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Rewarding Trading Skills without
Inducing Gambling

IGOR MAKAROV and GUILLAUME PLANTIN∗

ABSTRACT

This paper develops a model of active asset management in which fund managers may
forgo alpha-generating strategies, preferring instead to make negative-alpha trades
that enable them to temporarily manipulate investors’ perceptions of their skills. We
show that such trades are optimally generated by taking on hidden tail risk, and
are more likely to occur when fund managers are impatient and when their trading
skills are scalable, and generate a high profit per unit of risk. We propose long-term
contracts that deter this behavior by dynamically adjusting the dates on which the
manager is compensated in response to her cumulative performance.

The last 30 years have witnessed two important developments in financial
markets. First, financial innovation has made it possible to slice and combine
a large variety of risks by trading a rich set of financial instruments. Second,
management of large amounts of capital has been delegated to entities such
as hedge funds and bank proprietary desks that are not subject to significant
trading restrictions and not required to disclose publicly the details of their
positions.

The amount of capital available to such entities crucially depends on in-
vestors’ perceptions of their “alpha,” that is, their ability to generate excess
returns above the level of fair compensation for risk. Combined with the rela-
tive opaqueness of these entities and their vast risk-taking opportunities, this
creates pervasive incentives for money managers. In particular, fund managers
running out of alpha-generating strategies may find it tempting to pretend
otherwise, taking risky positions with zero or even negative alpha that may
temporarily improve their perceived reputation in the event of favorable out-
comes. Strategies that generate frequent small positive excess returns that
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are offset by very rare and large losses seem especially well suited to disguis-
ing luck as skill. As Rajan (2008) puts it, “How can untalented investment
managers justify their pay? Unfortunately, all too often it is by creating fake
alpha – appearing to create excess returns but actually taking on hidden tail
risk.”1 Consistent with this view, Jiang and Kelly (2012) show that a significant
number of hedge funds are indeed exposed to tail risk.

Creating fake alpha by taking on hidden tail risk does not appear to be lim-
ited to the hedge fund industry. For example, in its 2008 report to shareholders
on the causes of its subprime losses, UBS concludes that “The UBS compensa-
tion and incentivization structure did not effectively differentiate between the
creation of alpha versus the creation of return based on a low cost of funding.”
More generally, Acharya et al. (2010) argue that the manufacture of tail risk
through deliberate retention of senior tranches on poor collateral by U.S. banks
was an important ingredient of the 2008 banking crisis.

The perverse incentives to enter into (at best) zero-alpha gambles are as-
sociated with a number of costs. First, they defeat the purpose of delegated
asset management, which is meant to achieve superior returns by optimally
combining “brains and resources.” Second, they lead to a misallocation of capi-
tal. The manufacture of tail risk also has far-reaching consequences for overall
financial stability when gambling institutions are systemically important.

In this paper, we develop a new framework for the study of these risk-taking
incentives. We study situations in which managers find it optimal to fake their
alpha and propose a new class of contracts that eliminate incentives to employ
such strategies.

Our model builds upon the frictionless benchmark of Berk and Green (2004),
who study career concerns in delegated fund management. In their model, a
fund manager and investors discover the manager’s alpha-generating skill by
observing her realized returns. The excess returns that a manager is expected
to generate increase with her skill, but decrease in the number of funds under
her management. Competitive investors supply funds to the manager until they
earn a zero net (after fees) expected return. At the beginning of each period, the
manager sets fees that enable her to reach the optimal fund size, and extracts
the entirety of the surplus that she generates. Learning and competition among
investors imply that both fund flows and managerial compensation strongly
depend on the manager’s record.

We extend this model by allowing the manager to secretly enter into zero-
alpha trades with the sole purpose of manipulating investors’ perceptions of
her skill. In what follows, we refer to this opportunistic behavior as inefficient
risk shifting or gambling. In contrast to earlier papers on risk shifting, we
propose a general setting in which the fund manager can secretly choose to
take on positions with arbitrary payoff distributions. This captures the large
set of trading opportunities available to modern managers, and is therefore an
important case to consider.

1 Raghuram Rajan, “Bankers’ pay is deeply flawed,” Financial Times, January 9, 2008.
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We first study the impact of this friction in the case in which the manager and
investors sign only short-term contracts. Three factors conducive to inefficient
risk shifting emerge from our analysis. The first is the size of the alpha per unit
of risk that can be generated by a skilled manager. If it is large, the history of
returns has a large impact on investors’ beliefs about the manager’s ability to
generate future excess returns. The second factor is the scalability of trading
skill, that is, the sensitivity of expected excess returns to fund size. If trading
skill is scalable, a good reputation translates into a large future fund size
and in turn large future profits. Third, because the manager can manipulate
her reputation only temporarily, it is more valuable for her to do so when
she is more impatient. These three factors determine the convexity of future
expected gains as a function of realized returns, and thus affect inefficient risk-
shifting incentives. In particular, the model predicts that “fallen star” managers
(those who show high initial potential but realize disappointing returns) are
particularly prone to gambling. For a calibration consistent with Berk and
Green (2004), we find that their efficient equilibrium with short-term contracts
breaks down in the sense that any equilibrium must involve some degree of
risk shifting.

We are able to fully characterize such equilibria with risk shifting in a sim-
plified version of the model where the manager maximizes both her expected
current return and the expected reputation that results from it. Interestingly,
even though we impose no restriction on the risk profiles available to the man-
ager, we show that she optimally manufactures hidden tail risk. In other words,
she sells disaster insurance, adding some noisy payoff to the collected premium
so that investors cannot discover the exact nature of the trade.

We next consider long-term contracts. Here we follow two distinct lines of in-
quiry. First, we consider a contract popular in the hedge fund industry, namely,
a contract in which the manager’s profits are given by a performance fee above
a high-water mark. Similar to Panageas and Westerfield (2009), we find that,
without new inflows or outflows triggered by realized performance, the perfor-
mance fee based on a high-water mark does not induce inefficient risk shifting.
In the presence of fund flows, however, we show that the high-water mark
contract does not generally solve the risk-shifting problem.

