and only if A(C.;) and A(C.,C,,)
are in L? (Vi,5 € {1,---,¢}).

This last example extends the analysis of non causality ”in mean” and
"in variance” introduced by Comte and Renault (1996).
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APPENDIX

Proof of theorem 2.3

We use the following notations :

e If M is a sub-o-field of A :
- [M] denotes the set of M-measurable numerical functions,

- [M], denotes the set of M-measurable and bounded numerical func-
tions,

- [M] denotes the set of numerical functions which are almost surely
equal to M-measurable functions.

A - (i) implies definition 3.2 because Z; C Z, using elementary properties
of conditional independence.

The implication ”definition 3.2 = (i)” may be obtained by a monotone
class argument, or by the following elementary application of the martingale
theorem :

Vt € B,Vf € [fs]b, E[flzoo Vgs] = tll’Ig)E(flzt Vgs)

= E[f|Gs] a.s.

The first equality is due to :

V(2 G,) =25V 6

£>0

and the second one to the conditional independence :

Zi 1L F|Gs.
The equality :

Vf € [Fs, ElfIZ0 \ Gs) = E(fIGs)  as.

is a characteriza on of ().
B - Definition 3.2 or (i) implies trivially (ii).
The reciprocal follows from a monotone class argument (see Dellacherie
and Meyer, 1980a, p.19) ; we want to prove the property :
Vi € [Zoolsy E(|Fs) = E(¥|Gs) a.s.

and we know that this property is true for the bounded functions depending
“on a finite number of coordinates only.
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The assumptions (22.1), (a) and (b), of Dellacherie and Meyer (1980a,
p.22) are trivially satisfied, which implies the result.

C - (iil) implies (i) by taking o fixed and equal to s.
Reciprocally let us start from :

ZooLLF|Gs.

which is equivalent to :

(*) (Zoo\/gs)—u-]:s‘gs
Let us consider ¢ € [Z.]s. We have to prove that :

E(e|F,) € [G,]
or equivalently that :
Vs, I{o < s}E(¢lF,) € [Go]-
As II{USS}EQUC}'-U)

o < s}E(p|F,) = E(H{o < s}pl|F;)
= E(1({o < s}o|F,).

This last equality follows from :

Vg € [fU](H Vp € [Zw]lh
E(gpl{o < s}) = E(g E(pI{o < s}|F5)).
= E(gl{o < s}E(¢|F;)) = E(g E(I{o < s}o|Fy)).

The first and second equalities define the conditional expectation w.r.t.
Fo or Fs, using :

gll{o < s} € [Fils

We also use the fact that : #{c < s} € [F,] (because o is a stopping time
adapted to G, C F,) and the property : I{oc < s} € [F,].
Finally, as [{c < s}y € [Ze V Gsps

E(I{o < s}p|,) € [Ga], using (*).

D - (iii) implies (iv) because :
V7,2, C 2,

and (iv) implies definition 3.2, by substituting fixed times to stopping
times. u
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Proof of theorem 2.4

i) Let ¢, be a (2Z;);-adapted and (G;)-martingale process. One has E(&|G;) =
&5 a.s. by the martingale property and E(&|G,) = E(é:|F;) a.s. by the non-
causality assumption. Then E(&|F;) =& a.s. and &, is a (F;),-martingale.

i) Let ¢ be an integrable Z.,-measurable random variable and let us
define & = E(€|2;). This process is a (Z;),-martingale and by assumption is
a (F;)i-martingale. It follows that :

Vs<t , B(E2) = B(&IZ.) =& = E(E|F) as.

As £; may be any integrable Z;-measurable random variable, the previous
equalities imply Z, 1L F|Z, for any s < t, which is equivalent to the non-
causality property. |

Proof of theorem 2.5

1) First let us note that the non-causality hypothesis implies V¢ € [0,1,],Vs <
t, 2o LLFV 2, |24, V Fs. This follows from Z,, LLF,; |2, and from elemen-
tary properties of conditional independence (see Florens, Mouchart, Rolin,
1990, chap. II).

