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Abstract - The areal interpolation problem is that of projecting a characteristic 
of interest on a partition of space called target partition from the knowledge of 
the same characteristic on a different partition, so called source partition, using 
some auxiliary information. The objective of this paper is to use a demographic 
database available in the R package ‘US census 2010’ (Almquist, 2010) in or-
der to test several areal interpolation methods based on regression in the case 
of count related data. The fact that data is available at many different spatial 
scales in this database make this comparison study unique. Another innovative 
point of view is that we compare the extensive approach versus the intensive 
approach for a variable which is a ratio of counts. We also include the compar-
ison with the scaled regression for the extensive case introduced in Do et al. 
(2015) and with a scaled regression for the intensive case proposed here. Final-
ly we give some empirical guidelines for the choice of auxiliary information. 
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1.  INTRODUCTION  

The areal interpolation problem often arises in the analysis of socio-
economic data involving the combination of several databases originating from 
different administrative sources. It is the problem of transferring a given varia-
ble called target variable known on an initial partition of space into source 
zones to another partition of the same space into target zones. Do et al. (2014) 
review these statistical spatial allocation rules concentrating on the simplest 
ones. Do et al. (2015) analyze the accuracy of these methods in the case of 
count data. For a set of random points in a region of space, a count variable is 
defined by the numbers of these points in given subdivisions of this region. 
Demographic data are of this nature since they are counts of different types of 
people in different subdivisions of space. A related type of variable is a density 
variable: number of points per areal unit associated to a set of random points in 
space. A count variable is said extensive when its value on a region is obtained 
by summing up its values on any partition into subregions. A density variable is 
said intensive in the sense that its value on a region is obtained from values on 
any partition into subregions by a weighted sum (see Do et al. 2014 for more 
details). In the case of population density, the weights are given by the areas of 
the subregions of the partition. A more general case of count related variable 
that we will consider is a ratio of two count variables which turns out to be in-
tensive.

The aim of this paper is to derive some empirical guidelines of application 
for several areal interpolation methods and confront the empirical evidence with 
some theoretical results of Do et al. (2015) using the demographic database ‘US 
census 2010’ (Almquist, 2010) available in an R package. We concentrate on 
count related data and focus particularly on the following points. The data is 
presented in section 2. We recall the main methods in section 3. In section 4.1 
we give some directives for the selection of a good auxiliary variable when 
there is a choice. In section 4.2 we compare the accuracy of the regression 
methods. The regression methods developed for the extensive case are different 
from the ones adapted to the intensive case. Since it is easy to transform an 
extensive variable into a corresponding intensive one and reversely, we explore 
in section 4.3 the question of whether it is best to use the extensive-type or in-
tensive-type regression method. Finally we investigate in section 4.4 the effect 
of the spatial scale. 

2.  DATA 

The UScensus2000 database contains data from the US decennial census at 
several different geographic levels (in particular: states, counties, tracts, block 
groups and blocks). The package contains functions for aggregating the demo-
graphic information at any of these levels. It is therefore highly adapted to test 
areal interpolation techniques. Since all considered variables are available at all 
geographical levels, we will be able to assess the accuracy of the considered 
interpolation methods based on the true target values on the selected target 
zones.



                                                      Région et Développement       85 

Following Almquist (2010), we choose to work with the target variable cor-
responding to the number of house owners in a given zone for the extensive 
case. We also select a corresponding intensive variable which is the percentage 
of house owners, the weights being given by the number of households in the 
given zone. As potential auxiliary information, we use the covariates presented 
in Almquist (2010) which are the number (resp: percentage) of non hispanic 
white, of non hispanic black, of non hispanic asian, of hispanic, of married 
households with children in the population. The first four percentages are with 
respect to the population whereas the last one is with respect to the number of 
households. As far as spatial scale is concerned, we decide to use three different 
scenarios in the state of Ohio. The first scenario is the disaggregation of the 
target variable from county level (source) to tract level (target) for the whole of 
the state of Ohio. Ohio has 88 counties and 2941 tracts so that on average one 
county contains 33 tracts. The second and third scenario use the county of 
Franklin as the whole region. Franklin counts 284 tracts, 887 block groups and 
22826 blocks. The second scenario is the disaggregation of the target variable 
from tracts (source) to block groups (targets) in the county of Franklin. In this 
case, one track contains on average 3 block groups. The third scenario is the 
disaggregation of the target variable from tracts (source) to blocks (targets) and 
in that case one tract contains on average 80 blocks. A particular feature of 
these scenarios is that in all cases the target zones are nested within the source 
zones.