Second, we consider an optimal contract that fully eliminates risk-shifting
incentives. This contract is designed to discriminate between skill and luck,
exploiting the fact that the impact of gambling on investors’ beliefs vanishes
in the long run, when true skill is eventually revealed. The contract defers
payments to the manager at dates that vary depending on her cumulative
performance. The promised payment also evolves such that it always at least
matches the manager’s outside options, so she does not renegotiate the contract.
As we detail in Section II, this mechanism is highly reminiscent of recent
proposals for bankers’ compensation reforms issued by both public authorities
and the industry itself. All such proposals consist of a bonus deferral together
with a clawback mechanism that revises the initial promised payment with
the benefit of hindsight. We offer theoretical foundations for these proposals.
More importantly, we qualify them, suggesting that it is important to adjust
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the timing of compensation dynamically, further postponing it upon observing
a poor track record. In our model, committing to pay a bonus at a fixed date
may generate inefficient gambling in general, even if this date is remote and
even if the bonus is adjusted via a clawback provision. The dynamic revision
of the payment date turns out to be important, and yet it is absent from the
current suite of proposed reforms.

To our knowledge, this paper is the first to derive a formal connection between
fund managers’ career concerns and alpha-faking through hidden tail risk in a
fully rational environment. More precisely, we bridge two strands of literature,
namely, that on risk shifting and that on career concerns. The risk-shifting fric-
tion was first introduced by Jensen and Meckling (1976) as a source of value
destruction within overly leveraged firms. Arguably, this friction is particularly
relevant in the context of sophisticated financial institutions that can swiftly
alter their risk profiles. Accordingly, a large asset pricing literature considers
the impact of nonconcave objective functions on the risk-shifting incentives of
fund managers who have access to dynamically complete markets. Contribu-
tions include those of Basak, Pavlova, and Shapiro (2007), Carpenter (2000),
and Ross (2004). In line with these studies, we seek to identify the risk-taking
strategies that optimally respond to nonconcave objectives. Different from prior
research, however, nonconcavities in the manager’s objective are not assumed
in our model. Rather, they arise endogenously from reputation concerns in a
truly dynamic environment. Further, we extend the literature by identifying
optimal contracts that eliminate the costs of this friction.

Acharya, Pagano, and Volpin (2012) also develop a model in which career
concerns may lead managers to destroy value, but by a mechanism other than
manipulating a payoff distribution. As in our model, limited commitment pre-
vents managers from receiving insurance against the risk that their reputation
deteriorates. The authors assume that learning about managerial skill can take
place only if managers run the same project sufficiently long. Thus, risk-averse
managers may prefer to churn across projects to prevent learning. While such
churning shields managers from reputation risk, it inefficiently slows down the
identification of good managers. Malliaris and Yan (2012) consider a two-period
model in which a manager may be tempted to take on tail risk to manipulate
her expected reputation. Their setup is related to the static version of our
model, which we solve for equilibria with risk shifting. The main difference is
that we do not impose binary payoffs, as they do.

Our paper is also related to Goetzmann et al. (2007), who study manipulation-
proof measures of managerial performance. They show that to be manipulation-
proof a measure should take the form of a concave utility function averaged over
the return history. We further show that if the fund manager has a nonconcave
continuation utility she can engage in inefficient risk shifting, and that the
optimal contracts aim to concavify the manager’s objective.

Finally, our study relates to two recent extensions of the Berk and Green
(2004) model. First, Berk and Stanton (2007) apply the Berk and Green (2004)
setup to closed-end funds. In this case, learning affects the net asset value of
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the fund and not its size, which is fixed by construction. Berk and Stanton
(2007) show that the impact of learning explains several characteristics of
the closed-end fund discount, and that the behavior of this discount crucially
depends on the nature of the compensation contract. Second, Dangl, Wu, and
Zechner (2008) study an extension of Berk and Green’s (2004) approach in
which a management company can fire a manager if her performance is not
good enough. They restrict their analysis to short-term compensation contracts
and solve for the optimal firing rule.

The remainder of our paper is organized as follows. Section I develops our
baseline model of career concerns, and studies the impact of the risk-shifting
friction when the manager and investors sign only short-term contracts.
Section II studies long-term contracts. Section III concludes. Technical proofs
are relegated to the Appendix.

I. Career Concerns and Inefficient Risk Shifting

In Section I.A, we introduce and solve a frictionless model of career concerns
in delegated asset management that closely follows the approach used by Berk
and Green (2004). In Section I.B, we introduce a risk-shifting friction to this
benchmark approach, and study its impact on the equilibrium in the presence
of short-term contracts. In Section I.C, we fully characterize equilibria with
risk shifting in a simplified version of our baseline model. In Section I.D, we
discuss the costs of risk-shifting strategies.

A. Frictionless Benchmark: The Berk and Green model

Time is discrete and is indexed by {n�t} , where n ∈ N and �t > 0. There is a
single consumption good that serves as the numéraire. Agents are of two types:
a manager and investors. Agents live forever, are risk neutral, and discount
future consumption at the instantaneous rate r > 0.

The manager is protected by limited liability and thus is unable to have
negative consumption. Investors receive a large endowment of the consumption
good at each date n�t; the manager does not. The manager has exclusive access
to an investment technology. If the manager invests qt consumption units at
date t using her technology, she generates qt+�t units at date t +�t such that

qt+�t = qte
(
r+aθ−c(qt)− σ2

2

)
�t+σ (Bt+�t−Bt)

, (1)

where (Bt)t≥0 is a standard Wiener process, and a and σ are strictly positive
numbers.

The parameter θ ∈ {0,1} measures the manager’s skill, which is unobserv-
able by both the manager and investors. All other parameters are common
knowledge. The parameter a is the alpha that a skilled manager can gener-
ate with her first dollar. As in Berk and Green (2004), the cost c(qt) captures
the fact that many arbitrage opportunities or informational rents in financial
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markets are not perfectly scalable. The function c is increasing, taking the form

c(q) = βq
1
α−1 , (2)

where α ≥ 1 and β > 0.
All agents share a common date 0 prior that the manager is endowed with

high skill, that is, θ = 1, with probability π0 ∈ (0,1). Except for the manager’s
skill, each action and realized return of the manager are publicly observable at
each date n�t. Thus, information is symmetric across agents.

