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Abstract

Consider a population of customers uniformly spread over the entire plane, that faces a problem
of locating facilities to be used as delivery places by these customers. The cost of every facility is
�nanced by its users only, who, in addition, face an idiosyncratic private access (say transporation)
cost to the facility. We assume that the facilities' cost is independent of location and access costs
are linear with respect to the Euclidean distance. We show that that an external intervention
that covers 0.19% of the facility cost is su�cient to guarantee the existence of subsidy free prices
i.e. prices immuned to cross-subsidization : no group of customers is charged more than its stand
alone cost ( the cost incurred if it acts on its own). Moreover, we demonstrate that under this
minimal external intervention, only Rawlsian prices survive the cross subsidization test.
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1 Introduction

When citizens using a public facility (e.g. a hospital, a library or a post-o�ce) face, in addition

to their contribution to the �xed costs of the facility, an idiosyncratic private access cost (e.g.

transportation) two questions arise:

How does one characterize the optimal number and "locations" of the facilities?

Should the prices respond, ceteris paribus, to the di�erences in private cost?

In this paper, we consider a population that consists of a continuum of citizens uniformly distributed

over the entire two dimensional Euclidean space <21. Facilities can be located anywhere in <2 at

a cost independent of location. All citizens face common private access costs proportional to the

Euclidean distance to the chosen facility.

The characterization of e�cient partitions in this geometric setting is a well documented problem

in mathematics2. There is a uniquely determined optimal "density" of facilities, each serving a

connected subset of citizens (called hereafter jurisdiction) of the \optimal" size. The qualitative

result (re)discovered3 by many authors states precisely that there is a unique \shape" of e�cient

partitions which consists of identical regular hexagons. In fact, the optimality of the hexagonal

structure has been proved by Fejes Toth (1953) and independently by several authors, including

Haimovich and Magnanti (1988), whereas in economic geography the optimality of hexagons has

been known since, at least, the 1930's, due to the classic work of Christaller (1933) and L�osch

(1954). Obviously, in our framework the size of regular hexagons in an e�cient partition depends on

the value of facility costs.

The pricing issue has not received as much attention. Di�erent approaches can be considered

depending upon the objectives pursued by the entreprise supporting the cost attached to the e�cient

solution that we have just described. If that �rm is a private monopoly charging prices in order to

1In this paper we adopt the spatial interpretation of the horizontal di�erentiation setting.
2The regular hexagonal structure arises in others packing and partionning problems. The hexagonal honeycomb

conjecture asserts that regular hexagons provide the least perimeter way to partition the all plane into unit areas. It
has been proved recently by Hales (2001) (see also Hales (2000) and Morgan (2005) for beautiful accounts). Thue
((1892)(1910)) has proved that the densest packing of unit disks in the plane is obtained when we inscribe a disk in
each hexagon in the regular heexagonal tiling of the plane

3A recent nice proof is due to Morgan and Bolton (2002).
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maximize its bene�t, then we obtain pricing functions which depend upon the quantity of the good

consumed by the customer and his location with respect to the nearest facility. In the case where

there is a single facility (the mill), the nature of the optimal pricing function has been investigated by

several authors. Among other things, they have examined what circumstances lead the monopolist to

a policy of F.O.B. mill selling (the shipping cost from the mill is paid by the customer) or instead a

policy involving partial or total freight absoption (freight-absorption pricing) like for instance uniform

delivery pricing. Smithies (1941) assumes for instance that "The monopolist will not charge delivered

prices at any two points, such that the price charged at the point further from his mill is greater

than that charged at the nearer point by more that the cost of transporting a unit of the commodity

from one point to the other"4. Under this assumption and the linearity of the transportation cost,

he demonstrates that the monopolist will sell F.O.B. mill if the logarithmic demand curve is linear

or concave and will absorb freight if the logarithmic demand curve is convex. F.O.B. pricing is

probably considered by most antitrust economists as the desired (truly competitive) spatial pricing

technique. This point of view is challenged by Greenhut and Greenhut (1977) who demonstrate

that the class of local demand functions generating linear delivered price schedules by spatial sellers

is a narrow class. In location theory, discussion of spatial price policies chosen by a monopoly is

often limited to three particular pricing methods : F.O.B. (uniform mill pricing), uniformed delived

pricing, and discriminatory local pricing5. Spulber (1981) examines the structure of the optimal

nonlinear outlay schedule at the mill through quantity discounts or premia and quantity bundling.

He derives some features of this nonlinear policy under the speci�c assumption of constant marginal

cost of production but general assumptions on the transportation technology and the population

density otherwise. This nonlinear mill pricing is compared to local price discrimination. He shows

that the relative levels of total output and pro�ts and consumer welfare under these pricing policies

depend crucially upon the spatial distribution of consumers : pro�ts, output, and consumer welfare

under nonlinear pricing are greater than, equal to, or less than pro�ts, output, and consumer welfare

under local price discrimination if consumer density decreases, remains constant, or increases with

4This importance of this condition was rediscovered by Le Breton and Weber (2003) where it is named principle of
partial equalization.

5See for instance Beckmann (1968)(1976).
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increasing distances from the mill. To the best of our knowledge, the optimal pricing policy when it

is technologically optimal for the �rm to open more than one mill has not been investigated.