We first perform some exploratory analysis of the variables at source and at 
target levels. At the county level (source) for the whole Ohio, all extensive vari-
ables are strongly positively correlated whereas the corresponding intensive 
variables are much less correlated and display some negative correlations. For 
example the percentage of white is negatively strongly correlated with the per-
centage of black (-0.97) but the percentage of hispanic has no clear linear rela-
tionship with other intensive variables. At the tract level (source) on Franklin 
county, the correlations are smaller. More precisely, the number of house own-
ers is still strongly positively correlated with population, number of households, 
number of whites and married households with children, but not clearly corre-
lated with number of blacks, number of asians and hispanic. For corresponding 
intensive variables, correlations are smaller than 0.4 except for percentage of 
white and percentage of blacks which are strongly negatively correlated (-0.97). 
On Franklin, correlations at tract level are very similar to correlations at block 
group level (target). 

3.  METHODS 

Let us first briefly summarize the methods we will compare. For more de-
tails about these methods, we refer the reader to Do et al. (2014). We focus on 
the family of simple regression methods which include as a special case the 
dasymetric methods (see Do et al., 2015). 

The value of the target variable Y on a given subzone A is denoted by YA and 
similarly for other variables. For the source zones Ss ; s = 1,..., S as well as for 
the target zones Tt ; t = 1,..., T the notations Ss and  will be used instead to 
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designate a generic source and a generic target. Because of the nested nature of 
our case here, the intersections between sources and targets coincide with tar-
gets.

As shown in Do et al. (2014), the correspondence between intensive and ex-
tensive is as follows. It is possible to associate an intensive variable to a given 
extensive variable by the following scheme. If Y is extensive, and if wA is a 
weighting scheme of the form  
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Reversely, if one starts from an intensive variable Y with weighting scheme 
wA of the form (1), it can be transformed into an extensive variable by inverting 
equation (2). In our case, YA is the number of house owners in subregion A and 

AY  is the percentage of house owners in subregion A while ZA is the number of 
households of subregion A.

Given one auxiliary information X, the general dasymetric method predicts 
the value of Yt for t s as

ˆ .D t
t s

s

XY Y
X

 (3) 

The formula is the same for intensive and extensive variables but one uses 
an auxiliary information of the same nature (intensive/extensive) as the target 
variable. Note that when the auxiliary information is simply the area of the 
zone, the method is called areal weighting interpolation and it is rather meant 
for an extensive variable. Note also that areal weighting interpolation applied to 
an intensive variable is actually equivalent to the dasymetric method applied to 
the corresponding extensive variable with auxiliary variable being given by its 
weights.

For regression methods, the type of regression will differ according to the in-
tensive/extensive nature of the variable. For an intensive variable, a gaussian 
linear regression is used (Flowerdew and Green, 1992) whereas for an extensive 
variable, one uses rather a Poisson regression (Flowerdew and Green, 1989). As 
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for dasymetric, one uses auxiliary information of the same nature (inten-
sive/extensive) as the target variable. 

Let us briefly recall the steps of Poisson regression for an extensive target 
variable. The distributional assumption is that the mean of Y depends linearly 
on a set of auxiliary variables Xi , i=1,2,...,p known at target level: 

 (4) 

A regression of the set of source values based on model (4) is performed at 
source level yielding estimates ˆi  and used at target level to predict the target 
values by  

 (5) 

For the intensive target variable case, the distributional assumption, as pre-
sented in Flowerdew and Green (1992), is that  

 (6) 

where nA are known and represent the number of underlying points in A. It is 
thus an intensive variable for which the weights at target level are given by 

:
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. Based on model (6) and on these aggregation weights for Y, one 

gets the following regression equation at source level

1 1( ,..., ) ' ( ,..., ) 'n pY Y WX  (7) 

where W is the S T matrix with elements :t t sw  and X is the matrix with ele-
ments tjx  being the values of auxiliary variable j on target t. The estimation of 
this model yields estimates ˆi  used to predict the target values by  