Let πt denote the probability that the agents assign to the possibility that
the manager is skilled at a given date t. We refer to πt as the manager’s per-
ceived skill. Given πt = π , the net expected surplus created over [t, t +�t] if
the manager invests q units is

q
(
πe(a−c(q))�t + (1 − π )e−c(q)�t − 1

)
,

which in the limit as �t → 0 becomes q(aπ − c(q)). Thus, the manager creates
the maximal net expected surplus over [t, t +�t] if she invests q (π ) such that

q(π ) = arg max
q

q
(
πe(a−c(q))�t + (1 − π )e−c(q)�t − 1

)
.

We refer to such q(π ) as the optimal fund size. Denoting v(π )�t as the maximal
expected profit over [t, t +�t] that corresponds to this optimal fund size, we
have the following result.

LEMMA 1:

lim
�t→0

q(π ) =
(
α − 1
αβ

aπ
)α−1

, (3)

lim
�t→0

v(π ) = β1−α (α − 1)α−1

αα
(aπ )α . (4)

PROOF OF LEMMA 1: See the Appendix. �
Using a power specification (2) for the cost function c(q), the expected instan-

taneous surplus v (π ) is proportional to πα as�t becomes small. The parameter
α captures the scalability of trading skill. As α increases, the manager’s skill
π becomes more scalable and therefore her expected profit becomes more sen-
sitive to her reputation, in other words, becomes more convex in π . In the
hedge fund universe, global macro strategies are typically quite scalable, while
strategies based on shareholder activism may be more difficult to spread over
increasing amounts of capital.

Berk and Green (2004) specify a linear cost function c corresponding to α = 2.
They show that this specification matches quantitatively well the empirically
observed relationship between realized returns of mutual funds and fund flows.
In the remainder of the paper, we generally restrict the analysis to the some-
what simpler limiting case in which α = 1. In this case, the cost is zero for q < 1
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and infinite for q > 1. Thus, the manager can scale up the fund at no cost up
to an upper bound that is (without loss of generality) normalized to one. The
optimal fund size is thus always one and v(π ) is linear in π . Thus, in this case
perceived skill affects the expected rate of return of the fund but the optimal
fund size remains constant.

To realize any surplus, investors must delegate their funds to the manager
and agree with her on the profit-sharing rule. We assume that investors are
competitive and can fully commit to a contract. However, at the end of any
period, the fund manager is free to walk away from a contract and sign a
new one with competing investors. More precisely, at the end of each period
[t, t +�t] , after returns are realized and all contractual transfers for the period
are made, the fund manager is free to terminate a contract without financial
obligation to its investors and enter a new one with new investors starting
at period

[
t +�t, t + 2�t

]
. In other words, commitment is one-sided. This is a

common assumption in labor economics. We find it all the more plausible in the
financial services industry, where fund managers can swiftly move between jobs
and financial centers because their activity entails few specific investments.
Limited cross-border enforcement precludes covenants that would make such
moves costly.

In this section, we study incentives to take risk when investors and the
manager cannot enter into long-term contracts, but rather interact in a spot
labor market at each date. Our goal is to determine whether incentives created
by market forces alone can discipline managers who are concerned about their
reputation in the labor market. We assume, like Berk and Green (2004), that
the manager only enters into one-period contracts with investors.

ASSUMPTION 1: At each date t, the manager offers investors a one-period asset
management contract.

Assumption 1 imposes a restriction only on the horizon of contracts: the par-
ties cannot contract at date t on actions or transfers beyond date t +�t. Parties
are free to write any one-period contracts, however, subject to the limited liabil-
ity constraint of the manager. We next show that this restriction to short-term
contracts does not lead to misallocation of capital in the absence of frictions.

LEMMA 2: Under Assumption 1, the manager adopts the optimal fund size q(π )
at each date and extracts the maximal expected surplus v(π )�t.

PROOF OF LEMMA 2: One only needs to exhibit a particular contractual arrange-
ment that enables the manager to raise q(π ) in each period and receive expected
compensation v(π )�t over [t, t +�t]. In the absence of any frictions, there are
many different arrangements in which this can be achieved. For example, the
manager can simply ask investors at the beginning of each period to pay her
a salary v(π )�t, collect funds q(π ) from them, invest, and leave them the date
(t +�t) proceeds. As assumed by Berk and Green (2004), she may alternatively
quote a fee f�t at the beginning of each period. The fee is the fraction of the
date (t +�t) assets under management (before any new inflows or outflows of
funds) that accrues to the manager. If a manager with perceived skills π quotes
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a fee f�t, competitive investors will supply funds as long as their net expected
rate of return is equal to r. Thus, their fund supply q( f ) solves

(1 − f�t)
(
πe(r+a−c(q( f )))�t + (1 − π )e(r−c(q( f )))�t

)
= er�t.

Therefore, as �t → 0, q ( f ) solves

πa = c(q( f )) + f . (5)

The manager maximizes her expected profits by choosing f such that

f = arg max
f

f�t × q( f ) = arg max
f

(πa − c(q( f )))�t × q( f ),

which implies that the manager collects the maximal expected surplus
v(π )�t. �

This baseline model is essentially identical to that of Berk and Green (2004).
The main modeling difference is that the distribution of skills is binomial in
our setup while it is Gaussian in theirs. With our specification, the model
is stationary in perceived skill π and is therefore more tractable. In partic-
ular, this specification yields a tractable formulation of the manager’s total
expected profit from date 0 onwards. While this is not particularly useful in the
frictionless environment of Berk and Green (2004), it turns out to be instru-
mental when we introduce asymmetric information between the manager and
investors.