Let n; be a 2, V Fi-martingale. Using this definition it follows that
E(n|2, V Fs) = ns as.. The previous conditional independence implies
E(n 2, VF,) = E(n| 200 V Fs) a.s. and then E(n;| 2. V Fs) = 75 a.s.

i) Let n be an integrable F, -measurable random variable and 7, =
E(n|2y, V F),t € [0,t0]. This process is a (Z,, V F;);-martingale and by
assumption becomes a (24, V F;);-martingale. Then :

Emi|Ziy VFs) = E(t| 20 V Fs) =15 aus.
In particular, if ¢t = to, we get :
E(n|24, VF) = E(n|Z26V Fs) as. V.
This equality is equivalent to :
ZollFi|Ziy VF, V0 < s <t

The previous conditional independence is satisfied for any s and ¢, and
then implies

ZollLF|Z vV Fy Vi
If moreover, Z., 1L Fo|Z;, we obtain

ZLLLF|Z, W,
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using the basic properties of conditional independence (see for example, Flo-
rens and Mouchart [1982], appendix).

Proof of corollary 2.6

We analyze the extension to local martingales of theorem 2.5 only. The
structure of the proof of theorem 2.6 is identical and the extension could be
done analogously.

Let us first consider the second part of theorem 2.4. If the assumption
is true for any local martingale, then it is true for martingales (because
martingales are local martingales) and the conclusion still applies. However
we have to take into account the regularity conditions which are prevalent
for local martingales. The introduction of such conditions does not change
the results for two reasons

1) The martingale considered in the proof is the family of conditional
expectation E(£|Z;) of an integrable random variable. Under the ”conditions
habituelles”, such a family may be chosen as verifying the cadlag condition
(see Protter [1990], chapter 1, section 2) and is uniformly integrable by the
martingale convergence theorem.

2) The conditional independence Z, LL F,|F; is equivalent to the condition
E(&|Fs) = E(&|25) as. for any cadlag process ¢ under the ”conditions
habituelles”.

Let us now examine the first part of the theorem. If ¢, is a (Z;);-adapted
(G:¢)¢-local martingale with respect to the sequence (o, ),>0 of stopping times,
we can reproduce the proof of theorem 2.4 i) using the theorem 2.3 iv), from
which the non-causality condition implies Zin,, LLFino,|Gsno,-

Proof of example I

Let N; = (N}, NE) = (Zns1 L1y < 1), (Xns1) H(12 < t)) be a bivariate
counting process where (T,’;)nzfis the increasing sequence of jump times of V.
The distribution of this process is described by the family of joint survivor
functions :

Sm.nz(t%’ St

2 2
nlatp' tn;)

1
ny?

2,2 2 2
Tibly s Tay > tnz),

= prob(r{ > t}, -7y >t
It is assumed that these joint survivor functions are continuously differ-
entiable and that these processes admit stochastic intensities. Let us denote
F, the filtration generated by the whole process N; and G, = Z; the one
generated by N} only. Now let h, and h} be the stochastic intensities of N}
with respect to F; and Z;, respectively.
The equivalence between the different concepts of non-causality follows
from the property : h, = A} a.s. implies that N? does not strongly globally
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cause N} (i.e. G LLF,|G,).
The proof may be decomposed in three steps :
1) Firstly, remark that it is sufficient to verify that :

QT711+1J_L.7:5|QS,\7’n,Vs T <s < T,L_l. (a)

Indeed, by an induction argument, (a) implies :

Goo LLF,|G, , Vs, (®)

Let us assume the property (a) is true. We want to show that :
g‘r}wp-LLFSIQS , Vp2=>1,Vs. (c)

By (a), (c) is true for p = 1 and we have :

LLF G (d)