When the �rm is a public regulated �rm or utility, the derivation of the pricing policy follows

a di�erent road as the objectives are typically di�erent from pro�t maximization. One standard

approach in the theory of regulation and public utility pricing is the derivation of Ramsey-Boiteux

prices. These prices are derived from the maximization of a social objective (typically a weighted

sum of the consumer surplus and the pro�t of the �rm). Of course, when the utility is constrained

to balance its budget, only the consumer surplus matters. Another approach, popular in the theory

of regulation and public utility pricing6, consists in imposing to the prices to be subsidy-free or

equivalently immuned to cross-subsidization. On one hand, the total cost of the utility must be

covered by the prices : no external subsidy should be considered to take care of a de�cit and no

pro�t should be made at the expense of consumers. On the other hand, the prices must be such that

no group of customers is charged more than the cheapest cost of serving their demands when the other

customers do not have any demand. This notion of subsidy-free prices which can be applied equally

to group of commodities instead of group of customers has been pionnered by Faulhaber (1975)7 and

is now a cornerstone in the theory and practice of public enterprise pricing8. Given a population

of consumers N = f1; 2; :::; ng, a list of products or services M = f1; 2; :::;mg, a multiproduct cost

function C(Q1; Q2; :::; Qm) and a pro�le of demand functions
�
Q1(p); Q2(p); :::; Qn(p)

�
, the price

vector p 2 <m+ is commodity subsidy-free if :

pQ(p) = C(Q(p)) and pSQS(p) � C(QS(p); 0NnS) for all S �M

where pS , QS denote the restriction of the price and quantity vectors to the set of commodities

6See for instance, Baumol, Panzar and Willig (1988), Brown and Sibley (1986), Ralph (1992), Rosenbaum (1997),
Sharkey (1982b) and Zajac (1978).

7See also Faulhaber (1979)(2005).
8See Ralph (1992) for an historical account. He reports that Baumol was the very �rst one to propose informally

in 1970 this notion of subsidy free prices as witness in a trial. The conditions known then under the name of the
"burden test" were analysed by Zajac and others at Bell labs. In 1972, they discovered that the burden test could be
impossible to satisfy alongside a zero pro�t constraint and that Ramsey prices need not be subsidy free. Many notable
economists expressed strong surprise that these things could happen. This stimulated Faulhaber who began to think
about these issues and realize the relevance of cooperative game theory and in particular the core solution. Faulhaber
(1975) nonexistence example stimulated a vast body of literature culminating in Baumol, Panzar and Willig 's famous
book (1988) on contestatble markets.
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in S. Similarly, the price vector p 2 <m+ is consumer subsidy-free if :

pQ(p) = C(Q(p)) and pQS(p) � C(QS(p)) for all S � N

where QS(p) �
P
i2S Q

i(p). In many environments like the spatial environment considered in

this paper there is almost a one to one correspondence between the sets M and N : the same

"physical" service provided to two customers located in di�erent areas of the territory correspond

to two di�erent commodities. In such case, the vector of commodity prices accounts for the cost

of production together with the cost of delivery. In general, the two notions are di�erent and the

relationship between the two set of prices depends critically upon the actual pattern of individual

demands. A more restrictive approach that does not depend upon observing customer demands is

to require that any conceivable set of consumer demands vectors generates no greater than its stand

alone costs. Formally, the price vector p is anonymously equitable if :

pQ(p) = C(Q(p)) and pq � C(q) for all q � Q(p)

If p is anonymously equitable, then it is consumer and commodity subsidy free but the converse

does not need to be true as illustrated by a counterexample developed in Faulhaber and Levinson

(1981). They derive su�cient conditions on the cost function C for the equivalence to be true.

There is also no guarantee at all that subsidy free prices and a fortiori anonymously equitable prices

exist9. Existence is an intricate issue and several su�cient and (or) necessary conditions on the cost

function. In a way or another, the cost function must exhibit some form of increasing returns to scale

but subadditivity which is the weakest conceivable form of such property is not enough for existence10.

If C is sustainable (Baumol, Bailey and Willig (1977) then anonymous equitable prices exist and if

anonymous equitable prices exist, then C is supportable and subhomogeneous (Sharkey and Telser

(1978)). Moreover, when the set of anonymous equitable prices is nonempty, it is not necessary

the case that Boiteux-Ramsey prices are anonymously equitable. Baumol, Bailey and Willig (1977)

9The list of inequalities involves any possible group S of customers or products. When it is applied to a single
individual i or a single product j, we obtain an upper bound on the price (the stand alone cost) and (using the fact
that the budget is balanced) a lower bound (the incremental cost). Often, the assessment of cross subsidy is limited to
this subset of inequalities.
10For a careful and detailed presentation of the properties of cost functions and their implications for public utility

pricing, we refer the reader to Sharkey (1982a).
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have shown that if C is subhomogeneous and transray convex, then Boiteux-Ramsey prices are

anonymously equitable. Finally, using an early result of Panzar and Willig (1977), Faulhaber and

Levinson (1981) have shown that if C satis�es general cost complementarity and if demands are

independent, then anonymously equitable prices exist11.

Why should we be interested in subsidy free prices ? This requirement acting as a constraint on

the pricing policy may reect a principle of customer equity (Willig (1979)) : no customer or group of

customers should subsidy the consumption of other customer. The issues of cross subsidization play

an important role in the modern regulatory practices as applied to sectors and industries including

electricity and natural gas distribution, telecommunications12, railways, water and sewerages services

to cite a few. The methods which were used before the modern de�nition of Faulhaber, on top of

which the fully distributed cost method (FDC), were exposed to many criticisms13 and the method of

Faulhaber is now commonly used14. Besides equity considerations, the concern for subsidy free prices

arises as soon as we assume that production can be realized by outide �rms. If all potential producers

have access to the same technology as the multiproduct �rm (utility), the problem of �nding subsidy

free prices becomes the problem of �nding prices that will prevent entry by a competitive producer.