Let (πn�t)n≥0 denote the process that describes the manager’s perceived skill
at each date. From Lemma 2, the manager’s continuation utility is

V (π,�t) = E

[ ∞∑
n=0

e−rn�tv(πn�t)�t |π0 = π

]
,

where v(π ) is given by (4). The following proposition shows that this continua-
tion utility converges to a simple limit when �t becomes small.

PROPOSITION 1: Let

V (π ) = lim
�t→0

V (π,�t).

We have

V (π ) =
∫ 1

0
G (π, x) v(x)dx, (6)

where

G(π, x) = 2σ 2

ψa2x2(1 − x)2

{
g(1 − π )g(x) if 0 ≤ x ≤ π

g(π )g(1 − x) if π ≤ x ≤ 1
, (7)



Rewarding Trading Skills without Inducing Gambling 933

and

ψ =
√

1 + 8rσ 2

a2 , (8)

g(u) = u
1
2 + 1

2ψ (1 − u)
1
2 − 1

2ψ.

Convergence of V (π,�t) to V (π ) when �t → 0 is uniform over π ∈ (0,1) .

PROOF OF PROPOSITION 1: See the Appendix. �
In the remainder of the paper, all results are established for �t sufficiently

small to approximate the manager’s continuation utility with its continuous-
time limit (6).

Expression (6) can be interpreted as an expectation over the instantaneous
surplus v (x) weighted by a discount factor G(π, x). The factor G(π, x) has an
intuitive interpretation: it measures the discounted frequency of the future
dates at which the manager will have a perceived ability x given that she
starts out with perceived skill π . Notice that the factor G depends only on
a/σ, which governs the speed with which agents learn about the manager’s
skill, and on the discount rate r. The cost parameters α and β affect only the
instantaneous profit v from (4). This is because the cost is known and thus
filtered out by the agents when inferring skills from realized returns. It is easy
to verify that ∫ 1

0
G (π, x) xdx = π

r
. (9)

Thus, in the case α = 1, the continuation utility V (π ) is proportional to π.
We now depart from this frictionless benchmark set by Berk and Green

(2004) and introduce informational asymmetry between the manager and in-
vestors. We posit that the manager may secretly enter into zero-alpha trades
in order to manipulate her perceived skill instead of efficiently investing in
the alpha-generating technology described in (1). We show that the spot labor
market interactions considered thus far may generate perverse incentives in
the presence of this friction.

B. Risk Shifting

The Berk and Green (2004) model assumes a frictionless interaction be-
tween the manager and investors. While this is a very useful benchmark, in
reality several informational frictions may affect the delegation of asset man-
agement to sophisticated entities such as hedge funds and investment banks.
As the following quote from the Financial Stability Forum (FSF) “Principles for
Sound Compensation Practices” suggests, the impossibility of perfectly mon-
itoring shifts in risk exposures within such institutions can be particularly
problematic:

In principle, if risk management and control systems were strong and
highly effective, the risk-taking incentives provided by compensation
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systems would not matter because risk would stay within the firm’s ap-
petite. In practice, all risk management and control systems have lim-
itations and, as the current crisis has shown, they can fail to properly
control risks. The incentives provided by compensation can be extremely
powerful. Without attention to the risk implications of the compensa-
tion system, risk management and control systems can be overwhelmed,
evaded, or captured by risk-takers.

To study such incentives for surreptitiously shifting risk exposures, we in-
troduce the following friction to the baseline model.

ASSUMPTION 2: At each date, the manager can secretly invest all or part of her
funds in an alternative (risk-shifting) technology whose returns are perfectly
scalable and independent of the returns on the technology described in (1). This
technology enables her to generate a one-period gross return with any arbitrary
distribution over [0,∞) with mean er′�t, where r′ ≤ r. Investors observe returns
realized at the reporting and contracting dates n�t, at which the manager’s
position is marked-to-market.

We now briefly comment on our modeling choice. We interpret the alpha-
generating technology (1) available to the manager as the investment strategy
that she and the investors and/or her supervisors agree upon. In practice this
strategy may vary over time, and involve shifts in asset selection, asset allo-
cation, or overall risk exposure, but such shifts are agreed between the par-
ties. For simplicity, we abstract from changes in strategy and, following Berk
and Green (2004), model the agreed trading strategy as a simple production
function (1).

The risk-shifting technology that the manager may secretly use reflects the
positions that she can conceal from the investors and/or her supervisors by
evading the various control and risk management systems put in place to mon-
itor her. To bring our results into sharper focus, we assume that these trades are
detrimental to investors in that they do not generate a positive risk-adjusted
expected excess return. Moreover, we allow for the possibility that concealing
these trades from investors comes at a cost r − r′. The assumption that these
trades are independent of the alpha-generating technology ensures that they
cannot be used for arbitrage purposes. Because such trades yield less in terms
of expectation than the manager’s alpha-generating technology (1), she will not
invest her own funds in them. In the presence of career concerns, however, the
manager may be tempted to use the risk-shifting technology because it provides
her an opportunity to manipulate investors’ beliefs about her reputation.

Given the large set of trading opportunities available to sophisticated man-
agers, we consider a general setting in which the fund manager can secretly
choose any arbitrary payoff distribution. One of the questions we are inter-
ested in relates to understanding which trades work best in manipulating
investors’ beliefs. For expositional simplicity, we assume perfect scalability of
these trades. It is a straightforward matter to extend our analysis to the case
in which large trades are more difficult to hide than small trades.
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The manager in our model may be literally interpreted as an individual
trader, or alternatively may be interpreted as a desk or division that collectively
decides to breach its mandate or exceed its risk limits. In the remainder of the
paper, we refer to the secret use of this inefficient technology by the manager,
as opposed to the transparent risk taking induced by the alpha-generating
technology (1), as risk shifting or gambling.

We now study whether the friction introduced in Assumption 2 affects the
outcomes in the Berk and Green (2004) environment for short-term contracts
(Assumption 1). The first type of opportunistic behavior could occur if the man-
ager secretly invests a portion of her funds at the risk-free rate r′ rather than
using her alpha-generating technology. This represents the case in which a
manager performs well from January to November, say, and then stops invest-
ing actively in order to lock in a profit. We have the following result.