1
Tntp+l n+p

g
because Tiﬂ, < Trll+p+1 and, in (a), the time s may be replaced by a stopping
time, using the same argument as in the proof of theorem 2.1 (iii). Moreover

(d) implies :

G‘r’l&p_’_l —l—l—fs!gr}&p\/gs (6)

because G, C gTrlt-{-p and F, C .77,'1‘”. Then, using the fundamental properties

of the conditional independence (see, e.g., Florens and Mouchart (1982),
theorem Al), (c) and (e) are jointly equivalent to

G, AL(F N G, )G (f)

which implies (c) for p + 1. Using a monotone class argument, (c) then
implies :

o0

\/ g7-711+p+1 —LLj:slgs ) Vs (g)
p=1
and (b) is demonstrated.
Intuitively, in this part of the proof, we have shown that the short-run
prediction property (a) is equivalent to the long-run prediction property (b).

ii) From the equality between the two Doob-Meyer decompositions of N}
given the two filtrations (G;); and (F;);, we deduce that the decomposition
with respect to a third filtration (G}),, verifying G, C G; C F;, Vt, is also
equal to the original decomposition. This result is an obvious consequence
of the definition of the compensator and of the property of unicity (see also
Bremaud (1981), section 114).
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In the sequel of the proof, G§ will be :

Vs <t, Gi=G \o{N0<u<s). (R)
iii) We now consider the three stochastic intensities ¢, h{ and A} with respect
to the three filtrations (%), (G;), (G:) and, by hypothesis, h; = A} which im-
plies A = hi(s < t) ((recall that the equalities between stochastic processes
are up to an evanescent process). We have :

: 0 c :
hi = —alog S’nyp(t,s|(7"i1 = t})izl,...,n,(Tf = t?)jﬂ’...yp) (z)
where T < s<t< o,
and T2 < s <t < Ty,
b = =2 log S2(t](r = )ict,n) ()
t ot n 1 i J1=1,n
where Th <t < Ty
Then :
t
/ Rdu= [ hidu (k)

which implies :

or equivalently :

P(r, <t|(r! = t}),-zl'...,n,r,hl > s, (7'j2 = tf)jzl,...,p,Tsz > )

= P(7opy ST = 1)izt,ms Ty > 8). (m)

Then :
J(T,}+1)J_Lfs|gs, Vs:r} <s< 'r,lﬂ_1 (n)

and :-
i, LLFlGs, Vs T <5< Top (0)
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because gr},ﬂ =G,V o(7a,y) (see Karr (1986), section 2.1).
Then using the first part of the proof, the demonstration is complete W

Proof of example II1
e Proof of property 1 : Non causality assumption is defined by

B(p(z)IF) = E(p(z)|2)  as.

and Markovian hypothesis implies :

E(p(z)|Fs) = E(o(z)|Xs)  as.

Then, using measurable separability, E(¢(z:)|F;) is a.s. equal to a func-
tion ¥(z,). From homogeneity assumption we get :

E(e(zu)lzo =€) =9(¢) as. e k", (e R
and then T, () € L? where ¢ € L2,

Reciprocally, the property T, (@) € L? implies that E(p(z)|X;) is a.s.
equal to a function ¥(z,). Moreover, the Markovian property implies that :

E(p(2)|Fs) = Elp(z)|X,) a.s.

Then E(p(2;)|Fs) is a.s. equal to 9¥(z,) and so is Z,-measurable, which
defines the non-causality.

e Property 2 is proved by repeating the previous argument for any ¢ € L.

e Property 3 is essentially based on the relation between the semimartin-
gale decomposition and the infinitesimal generator. This relation is consid-
ered in Revuz and Yor (1991, chap. VII, prop. 1.6) which implies that if
@ € D,, the predictable component of ¢(z) is equal to :

H; = /Ot P(zs)ds

where ¢ = A(p).
e Property 4 follows from the same argument than property 3.
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