This establishes the strong connection between this issue and the vast literature on contestable

markets15. Finally, in the context of public facilities, where the service provided displays the features

of a pure public good, the concern for subsidy free prices may simply describe the constraint of

voluntary participation or secession-proofness : no coalition of citizens should receive incentives to

cultivate secession feelings and decide to provide the good by itself if it is not socially e�cient to do

so. In any setting where citizens or groups of citizens cannot be forced to participate to a collective

11See also Calum (2003) and Jamison (1996).
12See Kaserman and Mayo (1994) and Kaserman, Mayo and Flynn (1990).
13See for instance Bonbright (1961) and Braueutigan (1980). These methods were also rejected by regulatory bodies.

For instance, Bonbright quotes that "..the Illinois Commerce Commission refused to order the Commonwealth Edison
Company of Chicago to make a fully distributed cost study in support of a proposed rate increase, because there were
at least "twenty-nine rival formulas for the allocation of capacity costs alone", formulas each of which had received
some profesional sponsorship".
14Among the many government authorities which use that approach we could cite the US Interstate Commerce

Commission, the US Justice department, and the Australian Federal department of Transport and Communications. A
recent study of the cost and tari� structures of Scottish Water (the utility incharge of water and sewerage services for
the 2.3. millions customers of Scotland) for the Scottish executive illustrates remarquably this methodology. Household
water customers receive a subsidy from non-household customers : it results in households paying $44m a year less for
water supply services than it costs to provide them with these services.
15See for instance Mirman, Tauman and Zang (1985).
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arrangement that they would not accept, such concern arises naturally16.

Our paper is at the intersection of the two literatures described above. We examine the existence

and the nature of subsidy free prices in an environment where customers are di�erentiated on a spatial

basis. In contrast to the above literature, the cost function is not given a priori. Instead, it has to

be constructed from some basic primitives : the transportation technology and the cost of opening

and operating a facility in a given location. In this spatial framework, the multiproduct character

follows from the fact that the product has to be delivered and therefore two di�erent locations

generate di�erent idiosycratic costs. This results in our problem beeing far more complicated than

the single mill situation assumed by spatial economists. On the other hand, we will here ignore the

di�culties arising on the demand side by assuming that all the demands are inelastic and unitary.

It is of course a simplifying assumption that allows us to focus on the supply side17. Under that

assumption, the �rst challenge is therefore to determine C(1; 1; :::::::; 1) and C(1S ; 0NnS) for any

coalition S of customers. as already reported, this follows from the literature on the partioning in

regular hexagons. The main contribution of the paper lies in the exploration of the set of subsidy

free prices.

In the one dimensional setting (customers located on a line), Haimanko, Le Breton and Weber

(2004) have shown that subsidy free prices always exist. In our two dimensional setting, the situation

is quite di�erent. The characterization of e�cient partitions allows us to derive the �rst result of this

paper that demonstrates that the set of subsidy free prices is empty. This simply means that it is

impossible to allocate facilities' cost in an e�cient partition in a way to prevent cross subsidization.

The reason for this nonexistence result is based on the simple observation that the optimal shape of

a jurisdiction that minimizes its per capita monetary burden is actually a disk and not a hexagon.

Thus, for any e�cient partition one can �nd a circle-shaped jurisdiction that guarantees its members

a lower average contribution. Intuitively, as soon as a large enough fraction � of the total cost is

�nanced by an external source (in violation to the requirement of budget balancedness), we remove

the di�culty. The severity of the violation depends of course on how large � must be to rescue the

16See for instance Alesina and Spolaore (1997) and Le Breton and Weber (2003).
17Of course, when demands are responsive to prices a di�erent (equilibrium) analysis must be conducted. In the

context of cooperative games, we must move from cost games to welfare games (Sharkey (1982a)).
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rest of the inequalities. Any set of subsidy free prices for which a fraction � of the total cost has been

�nanced extrnally is named hereafter �-subsidy free prices. For which values of �, do �-subsidy free

prices exist ? Ideally, we would like � = 0 but we just mention that it does not work. Surprisingly, we

show here that this number can be made very small. To explain how small it can be18, we de�ne the

gap between e�ciency and optimality as the following expression �� = 1� K(B)
K(H)

, where K(B) is the

average individual cost in an optimal ball and K(H) is the average cost of individuals in an e�cient

hexagon. We show that in our framework the value of �� is very small, namely, it is � 0:0019(!) i.e.

a per capita subsidy of less than 0:2% is su�cient in guarantee the existence of subsidy-free prices.

The proof of this result is quite involved and requires an application of Fubini's theorem.

The next important question we address is the characterization of the set of ��-subsidy free prices.

For this end, we consider the Rawlsian principle, under which the society maximizes the utility level

of the most disadvantaged individual. In our framework, the Rawlsian principle implies the full

equalization of all individuals' total costs, and, therefore, entails the full compensation to every

individual for being assigned to the policy di�erent from her favored one; in the spatial literature,

this corresponds to uniform delivery prices, or more accurately to basing point prices as, in general,

it is e�cient to have several mills. It turns out that the Rawlsian prices are the unique ��-subsidy

free consistent prices19.

The paper is organized as follows. The next section contains the model and introduces the

de�nitions needed for our main results that are stated in section 3. The proofs of all results are

relegated to the Appendix.