PROPOSITION 2: If
r′ ≤ r − σ 2/2, (10)

then the manager does not secretly invest at the risk-free rate.

PROOF OF PROPOSITION 2: See the Appendix. �
The remainder of the paper focuses on situations in which the manager uses

the risk-shifting technology to increase rather than reduce risk. We believe
that this is a more important question because such excessive risk taking
could contribute to financial instability, as suggested by the recent financial
crisis. In what follows we therefore assume that condition (10) holds.

We now characterize the manager’s incentives to gamble secretly (and inef-
ficiently). Suppose that the economy is in an equilibrium in which investors
believe that the manager always invests in the alpha-generating technology
(1). We assess whether the manager could be tempted to deviate and enter into
a one-shot gamble.

Suppose that the manager gambles during her first trading round, realizes
return R, and does not gamble further. Also suppose that investors believe
that the manager has never gambled. Let πn�t be the manager’s (correct) belief
about her skill at date n�t and let π R

n�t be investors’ (incorrect) perception of
her skills at date n�t. We have the following result.

PROPOSITION 3:

π R
t ≡ lim

�t→0,n�t→t
π R

n�t = πt R
a
σ2

1 − πt + πt R
a
σ2
. (11)

PROOF OF PROPOSITION 3: See the Appendix. �
REMARK 1: In principle, a realization of R = 0 should perfectly reveal to in-
vestors that the manager gambled because her alpha-generating technology
delivers strictly positive returns with a probability of one. We assume instead
that π R

t is continuous at zero, so that investors infer π = 0 from observing R = 0.
Equivalently, we could assume that traders who are caught gambling are ex-
cluded from the market.
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The continuation utility of the manager after the return R is realized is

W(π, R,�t) = E

[ ∞∑
n=0

e−rn�tv(π R
n�t)�t|π0 = π

]
.

For �t small, (6) and (11) imply that

W (π, R) ≡ lim
�t→0

W(π, R,�t) =
∫ 1

0
G (π, x) v

(
xR

a
σ2

1 − x + xR
a
σ2

)
dx. (12)

Notice that as �t → 0 the mean of the gamble, er′�t, converges to one irrespec-
tive of r′. The manager therefore chooses a unit mean gamble whose distribution
maximizes her expectation over W (π, R). Formally, denoting by M the set of
Borelian probability measures over [0,+∞), the manager solves

max
μ∈M

∫ ∞

0
W (π, R) dμ(R) (13)

s. t.
∫ ∞

0
Rdμ(R) = 1.

In the Internet Appendix,2 we show that a generic solution to (13) is attained
using a binary gamble—or a measure that consists of two atoms, one above one
and the other below one. If these two atoms coincide at one, the manager does
not find it worthwhile to gamble and an equilibrium without inefficient risk
shifting can be sustained. If they do not, then the optimal binary gamble is not
degenerate, which means that such an equilibrium without risk shifting does
not exist.

Obviously, a sufficient condition that makes gambling undesirable is that
W (π, R) is concave in R. More generally, the optimal gamble is determined by
the convexity properties of W (π, R), which in turn depend on the parameters
a, σ , α, and r. We have the following result.

PROPOSITION 4: Suppose that Assumptions 1 and 2 hold.

(i) If
a
σ 2 ≤ 1

α
, (14)

then there exists an equilibrium in which the manager extracts the entire
expected surplus and does not engage in risk shifting.

(ii) If
a
σ 2 >

1
α

and r >
α(α − 1)a2

2σ 2 , (15)

then such an equilibrium does not exist.

2 The Internet Appendix is available in the online version of the article on the Journal of Finance
website.



Rewarding Trading Skills without Inducing Gambling 937

PROOF OF PROPOSITION 4: See the Appendix. �
To gain a better understanding of the results in Proposition 4, suppose that

the manager tries to “pick up nickels in front of a steamroller,” in other words,
she gambles and realizes an instantaneous return of 1 + ε with probability
1/(1 + ε), where ε is small, or loses everything. Then, from (11), in the case of
success, her new reputation is

π R = π (1 + ε)
a
σ2

1 − π + π (1 + ε)
a
σ2
,

which for π and ε small enough is approximately

π R � π0

(
1 + a

σ 2 ε
)
. (16)

Further, Lemma 6 in the Appendix shows that, if r is not too small, then the
continuation utility of the manager V (π ) behaves as πα as π → 0. Therefore,
the manager’s net expected gain from the gamble for π and ε small enough is
proportional to

1
1 + ε

(
π R
)α

− πα � πα
(αa
σ 2 − 1

)
ε. (17)

Thus, whether there is risk shifting depends on whether the ratio αa/σ 2 is
greater or less than one.

Proposition 4 shows that risk shifting is particularly appealing when three
conditions are met. First, managerial skill generates a high alpha per unit of
risk (a/σ 2 is large). One can see from (16) that, in this case, realized returns
have a large impact on investors’ beliefs. Second, the manager’s skill is suffi-
ciently scalable (α is large). In this case, positive news about her skill translates
into a large increase in expected future fund size, and thus into large future ex-
pected profits. Finally, the manager should be sufficiently impatient (r is large).
If the manager is patient, she only cares about the long run in which she ends
up with the reputation that she deserves regardless of her earlier attempts
to gamble. In this regard, it is worth noting that condition r > α(α−1)a2

2σ 2 in (15)
is only a sufficient condition for risk shifting. Numerical analysis shows that
the manager is tempted to gamble under much milder conditions on r when
a/σ 2 > 1/α is satisfied.