1 1
ˆ ˆ ˆ ˆ( ,..., ) ' ( ,..., ) '

T

REG REG
t t pY Y X  (8) 

Do et al. (2015) introduce a so called scaled regression by constraining the 
Poisson regression to enforce the often quoted pycnophylactic property. It is the 
property of preservation of the initial data in the following sense: the predicted 
value on source Ss obtained by aggregating the predicted values on intersections 
with Ss coincides with the observed value on Ss:

:
t̂ s

t t s
Y Y

For the Poisson regression, we get the following correction of the regression 
predictor, for t s :
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where ˆ REG
sY  is simply given by the aggregation rule ˆ ˆREG REG

s t
t s

Y Y . We 

propose here to do the same for gaussian regression of intensive variables by 
using the empirical conditional expectation of Yt given the source values, i.e. for 
t s

1 2
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t t s t s sY Y Y Y Y Y Y Y , (10) 

where ˆ REG
tY  and ˆ REG

sY  are the fitted values for Yt and Ys respectively and where 
ˆ REG
sY  is simply given by the aggregation rule   ˆ ˆREG REG

s t t
t s

Y w Y .

A very important point for the sequel, which is shown in Do et al. (2015), is 
that the dasymetric method with a given auxiliary information is equivalent to 
the scaled Poisson regression with this auxiliary variable as unique regressor 
without a constant . 

Another approach for this problem is to use an EM-algorithm strategy as 
done in Flowerdew and Green (1991) for the Poisson case and in Flowerdew 
and Green (1992) for the Gaussian case. Indeed the areal interpolation can be 
considered as a missing data problem with target values as missing data. We 
can summarize the steps as follows: the expectation step (E-step) is either (9) or 
(10) and yield values for the targets and the maximization step is the regression 
at target level based on models (4) or (6). 

4. RESULTS 

Table 1 summarizes the notations used for presenting the results. To illus-
trate the meaning of this table, let us take two examples. The indices have two 
or three positions: for example “Dhh” or “I.Dhh”. When necessary, an addition-
al index in position one will indicate either the intensive/extensive nature or the 
spatial support depending upon background. 

In positions 2 and 3 (potentially after the dot), an index “Dhh” means that 
we are using the dasymetric method (D) with the auxiliary information percent-
age of households (hh). An index “I.Dhh” specifies moreover that it is for the 
intensive target variable (percentage of house owner). 

In positions 2 and 3, an index “Ebe” means that we are using the regression 
method with the EM algorithm (E) for the best model choice (be) (independent 
variables are chosen by AIC criteria). An index “B.Ebe” specifies moreover that 
it is for the with blocks as target zones. 
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Table 1. Notations 

Meaning Notation 
Index

Position

Dependent Intensive I. 1 
Variables Extensive E.  

Spatial Block B. 1 
support Block group Bg.  

 Dasymetric D  
Methods Regression R 2 

 Scaled regression S  
 EM E  

 number/percentage of white w  
 number/percentage of black b  

Independent number/percentage of asian a  
variables number/percentage of hispanic h 3 

 number/percentage of married with children m  
 Population p  
 Households hh  
 Area aa  
 full (all variables) f  
 best variable choice be  

At source level, the criterion for evaluating the quality of methods is the 
relative error of prediction                       

2ˆ( )t t
t s

s
s

Y Y
e

Y
.

4.1. Auxiliary information selection 

The choice of a good auxiliary information is an important question for areal 
interpolation in practice. First of all, it is unclear whether a choice of variables 
which is good for the regression step will be the best for predicting target val-
ues. On the other hand, it it difficult to devise a prediction-targeted criterion 
adapted to this situation: indeed, one does not observe any target value hence it 
is not straightforward to extend cross-validation to this case. By lack of a better 
alternative, we have chosen to use a variable choice strategy based on the AIC 
criterion. Note this selection has been performed using the R package MASS for 
gaussian regression and the R package glmulti for Poisson regression. 
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Table 2. Performance of the dasymetric method  
for each auxiliary information 