2 The Model

We consider a population with a continuum of customers together with a �rm. The �rm produce

a single homogeneous good; from a technological perspective, it has to decide how many production

units (called hereafter facilities) to open and where to locate these facilities in the two dimensional

18We could see �� as the minimal degree of outside intervention that can rectify the stability failure.
19In the one dimensional case , for which we know that �� = 0, Dr�eze, Le Breton and Weber (2006) prove that when

the population is uniformly spread over the entire real line, then the Rawlsian prices are the unique subsidy free prices.
This result is not true for a bounded interval. Le Breton and Weber (2003) have shown that F.O.B. prices and uniform
delivery prices are not subsidy free in general.
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Euclidean space which is meant to model here the true geographical space. Each customer is itself

located somewhere in the two dimensional Euclidean space and consumes a single unit of the com-

modity produced by the �rm. We assume that their demand for that commodity is inelastic with

respect to the price.

At that stage, besides the assumption that the space of facilities's feasible locations is the all

two dimensional space (stated formally below as assumption 1), no assumption is made upon the

technology of each facility. The setting is broad enough to accomodate several interpretations. the

facility could be public facility (hospital, swimming-pool, post-o�ce, library, ..) where most of

the cost consists of a �xed part if there are no too much congestion, or a private facility ( bank

o�ce, warehouse, factories,..) where variable costs are likely to be more important. The �rm can

be a private �rm with private objectives, like pro�t maximization, or a �rm under the supervision

of a public regulator. Herafter, we will privilege that second situation as we will be interested in

the determination of prices that meet a condition of sustainability introduced in the litterature on

regulation : the prices are calculated in such a way to prevent entry on a market for which it is

e�cient to have a single �rm i.e. a situation of natural monopoly. We will also introduce later some

more speci�c assumptions on the technology.

Assumption A.1 | Multidimensionality: The space of facilities' locations is the two-dimensional

Euclidean space X = <2.

Customers have idiosyncratic preferences (or accession costs) over the facilities that they could

visit to buy the product or service (to post a letter, to deposit a check on the bank account, to swim

for some time or to consult a doctor at the hospital or to drive to a production center for delivery if

the customer is in fact a retailer of the commodity). We assume that for every customer the accession

cost is represented by the Euclidean distance from her bliss point to the facility in her jurisdiction:.

In this paper we assume that the accession cost is incurred by the client but we could, with little

changes, assume that the cost is incurred by the �rm : for instance, in the case of a post o�ce, we

can either assume that the client goes to the post o�ce to get her letter or instead that the �rm paid

�rst for that cost by hiring a postman delivering the letter to the residence of the client.
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Assumption A.2 | Euclidean accession costs: For every individual located at l = (l1; l2) 2 X,

her accession cost to every t = (t1; t2) 2 X is given by

jjt� ljj =
p
jt1 � l1j2 + jt2 � l2j2: (1)

This formalization allows us to identify a customer with her location and to characterize the de-

mand side by the distribution of individuals' locations. We assume that the customers are uniformly

distributed over the entire space X:

Assumption A.3 | Uniform distribution: The customers' distribution is given by the two-

dimensional Lebesgue measure20 � over <2.

The area of a measurable21 set S will be denoted by �(S), i.e., �(S) =
R
S

dt: In what follows, the

null-measured sets with �(S) = 0 will be disregarded, so that the quali�cation \up to a null-set"

should be added to almost all our results. Each customer will buy her unit from a given facility.

Given the list of facilities opened by the �rm; this leads to a partition of the population into subsets

described by a one to one correspondence between the partition and the list of opened facilities.

Hereafter, we will refer to any subset in that partition as a jurisdiction.

In our set-up, every jurisdiction is a measurable bounded subset of X with positive measure.

The collection of such sets will be denoted by M(X). We assume that the cost of each facility is

independent of its location and consists of a �xed cost, independent of the size of a jurisdiction, and

a variable cost proportional to the jurisdiction size:

Assumption A.4 | Facility cost: For a facility assigned to a jurisdiction, the cost is given by

f(S) = g + ��(S); (2)

where g > 0; � � 0 are two constants.

We now formally introduce the notion of a partition of a measurable subset S � X:
20See Halmos (1950), p. 153.
21A subset of X is measurable if its intersection with every measurable subset of a �nite measure is measurable;

hence, we allow for in�nite-measured measurable subsets.
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De�nition 2.1: A partition P of (possibly in�nite-measured) set S is a jurisdiction structure that

consists of sets from M(X) which are \almost" pairwise disjoint, i.e., �(T
T
T 0) = 0 for all

T 6= T 0 in P , and whose union constitutes the entire set S, i.e.,
S
T2P T = S.

The set of partitions of S is denoted by P(S). Obviously, if the measure of S is in�nite, then

every P 2 P(S) consists of an in�nite number of jurisdictions.

Now let us turn to the determination of facility choices. For each S 2M(X) and a location l 2 S

we denote by D(S; l) the value of total accession cost in S (with respect to location l):

D(S; l) =

Z
S

jjt� ljjdt: (3)

Suppose that jurisdiction S forms and chooses a location l. One can derive the total cost of members

of S that combines the project cost f(S) and the aggregate access cost, D(S; l). Thus the per capita

cost of members of S whose location is l is given by

K(S; l) =
f(S) +D(S; l)

�(S)
: (4)

Now, consider any measurable set S � X, �nite or in�nite-measured. This set can be partitioned

into several jurisdictions each choosing a facility location. We de�ne its stand alone per capita cost22

as the minimum over all possible partitions P of S and sets of location choices L = fl(T )gT2P :

~K (S) = inf
P;L

P
T2P [D (T; l(T )) + f (T )]

� (S)
: (5)

Any partition solving program (5) is called S�e�cient. It is easy to see that e�ciency implies that

to every jurisdiction T will correspond a facility whose location is selected in order to minimize the

total accession costs of its members. That is, the location l correponding to jurisdiction T will satisfy

the following program:

D(T; l)! min
l2X

: (6)

22Since the total cost could be in�nite, an operational de�nition is needed. It consists of taking limits when the area
uniformly approaches S.
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The value of this problem is called \MAT (T )" (Minimal Aggregate Transportation cost of the set

T ).23 Any solution to (6) is called a central location of T .24 We use the following lemma:

Lemma 2.2: For every jurisdiction T 2M(X), the central location, denoted by m(T ), is unique.