To assess whether the risk-shifting friction is likely to be important in prac-
tice, we consider a calibration consistent with that of Berk and Green (2004).
We set α = 2, a = 5%, σ = 25%, and r = 5%. Simple calculations show that con-
ditions (15) are satisfied. More generally, condition a/σ 2 > 1/α is very likely
to be satisfied in practice as it holds whenever the Sharpe ratio of a portfolio
strategy is larger than its volatility (a/σ > σ ), which is true for almost all in-
vestment strategies. In sum, we find that risk shifting matters in this model
for parameter values that are empirically plausible.3

3 Our results are also broadly supported by empirical findings of Brown, Harlow, and Starks
(1996) and Chevalier and Ellison (1997), who show that mutual fund managers tend to take on
more risk following disappointing performance.
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C. Equilibria with Risk Shifting

Proposition 4 establishes that, under the plausible conditions (15), an equi-
librium without gambling does not exist. This raises two questions: under these
conditions, which gambles emerge in equilibrium, and how does gambling in
equilibrium affect learning and the distribution of realized returns?

To answer these questions, we consider a reduced-form version of our model
that allows us to abstract from complex signaling issues that would arise in
an infinite horizon dynamic model, but nevertheless yields interesting insights
into equilibrium gambling strategies.4 Specifically, we study the following static
model. We assume that the manager makes only one investment decision: she
can invest one unit of capital using one of two technologies. First, she can use
an alpha-generating technology, which produces a gross return of

eaθ−σ 2/2+σξ , ξ ∼ N(0,1), (18)

where again θ ∈ {0; 1} is the unknown ability of the manager. Alternatively,
she can invest her funds in the risk-shifting technology that enables her to
generate a gross return with any arbitrary distribution over [0,+∞) with unit
mean.

Investors and the manager share the common prior belief π0 that the man-
ager is skilled (θ = 1). Upon observing the return R realized by the manager,
but without knowing if she gambled or used the alpha-generating technology,
investors update their beliefs about the manager’s skill. As before, we denote
by π R

1 = Prob{θ = 1|R} investors’ posterior belief that θ = 1, and refer to it as
the manager’s reputation.

We assume that the manager invests to maximize the sum of her expected
current return R and a reduced-form continuation utility that is proportional
to her reputation π R

1 :

max E
(
γ R + π R

1

)
, γ > 0.

Assuming a continuation utility that is linear in reputation is commonplace in
the literature on career concerns (see, for example, Dasgupta and Prat (2008),
Holmstrom and Ricart I Costa (1986), and Scharfstein and Stein (1990)). It is
also consistent with what the manager obtains in our dynamic model when the
fund size is fixed (α = 1).

Lemma 3, similar to Proposition 4, shows that, if a > σ 2, then an equilibrium
without gambling does not exist.

LEMMA 3: If a > σ 2 and π0 is sufficiently low, then there exists no equilibrium
without gambling.

4 In an equilibrium with gambling, unlike in an equilibrium without gambling, the manager
and investors possess different information about the manager’s ability. While the manager knows
whether she gambled, investors can only imperfectly infer this from observed returns. This creates
room for signaling, whereby a truly skilled manager would like to credibly distinguish herself
from a lucky gambler. Solving for such equilibria with asymmetric information is a very difficult
problem and is beyond the scope of this paper.
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PROOF OF LEMMA 3: See the Appendix. �

We now assume that the conditions in Lemma 3 are satisfied, and character-
ize an equilibrium with gambling. As before, we assume that the manager who
is caught gambling is excluded from the market and attains zero utility. Thus,
in any equilibrium with gambling, the manager cannot gamble with a proba-
bility of one. Notice that if the manager decides to gamble she should choose
a distribution for her returns that has no atoms other than at zero. Suppose
otherwise that investors believe a particular return R̂ > 0 occurs with a strictly
positive probability. Because the distribution of returns of the efficient technol-
ogy has no atoms, then upon observing R̂ investors would conclude that the
manager gambles and penalize her with zero payoff. In this case, the manager
would be better off setting R̂ to zero in the first place and using the realized
surplus to improve the distribution of returns.

The forgoing observations imply that the investment strategy of the manager
can be summarized as follows. The manager invests in her alpha-generating
technology with probability (1 − q) and gambles with probability q ∈ (0,1) . In
the latter case, she chooses a gamble that pays off zero with probability x ≥ 0
and, conditional on not yielding zero, admits an atomless density ϕ over [0,∞).
The following lemma further characterizes this strategy.

LEMMA 4: The gamble yields zero with a positive probability (x > 0). The density
ϕ is single-peaked and has the support [z1, z2], where 1 < z1 < z2.

PROOF OF LEMMA 4: See the Appendix. �

Lemma 4 shows that equilibria with risk shifting involve trading strategies
that take on hidden tail risk. With some probability, the manager sells disaster
insurance. She uses the insurance premium to generate a noisy excess return if
the disaster does not occur. Upon observing such fake excess returns, investors
still revise their views about the manager’s skill upwards because the manager
also uses her alpha-generating technology with some probability.

The proof of Lemma 4 provides an analytical expression for ϕ. Here we
consider a numerical example. We assume the following parameter values:
σ = 10%, a = 2σ 2 = 2%, π0 = 40%, and γ = 10%.

First, we check that, with these parameter values, an equilibrium without
gambling does not exist. Suppose, by contradiction, that such an equilibrium
does exist. In this case, after observing a return R, investors form a posterior
belief about the manager’s skill:

π R
1 = π0χRa/σ 2

π0χRa/σ 2 + 1 − π0
, χ = e−a(a−σ 2)/2σ 2

.

Figure 1, Panel (A), depicts π R
1 . It is increasing in R and initially convex and

then concave.
If the manager does not gamble and invests in the efficient technology, her

expected future reputation coincides with the current reputation, and is π0.