Methods Dw Dm Dp Dhh Dh Daa Da Db 
error 2.76 3.10 3.14 3.75 14.97 21.95 22.87 31.31 

correlation 0.99 0.99 1 1 0.88 0.02 0.93 0.95 

We compare several dasymetric methods obtained by using the different 
auxiliary information at our disposal using scenario 1 (Ohio) for the extensive 
case. Table 2 displays the corresponding median error criterions showing that it 
is very important to select the best auxiliary information since the relative error 
can vary from around 3 percent to 30 percent. The second row displays the cor-
relations and the non monotonicity of these numbers shows that one should not 
trust correlation to select an auxiliary information. Figure 1 presents the box-
plots of the source errors for the best dasymetric (here: based on the number of 
whites), the worst dasymetric (here: the number of blacks) and an intermediate 
case corresponding to areal weighting interpolation. We see that not only the 
best choice outperforms the other ones by far but also that the variability ac-
cross sources is quite high for these choices. 

Figure 1. Dasymetric methods for Ohio - extensive approach 

4.2. Comparison between different regression methods 

In this section, we focus on comparing the different methods using scenario 
1 (Ohio) for the extensive case. The implementation of the Poisson regression 
approach presents some peculiarities. The first one is about the choice of link 
function. The usual choice for Poisson regression is the logarithm link leading 

to
1

E( ) exp( )
p

i i
i

Y X and it is the so called natural link in this generalized 

linear model. However we argue in Do et al. (2015) that the identity link is 
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more adapted when relating such extensive variables to auxiliary extensive var-
iables. For example, it seems more natural that the number of house owners is 
proportional to the population rather than to be exponentially related to the 
population. Moreover, empirically, the AIC criterion is 1000 times bigger for 
the log link specification. 

The second one is about the constant term. With the identity link, it does not 
make sense to include a constant in such a model because a constant is not an 
extensive variable. 

Figure 2 presents the boxplots of the counties error criterions for the state of 
Ohio and for the Poisson regression performed on the number of house owners.
Table 3 presents the corresponding median error criterions. 

Figure 2. Poisson regression methods for Ohio - extensive approach 

Table 3. Median error criterions - Poisson regressions for Ohio 

Sbe Ebe Sf Ef Rbe Rf 
3.069 3.069 3.193 3.196 3.482 3.594 

The order of magnitude of the errors is around 3 percent and they are very 
comparable. The selection of variables strategy selects the model without the 
variables married household with children and area but it seems that keeping a 
full model does not make a big difference. We see that the scaled regression 
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tends to perform better in general, and even better than the EM approach. How-
ever, it turns out that the best of the regression methods gets a 3.069 error crite-
rion and does not outperform the best dasymetric obtained in the previous sec-
tion with a 2.764 error criterion.  

4.3. Intensive versus extensive approach 

For the purpose of interpolating the target variable number of house owners,
we have the choice between two strategies. The first one is to work on the raw 
variable which is extensive and use a Poisson regression approach. The second 
one is to work on the percentage of house owners, use a gaussian regression 
approach and transform back the predicted percentages into counts using the 
knowledge of population on targets if known. In a different situation when this 
knowledge is not guaranteed, a more complex method is available which dis-
aggregates separately numerator and denominator of this percentage using ex-
tensive variables methods. In this section we compare the first two approaches 
only, the last one giving results very similar to the second one in our case. We 
use scenarios 1 and 2. For Ohio in scenario 1, Figure 3 shows that the best 
method is the dasymetric method with auxiliary information given by the num-
ber of whites applied to the count target variable number of house owners. For 
Franklin in scenario 2, the right panel of Figure 6 shows again that the best re-
sult is obtained when working with the count variable rather than the percentage 
and it is obtained by the regression on the best subset of auxiliary variables. We 
also see that scaled gaussian regression that we introduced in section 3 is the 
second best.

Figure 3. Best methods for Ohio - intensive and extensive approaches 
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4.4. Spatial scale 

In this section, we examine the effect of spatial scale on the areal interpola-
tion problem. For this we compare scenarios 2 and 3 on the county of Franklin. 
Figure 4 (respectively Figure 5) presents the distributions across sources of the 
error criterion in the case of disaggregation of the extensive variable number of 
house owners (respectively of the intensive variable percentage of house own-
ers) at block level and at block group level. Tables 4 and 5 display the corre-
sponding median error criterions. 