Since Lemma 2.2 resolves the locational choice for every jurisdiction, it allows us to reduce the

examination of e�ciency to partitions only. For this end, denote

D(T ) = D(T;m(T )); K(T ) = K(T;m(T )): (7)

and for any measurable set S � X, �nite or in�nite-measured,

~K (S) = inf
P2P(S)

P
T2P [D (T ) + f (T )]

� (S)
: (8)

We have

De�nition 2.3: A partition P is S-e�cient if it is a solution to (8). An X-e�cient partition will

be simply called an e�cient partition.

In what follows, we will focus our analysis on e�cient partitions. The characterization of e�cient

partitions in our geometric setting is a well documented problem in mathematics. The qualitative

result (re)discovered by many authors states that there is a unique \shape" of e�cient partitions

which consists of identical regular hexagons.25 We have:

Result 2.4: Partition P is e�cient if and only if it is comprised of identical regular hexagons, whose

stand-alone value is minimal among all regular hexagons.

The size of hexagons in e�cient partitions obviously depends upon the value of the �xed compo-

nent of facility costs: the smaller the cost, the smaller are jurisdictions in an e�cient partition. The

size of \e�cient" hexagons is explicitly derived in the Appendix.

23A solution to this problem exists. Indeed, the integral in (6) is continuous in l, and for l ! 1 the value of a
program goes to +1.
24Note that in the unidimensional setting, for every bounded set T , a location is central if and only if it is a median

of T .
25See Fejes Toth (1953), Haimovich and Magnanti (1988) as well as Christaller (1933), L�osch (1954), Bollobas and

Stern (1972), and Stern (1972) in the economic geography context.
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Before turning to the main results of the paper, let us examine pricing rules. In every potential

jurisdiction S 2 M(X), a pricing rule y is a measurable function on S that speci�es individual

contributions of members of S towards the cost of a facility, f(S), if this jurisdiction forms. We

impose the following budget-balancedness condition.

Assumption A.5 | Budget balancedness: The total contribution of members of S covers the

cost of the facility: Z
S

y(t)dt = f(S): (9)

When we turn to examination of e�cient partitions, it would be useful to consider the notion of

consistent pricing rule. Since the whole plane is partitioned into identical (hexagonal) jurisdictions,

it makes sense to demand that the individuals in identical locations within di�erent jurisdictions face

the same prices. We impose a weak form of consistency that requires that any two individuals in

any two di�erent jurisdictions, whose location is identical with respect to their corresponding central

points, make the same monetary contribution towards their facilities cost.26

Assumption A.6 | Consistent sharing rule: For every e�cient partition P �, every two di�er-

ent (hexagonal) jurisdictions H;H 0 2 P � and every two individuals t 2 H; t0 2 H 0 satisfying

t�m(S) = t0 �m(S0), we have y(t) = y(t0).

The pricing rule y associated with partition P � determines the following cost allocation c for any

individual t 2 X

c(t) = y(t) + jjt�m(Ht)jj; (10)

where Ht 2 P � is the hexagon in P � that contains t, and m(Ht) is its center.

From now on, we �x one of the (fully equivalent to each other) e�cient partitions, name it P �.

We now impose to the pricing rule to be chosen in such a way that no other �rm (having access

to the same technologies that the �rm that we consider) can pro�tably enter into that market and

captures a segment of customers by o�ering a pricing rule that this group of customers would �nd

more attractive than the one o�ered by the �rm. To prevent this, it must be the case that for any

26This assumption simpli�es calculus of the proof, while it is not essential for the main result.
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possible subset of customers, the aggregate cost imposed to that group through the pricing rule of

the �rm should not exceed the cost incurred by that group if it had acted on its own. This is exactly

the Faulhaber's de�nition of a subsidy-free pricing rule adjusted to our setting as we had �rst to

construct the cost function of the �rm from its technology while he was considering directly the cost

function. Formally,

De�nition 2.5: Let a cost allocation c be given. A set S 2M(X) is prone to entry capture if

c(S) =
1

�(S)

Z
S

c(t)dt > K(S): (11)

A cost allocation c is subsidy-free if no set S 2 M(X) is prone to entry capture. The set of

subsidy-free cost allocations on X will be denoted by A.

Next de�nition introduces the allocations that satisfy the Rawlsian principle by minimizing the

total cost of the most disadvantaged customer in each jurisdiction. It implies the cost equalization

across the entire population:

De�nition 2.6: A cost allocation r is called Rawlsian if the value r(t) is constant within each

H 2 P �, and, hence, on X. That is, for every t; t0 2 X we have r(t) = r(t0).

3 Results

We are now in position to state the main results of the paper. First, we demonstrate that under

our assumptions, a subsidy-free allocation fails to exist.

Proposition 3.1: Suppose that assumptions A.1-A.6 hold. Then the set of subsidy-free allocations

A is empty.