The Internet Appendix offers a simple procedure to check whether the manager
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Panel A Panel B Panel C

Figure 1. Taking on hidden tail risk. Figure 1 illustrates an example considered in Section
I.C. Parameter values are as follows: σ = 10%, a = 2σ 2 = 2%, π0 = 40%, and γ = 10%. In Panel
(A), the solid line shows a reputation of the manager at date 1 as a function of the realized gross
return R when investors believe that the manager does not gamble. The optimal gamble delivers
either zero or a gross return of 1.23 with a probability of 80%. In Panel (B), the solid line displays
a reputation of the manager in the equilibrium in which investors rationally take into account
that the manager gambles. In equilibrium, the manager gambles with probability q = 5.6%. When
she gambles, the manager loses everything with probability x = 8.8% and obtains a gross return
between 1.02 and 1.49. Panel (C) shows the gamble’s density.

can enhance her expected reputation by resorting to gambling. This procedure
consists of finding the straight line that has the smallest value at one among
all the straight lines that are above the graph of π R

1 . The manager manipulates
her reputation if and only if this straight line takes a value strictly larger than
π0 at R = 1. An optimal gamble has its support included in the set where this
line coincides with π R

1 .
Panel (A) shows that, in our example, there is an optimal gamble that deliv-

ers either zero or a gross return of 1.23 with a probability of 80%. The expected
reputation from such a gamble is 40.6% > 40%. The gains in expected reputa-
tion from gambling come at the cost of lower expected returns. If the manager
gambles, the expected return is only one, while it is π0ea + (1 − π0) = 1.008 if
she uses the alpha-generating technology. Because the cost is less than the
reputation gain, an equilibrium without gambling is not sustainable.

Next, we solve for the manager’s equilibrium strategy with randomized gam-
bling. Figure 1, Panel (B), shows the equilibrium posterior π R

1 . In contrast to
that in Panel (A), the posterior now has a linear portion over [1.02,1.49]. In
equilibrium, the manager gambles with probability q = 5.6%. When she gam-
bles, the manager loses everything with probability x = 8.8% and obtains an
excess return between 2% and 49% with a density shown in Figure 1, Panel (C).
The range of these returns [1.02,1.49] corresponds to the linear part of π R

1 in
Figure 1, Panel (B). The unconditional probability that the manager goes bust
is q × x = 0.5%. Thus, the manager trades an excess return with probability
99.5% with the risk of losing everything.

While binary gambles are optimal deviations in an equilibrium in which
investors believe that the manager does not gamble, the equilibrium gambles
are not binary because this would be detected by investors. The equilibrium
posterior with gambling is flatter than the one without gambling in the region
[1.02,1.49],where the returns from gambling are realized. As a result, learning
about managerial skill is slower in the equilibrium with gambling.
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D. What Are the Costs of Risk Shifting?

The results of Sections I.B and I.C suggest that there are three types of costs
associated with risk shifting induced by career concerns in delegated asset
management. First, realized returns are riskier in equilibria with gambling.
While in our setting investors are risk-neutral, it would be straightforward to
extend our model to one in which investors are risk-averse. In this case, addi-
tional risk would be costly to them, unless one assumes that gambles are purely
idiosyncratic and investors can diversify them away. From a financial stability
perspective (which is beyond the scope of our model), the most worrying aspect
of equilibrium risk shifting is that it thickens the left tail of returns, since
the manager finances small and frequent positive excess returns with rare but
devastating losses. When such incentives prevail within institutions that have
legal access to public safety nets, or that are too big or too systemic too fail, the
induced cost for taxpayers of the occurrence of such fat-tailed returns can be
very high.

Second, the manager may give up pursuing alpha-generating strategies and
invest instead in fairly priced portfolios, which have a risk profile better suited
to the manipulation of her reputation. As a result, markets may not be as
efficient as they would be if the manager tried to correct any mispricing.

Finally, gambling in equilibrium slows down the discovery of managerial skill
because the manager applies her skill less often. This leads to a less efficient
allocation of capital.

II. Long-Term Contracts and Risk Shifting

In the previous section, we show that risk shifting reduces the gains from
matching “brains and resources” through delegated asset management, and
generates significant tail risk for financial institutions. We also show that risk
shifting is likely to occur in equilibrium if only one-period contracts are used.

This section introduces the possibility of long-term contracting. We perform
two exercises. First, we consider the risk-taking incentives induced by perfor-
mance fees with high-water marks, which are commonly used in the hedge
fund industry. We show that this contract does not eliminate the risk-shifting
incentives created by the flow-performance relationship. Second, we solve for
optimal contracts that eliminate risk shifting even when conditions (15) are
satisfied.

For simplicity, this section restricts the analysis to the case in which the
alpha-generating technology is such that α = 1 in (2). In this case, reputation
affects the manager’s expected alpha but not the optimal fund size, which is
constant and equal to one.

A. Performance Fees with High-Water Marks

The typical fee structure in the hedge fund industry usually includes a man-
agement fee and a performance fee. Management fees are a fixed fraction of
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the fund’s net asset value, ranging from 1% to 4% per annum, and are meant to
cover the fund’s operating costs. The performance fee is a fraction of the fund’s
profits over a given year, ranging from 15% to 50%. The most widespread combi-
nation is a 2% management fee and a 20% performance fee, the so-called “2-20”
contract. The performance fee typically includes a high-water mark (HWM)
provision, meaning that the fee applies only to the profits in excess of the pre-
vious fund maximum. The goal of this section is to study whether performance
fees are conducive to risk shifting in our model.

Because the terms of the contract are usually fixed, in general the manager
does not extract the maximum expected surplus but leaves some surplus to
investors. This would not be possible with the one-sided commitment assumed
thus far because the manager would enter into a new contract with higher
fees if her reputation improved. Such renegotiation by hedge fund managers
is not just a theoretical possibility. In practice, managers do adjust their fees
in response to their performance. There is also ample anecdotal evidence that
fund managers tend to close funds that have underperformed in order to reset
the HWM.5 Nevertheless, to provide a meaningful analysis, we only assume in
this subsection that both investors and the manager agree on the fees and can
commit not to renegotiate them.

To understand the risk-taking incentives created by the performance fee, we
first consider a situation in which there are no new inflows after the manager
and investors sign the contract at date 0. Specifically, we assume that both
the manager and investors can commit to the following contract: (i) at date 0,
investors make an initial unit investment in the fund; (ii) the manager receives
a performance fee k with an HWM equal to one and returns the fraction of the
fund value in excess of one that she does not receive as a performance fee to
investors; and (iii) there are no new inflows to the fund.