Figure 4. Methods for the extensive case for Franklin 

Table 4. Performance of the methods in the extensive case 

B.Sf B.Dw Bg.Sb Bg.Sf B.Sb Bg.Dw B.Rf B.Rb Bg.Rf Bg.Sb 
8.884 8.962 8.964 9.041 9.097 10.041 10.178 10.246 17.808 17.969 

For the extensive case, the best model strategy selects the model without the 
variables number of blacks and area. For the intensive case, the best model is 
the full model. 

We note that the best accuracy for Franklin is around 10% whereas it is 
around 3% for Ohio. The two situations are difficult to compare because even 
though the number of targets per source is 33 for Ohio and is between 3 for 
scenario 2 on Franklin and 80 for scenario 3 on Franklin, on the other hand, 
there are larger numbers of house owners on the sources of Ohio than the 
sources of Franklin and the sizes of sources and targets are different. 

When we compare scenarios 2 and 3 on Figure 6, we see that disaggregation 
to blocks is more accurate than to blockgroups. Even though the second prob-
lem seems easier because the blockgroups are coarser than blocks, one should 
not forget that the auxiliary information is used at target level resulting in a 
larger amount of information used for blocks. The medians of source error crite-
rions at block level are thus slightly smaller and the variances are much smaller. 
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Figure 5. Methods for the intensive case for Franklin 

Table 5. Performance of the methods in the intensive case 

Bg.Sf B.Dw B.Sf Bg.Dw B.Rf Bg.Rf 
8.993 10.24 10.684 11.102 11.761 17.013 

Figure 6. Comparison of block (left) and blockgroup (right)
levels for Franklin intensive and extensive variables 

Finally, it turns out that the scaled regression methods always outperform the 
unscaled ones and that the improvement is stronger at block group level than at 
block level because the information is poorer at block group level. Indeed be-
fore scaling the regression methods at block group level were much worse than 
at block level and the scaling almost wipes off this difference.  
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5. CONCLUSION 

We should keep in mind that this study has a particular geometry due to the 
nesting of targets into sources. In a more general case, some border effects will 
interplay but we believe that, as long as the size of targets is much smaller than 
the size of sources (disaggregation), the results should not be very different. 

We would like to emphasize the three main conclusions of this study. About 
the choice of auxiliary variable for the dasymetric method we have seen that the 
performance can vary wildly from one choice to another so this choice is cru-
cial. The second one is that sometimes dasymetric can be better than scaled 
regression which means that it might be more important to select one good aux-
iliary information rather than throwing a lot of weakly related variables in the 
regression. The last one is that scaled regression is very close to the EM algo-
rithm (and much simpler) and often even better.  
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COMPARAISON DES MÉTHODES DE RÉAFFECTATION SPATIALE 
DE DONNÉES SURFACIQUES SUR LA BASE DES DONNÉES DU   
RECENSEMENT DE POPULATION DE 2010 AUX ETATS-UNIS  

Résumé - Le problème d’interpolation spatiale de données surfaciques est celui 
de la réaffectation d’une caractéristique sur une partition cible de l’espace à 
partir de la connaissance de cette même caractéristique sur une autre partition 
appelée source en utilisant de l’information auxiliaire. L’objectif de ce travail 
est d’utiliser une base de données démographiques ‘US census 2010’ disponible 
dans le package de R (Almquist, 2010) dans le but de tester plusieurs méthodes 
basées sur la régression dans le cas de données liées à des comptages. Le fait 
que les données de cette base soient disponibles à différentes échelles spatiales 
fait l’originalité et l’intérêt de cette comparaison. Un autre apport original de 
notre démarche est la comparaison entre l’approche extensive et l’approche 
intensive pour une variable qui est un rapport de deux variables de comptage. 
Nous incluons également dans la comparaison la version normalisée de la ré-
gression dans le cas extensif introduit dans Do et al. (2015) et avec la version 
normalisée de la régression dans le cas intensif proposée ici. Finalement nous 
formulons quelques conseils pour choisir des variables auxiliaires.  

Mots-clés - INTERPOLATION DE DONNÉES SURFACIQUES, PROPRIÉTÉ 
PYCNOPHYLACTIQUE, DÉSAGRÉGATION SPATIALE 