In absence of subsidy-free allocations, we will turn to the search for a solution which is the

\closest" to be subsidy-free. For instance, we may assume that there is a �xed per capita cost of

entry by any potential entrant; alternatively, in the case where the �rm is public, one can consider

government intervention which subsidizes a certain fraction of a total cost to every customer to

14



prevent any entry. Both approaches are essentially equivalent and yield the following de�nition of

�-subsidy-freeness:

De�nition 3.2: Let � > 0 be given. A cost allocation c is �-subsidy-free if for all S 2 M(X) the

following inequality holds:

(1� �)c(S) � K(S): (12)

The set of �-subsidy-free allocations on X will be denoted by A(�).

In other words, if individuals follow the prescribed agreement, then the �-part of their total cost

is covered \from outside". If, however, a jurisdiction decides to go for another �rm making alernative

o�ers, then this deal is no longer valid.

This de�nition relaxes the constraints which determine subsidy-free allocations and, obviously, if

� is large enough then the set A(�) is nonempty. Moreover, if A(�) is nonempty for some �, it is also

the case for all �0 > �. This allows us to derive the threshold value �� de�ned by

�� = inff� > 0j A(�) 6= ;g: (13)

It will be shown that the set A(��) is itself nonempty. The value �� therefore can represent the cost

of stability, which is the minimal per-capita subsidy which sustains subsidy-freeness. We can now

state our main result:

Proposition 3.3: Under Assumptions A.1-A.6,

(i) �� � 0:0019;

(ii) The set A(��) is a singleton, containing only the Rawlsian allocation.

That is, the cost of stability �� is very small. Moreover, the only ��-subsidy-free allocation is

Rawlsian.

The statement of this proposition requires an explanation. Consider a hexagon H, which is an

element of an e�cient partition. Obviously, this hexagon is not optimal in terms of per capita cost

15



of its members and the value K(H) exceeds

min
S2M(X)

K(S): (14)

In fact, no hexagon represents a solution for (14). Unsurprisingly, jurisdictions with the minimal per

capita total cost are balls. Denote by K(B) the value of the problem in (14). We then show that

the cost of stability �� is given by

�� = 1� K(B)

K(H)
; (15)

which, since K(B) < K(H), is obviously positive. Thus, the cost gap between an e�cient hexagon

and an optimal ball necessitates the government intervention and subsidization of e�cient partitions.

It is important to point out that this feature does not appear in the uni-dimensional setting where

e�cient and optimal jurisdictions are intervals of the same size and the cost of stability is equal to

zero (see Dr�eze, Le Breton and Weber (2005)).

4 Appendix

Proof of Lemma 2.2: Let S 2 M(X) be given and assume that S has two di�erent central

points, m and m0. Let L be the straight line connecting m and m0 and denote S0 = S n L and

�m =
m+m0

2
. Obviously then m and m0 are central points of S0 as well and D(S) = D(S0). Then

for every t 2 S0 we have
1

2

�
jjt�mjj+ jjt�m0jj

�
> jjt� �mjj (16)

and, since �(S) = �(S0) > 0, this implies thatZ
S0

jjt� �mjjdt < 1

2

0@Z
S0

jjt�mjjdt+
Z
S0

jjt�m0jjdt

1A : (17)

However, by (6), the right-hand side of (17) is equal to D(S) = D(S0), a contradiction to m and m0

being central points of S0. 2

Before proceeding with the proof of Propositions 3.1 and 3.3, we need some notation and prelim-

inary results. From now on we shall assume, without loss of generality, that the variable component

of facility costs � in Assumption A.4 is equal to zero.
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Denote by Bla the ball with the center at a 2 X and the radius l > 0.

Lemma A.1: A set S is a solution of (14) if and only if S = Bl
�
a , where a 2 X and the value of l�

is given by

l� =

�
3g

�

� 1
3

� 0:985g
1
3 (18)

Moreover, the per capita cost in such a ball, K(B), is equal to l�.

From now on, the ball with the optimal size l� and the center a will be referred to as simply Ba.

Sometimes, if the center of the ball is not important, we will use the notation Bl for l > 0.

Proof: Take a set S that solves (14). Denote the ball of radius l with the center at m(S) by Bl.

There trivially exist l1; l2 with 0 � l1 � l2 < 1 such that, both Bl1 n S and S n Bl2 are null-sets,

and two sets, Bl n S and S n Bl have a positive measure for all l 2 (l1; l2). We claim that l1 and l2

coincide, i.e., S = Bl1 = Bl2 .

Indeed, if not, take l3 = (2l1 + l2)=3 and l4 = (l1 + 2l2)=3. Then both �(S nBl4) and �(Bl3 n S)

are positive numbers. We can shift a positive mass of individuals from S nBl4 to Bl3 n S so that the

newly created set ~S has the same measure as S. However,

D( ~S) =

Z
~S

jjp�m( ~S)jjdp �
Z
~S

jjp�m(S)jjdp < D(S); (19)

a contradiction to S being a solution of (14).

It is left to derive l� and K(B). Notice that for every ball Bl, the total access cost D(Bl) =
2�l3

3
.

Since the area of Bl is �l2, the average cost within Bl is K(Bl) =
g

�l2
+
2l

3
. It is straightforward

to verify that the last expression attains its minimum at l� =

�
3g

�

� 1
3

; yielding the minimal average

cost K(B) = l�.2

We will also utilize the lemma that evaluates the average cost of jurisdictions that are \close" to

optimal balls:

Lemma A.2: Let  > 0 and set S is located between two balls with the same center, Bl
��
a and

Bl
�
a , i.e. B

l��
a � S � Bl

�
a . Then K(S), the aggregate average cost over S, di�ers from the
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aggregate average cost over optimal ball K(B) only in a second order term:

K(S) < l� +
4

l�
2: (20)

Proof: Let ~S � Bl�a n B
l��
a . In our estimations below we take into account three observations:

the optimal l� satis�es g =
�l�3

3
, the total transportation cost within S increases(at least, do not

decrease) if we replace the m(S) by a, and that the distance between any point in ~S to a is bounded

from above by l�. Denote z =
3

�
�( ~S). We have:

K(S) =
g +D(S)

�(S)
�
g +

R
S

jja� tjjdt

�(S)
� g +D(Bl

��
a ) + l��( ~S)

�(Bl
��
a ) + �( ~S)

=
(l�)3 + 2(l� � )3 + zl�

3(l� � )2 + z <

3(l�)3 � 6(l�)2 + 6l�2 + zl�
3(l� � )2 + z =

3l�(l� � )2 + zl�
3(l� � )2 + z +

3l�2

3(l� � )2 + z =

l� +
3l�2

(l� � )2 + z=3 � l
� +

3l�2�p
3l�
�2
=22

= l� +
4

l�
2;

(21)

as for  small enough we have l� �  >
p
3

2
l�.2

Lemma A.3: Let H be a hexagon in an e�cient partition. Then the per capita cost in H is given

by

K(H) =

p
3

2

�
2

3
+ ln

p
3

� 2
3

g
1
3 � g

1
3 : (22)

Proof: Consider a regular hexagon Hl, where l denotes the distance between the center m(Hl)

and a midpoint of its side. The total access cost in Hl is

D(Hl) = 12
R l
0

R xp
3

0

p
x2 + y2dxdy = 6

R l
0

h
y
p
x2 + y2 + x2 ln

�
y +

p
x2 + y2

�i xp
3

0
dx

= 6
R l
0

�
xp
3

q
x2 + x2

3 + x
2 ln

�
xp
3
+
q
x2 + x2

3

�
� x2 lnx

�
dx

= 6
R l
0 x

2
�
2
3 + ln

p
3
�
dx = 2l3

�
2
3 + ln

p
3
�
:

(23)

Since the area of Hl is 2
p
3l2, the average cost per citizen in jurisdiction Hl is given by

K(Hl) =
g

2
p
3l2

+
lp
3

�
2

3
+ ln

p
3

�
; (24)
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which attains its minimum at the e�cient hexagon H, i.e., when

l = ~l =

�
2

3
+ ln

p
3

�� 1
3

g
1
3 : (25)

It is easy to verify that then the per capita average cost K(H) = K(H~l) is given by (22) which at

the same time represents the average cost of the whole plane X under an e�cient partition. 2

Take the e�cient partition P � of X. For every positive integer N , consider a subset GN of P �

that consists of N2 adjacent hexagons (see Figure 1). Let the sequence fGNgN=1;:::;1 be nested,

i.e., each GN is imbedded into GN+2 \symmetrically", such that the set GN+2 nGN is a \hexagonal

ring" comprised of 4N + 4 regular hexagons. We have the following result:

Lemma A.4: For every a 2 GN , the ball Ba is contained in GN+2.

Proof: Denote by �l the side of a hexagon in partition P �. Since the minimal width of the

hexagonal ring FN is equal to �l, it su�ce to demonstrate that �l > l�. Note that �l =
2p
3
~l, where ~l

is the distance between the center of the e�cient hexagon and the middle point of one of its sides,

which has been derived in (25). Thus,

�l =
2p
3

�
2

3
+ ln

p
3

�� 1
3

g
1
3 ; (26)

which, by (18), exceeds the value l�. 2

Let the e�cient partition P � be endowed with the sharing rule y, that generates cost allocation

c, and H is a (hexagonal) jurisdiction in P �. Denote by �H the Lebesgue measure of H and by �B

the Lebesgue measure of an optimal ball.

For every a 2 X denote by the value '(a) the aggregated cost incurred by the members of the

ball Ba:

'(a) = c(Ba) =

Z
Ba

c(t)dt (27)
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De�ne �' as the aggregated cost incurred by the allocation c on all balls of optimal size whose centers

belong to the hexagon H:

�' :=

Z
H

'(a)da: (28)

Note that, due to the consistency assumption A.6, the value �' is invariant to a choice of a hexagon

in P �. We need the following result:

Lemma A.5:

�' = I; where I := �B
Z
H

c(t)dt: (29)

Proof: De�ne the function 	(a; t) on GN �GN+2 � <4 by

	(a; t) =

�
c(t); if t 2 Ba;
0; otherwise.

(30)

We will integrate the function 	(a; t) over the set GN � GN+2. According to Fubini's theorem

(Halmos (1950), p.148), two di�erent orders of integration yield the same result. First, we integrate

with respect to t and then to a. By (27) and (28) we have

Z
GN

264 Z
GN+2

	(a; t)dt

375 da = Z
GN

24Z
Ba

c(t)dt

35 da = Z
GN

'(a)da = N2

Z
H

'(a)da = N2 �': (31)

Before integrating in the reverse order, note that the following duality property

fajt 2 Bag � Bt (32)

holds for every t 2 X. This is a simple consequence of the symmetry of the distance jjt � pjj as a

function of two arguments, and the circle Bt being the set of points p for which jjp�tjj = jjt�pjj � l�.

Take a point t 2 GN�2. By Lemma A.4, Bt � GN , andZ
GN

	(a; t)da =

Z
Bt

c(t)da = c(t)

Z
Bt

da = �Bc(t): (33)

We have: R
GN+2

" R
GN

�(a; t)da

#
dt =

R
GN�2

" R
GN

�(a; t)da

#
dt+ LN ; (34)
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where

LN :=

Z
GN+2nGN�2

264Z
GN

�(a; t)da

375 : (35)

By using (32), (33) and Lemma A.4, the �rst term in (34) can be presented as:

R
GN�2

" R
GN

�(a; t)da

#
dt =

R
GN�2

�Bc(t)dt = (N � 2)2I: (36)

Fubini's theorem allows us to rewrite (34) as

N2 �' = (N � 2)2I + LN = N2I + LN � 4(N � 1)I: (37)

Let us estimate the absolute value of the last two terms. Since for any t 2 GN+2, hence, for any

t 2 GN+2 nGN�2, we have that
R
GN

�(a; t)da =
R

GN
T
Bt

c(t)da �
R
Bt

c(t)da = �Bc(t), it follows that

jLN �4(N�1)Ij � jLN j+4(N�1)I � 4(N�1)I+
Z

GN+2nGN�2

�Bc(t)dt = (12N�4)I < 12NI: (38)

Thus,

jN2 �'�N2Ij � 12NI; or j �'� Ij � 12I

N
: (39)

Since N can be made arbitrarily large, it immediately yields the desired equality �' = I.2

Proof of Proposition 3.1: It is a corollary of Proposition 3.3.

Proof of Proposition 3.3: Let us show �rst that

�� = 1� K(B)

K(H)
; (40)

which, by Lemmas A.1 and A.3, can be calculated as

�� = 1� 2

�
1
3 3

1
6 (23 + ln

p
3)

2
3

� 0:0019: (41)

We will demonstrate that the set of �-subsidy-free allocations is empty if and only if � < ��.

Consider a �-subsidy-free allocation c. The budget balancedness assumption A.5 implies that the

value of I, determined by (29), is equal to �B�HK(H), and by Lemma A.4. so is the value of �'.
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Hence, there exists a 2 H such that '(a) � �BK(H). On the other hand, the stand alone aggregate

cost inBa is �
BK(B). Since c is �-subsidy-free, De�nition 3.2 implies that (1��)�BK(H) � �BK(B),

or � � 1� K(B)

K(H)
.

Let us show that Rawlsian allocation is �-subsidy-free whenever � � ��. Indeed, since r(t) =

K(H) for every t 2 X, then for S = Bl� | an optimal ball we observe that (1 � �)K(H) � K(B).

Now, for any S 2M(X) we have K(S) � K(B) and therefore (1� �)K(H) � K(B) � K(S).

To complete the proof of the proposition, it remains to demonstrate that the Rawlsian allocation

is the only one to be ��-subsidy-free. That is, the allocation that assigns every individual in X a

contribution K(H) is the only ��-subsidy-free. For this end, consider an arbitrary ��-subsidy-free

allocation c and estimate the number of individuals whose contribution is \substantially" below the

level K(H).

Take a positive number " > 0. Consider �rst an arbitrary ring Ba n Bl
��
a and evaluate the

measure of individuals t whose cost contribution c(t) satis�es c(t) < K(H) � ". Denote this set by

U , and consider the set S = Ba n U , for which, by Lemma A.2, we have K(S) < l� +
4

l�
2. On the

other hand,

c(S) = c(Bl
�
)� c(U) � �BK(H)� �(U)K(H) + �(U)" = �(S)K(H) + �(U)": (42)

The ��-subsidy-free of c implies that the average per capita contribution in group S, adjusted by

1� ��, does not exceed its stand-alone value, K(S):

(1� ��) c(S)
�(S)

= (1� ��)(K(H) + �(U)
�(S)

") � K(S) < l� + 4

l�
2: (43)

Since K(B) = l� = (1� ��)K(H), we have:

�(U) � 4�(S)

l�(1� ��)"
2 <

4�(l�)2

l�(1� ��)"
2 =W2; (44)

where W is a constant which is independent of .

Now consider the square Q with a side of 2�l� with the center at the origin. For any small positive

number , denote by R[i; ] the ring Bpi n B
l��
pi centered at the point pi = (i; 0), where i is any
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(positive or negative) integer. For large enough positive integer N we have the following inclusion:

Q �
N[

i=�N
R

�
i;
�l�

N

�
: (45)

Denote by U and Ui; i = �N; : : : ;�1; 0; 1; : : : ; N; the sets of individuals in Q and R

�
i;
�l�

N

�
, re-

spectively, who contribute less than K(H) � " under the allocation c. By utilizing (44), we have

�(Ui) �W
(�l�)2

N2
. Thus, since U �

N[
i=�N

Ui, we have

�(U) � (2N + 1)W
(�l�)2

N2
<
3

N
W (�l�)2: (46)

Since N can be chosen arbitrarily large, (46) implies that �(U) = 0. Note that this argument actually

implies that for any square with the side of 2�l�, the Lebesgue measure of the set of individuals who

contribute less than l� � " under the allocation c has the zero measure.

Finally, the set of all individuals who contribute less thanK(H) under c is a countable union of its

subsets, indexed by (n; i; j), each of which is the set of individuals contributing less than K(H)�1=n

in the square with the side of 2�l� and the center at (2�i; 2�j). Since each of these subsets has zero

measure, so does their union as well, hence, every individual contributes at least K(H). Finally, due

to the budget balancedness condition A.5, the set of those who contribute more than K(H) has the

zero measure as well. Thus, every t 2 X contributes K(H), implying that the only ��-subsidy-free

allocation is Rawlsian.2
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