Under the above contract, if the manager uses the alpha-generating technol-
ogy, the fund size (qt)t≥0 evolves according to

dqt = qt[(r + aθ ) dt + σdBt] − dHt, (19)

Ht =
∫ t

0
1{qs=1}dqs. (20)

Ht is the fund value in excess of one that is redeemed to investors after the
performance fee is paid. It is a nondecreasing adapted process that increases
only when qt exceeds the optimal fund size equal to one. At any date t, the
continuation utility of the manager is

Wt = Et

[∫ ∞

t
e−rskdHt+s

]
. (21)

5 See, for example, Gregory Zuckerman, “Andor Haunted by a Bad Bet,” Wall Street Journal, July
15, 2004; Amey Stone, “Hedge Funds: Fees Down? Close Shop,” Bloomberg Business Week, August
7, 2005; or “Hedge-Fund Closures: Quitting While They’re Behind,” The Economist, February 18,
2012.
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The next proposition computes this utility Wt and shows that the manager
never finds it worthwhile to gamble in this case.

PROPOSITION 5: Suppose that the manager commits to the contract described
in (i), (ii), and (iii) above. Then she never finds gambling worthwhile and her
continuation utility is

Wt = k
(
πtρ

−1qρt + (1 − πt)qt
)
, (22)

ρ = −(r + a − σ 2/2) +
√

(r + a − σ 2/2)2 + 2rσ 2

σ 2 < 1.

PROOF OF PROPOSITION 5: See the Appendix. �
Proposition 5 shows that, without new inflows, a performance fee with an

HWM is not sufficiently convex to trigger gambling. A similar result is estab-
lished by Panageas and Westerfield (2009). Although our results are closely
related, our setting differs from that of Panageas and Westerfield (2009) along
several interesting dimensions.

Panageas and Westerfield (2009) also consider a risk-neutral fund manager
who is compensated according to (21). The manager cannot secretly gamble but
she can take positions in a risk-free asset and in a risky asset that carries an
exogenous constant excess return. Panageas and Westerfield (2009) find that,
despite risk neutrality, the manager optimally maintains a finite and constant
leverage. One way to understand their result is to notice that the performance
fee with an HWM can be viewed as a continuum of call options with varying
maturities. An increase in risk raises the value of the options with the closest
maturity but also increases the possibility that more remote options will become
far out-of-the money in the case of adverse realizations. The resulting trade-off
yields a constant leverage that depends on both the manager’s discount rate and
the excess return on the risky asset. When the latter goes to zero, Panageas and
Westerfield (2009) show that the optimal leverage goes to infinity. This result
crucially depends, however, on the assumption that the manager’s discount
rate is strictly greater than the risk-free rate.

If the manager had a discount rate greater than r in our setting, she would
find it optimal to gamble as her reputation deteriorates. In our model, as the
manager’s reputation declines, the perceived expected return on the alpha-
generating technology goes to zero. Therefore, at some point the manager would
choose to forfeit investing in a technology that provides a small excess return
but limited risk in favor of gambling with unrestricted risk-taking possibilities.
This does not occur here only because the manager’s discount rate is equal to
the risk-free rate. In this case, the manager never trades, even in the hope of
gaining small expected excess returns in exchange for more risk.

Proposition 5 may suggest that the HWM contract does not lead to gambling.
This conclusion, however, does not apply if fund inflows are considered. The
case of α = 1 is especially illustrative and simple. Provided that the reputation
of the manager is high enough to cover her performance fees, investors will
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always be willing to supply funds until the assets under management reach
their optimal size equal to one. This drastically reduces the penalty that accrues
from realizing negative returns and therefore from gambling.

To demonstrate this, suppose that the manager has an option to reopen her
fund to new investors once. Let q∗ be the fund size when she decides to reopen
her fund. In this case, the manager raises 1 − q∗ units of fresh capital with an
HWM set to one. We assume that the new investors are the first to withdraw
their capital if the total fund size exceeds the optimal fund size of one.6

Let qo
t and qn

t be the respective stakes in the fund of the old and new investors
after the fund is reopened and before the stake of the old investors reaches one.
Then, if the manager uses her alpha-generating technology, qo

t and qn
t evolve

according to

dqo
t = qo

t

[
(r + aθ ) dt + σdBt

]
, (23)

d(qo
t + qn

t ) = (qo
t + qn

t )
[
(r + aθ ) dt + σdBt

]− dHt, (24)

Ht =
∫ t

0
1{qo

t +qn
t =1}d(qo

t + qn
t ). (25)

When the stake of the old investors reaches one, they become the sole investors
in the fund again, and their capital evolves according to (19) and (20). We
denote this moment as τ1. Let τq∗ denote the time when the funds of the original
investors reach a level q∗ and the manager reopens the fund to new inflows.
The manager’s expected fees from new investors are

Wn(q∗) = Et

[∫ τ1

τq∗
e−rskqn

t dHt+s

]
, (26)

where Ht is given by (25). The present value of these fees is

Ee−rτq∗ Wn(q∗).

While Wn(q∗) decreases in q∗ and reaches maximum at q∗ = 0, Ee−rτq∗ increases
in q∗. Thus, in setting q∗ that solves

sup
q∗

Ee−rτq∗ Wn(q∗), (27)

the manager faces a trade-off between the amount of fees she can generate
from new investors and how quickly she can receive these fees.

Gambling affects the distribution of τq∗. In particular, if the manager takes
on hidden tail risk and realizes a low return, the manager can exercise her
option to raise new funds sooner. This greatly reduces the cost of gambling
and therefore provides strong incentives to engage in risk shifting. Of course,

6 This assumption makes gambling less likely because it decreases the manager’s expected fees
from opening the fund to new investors, and thus makes gambling more costly.
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the option to raise new funds is only of value to managers whose reputation is
good enough that they are still able to attract new flows after a loss. Therefore,
incentives to take on hidden tail risk are highest for managers with a good rep-
utation. However, this result depends on the assumption made in this section
that the manager does not renegotiate her contract as her reputation improves.
In the next subsection, we show that, when the manager is paid the maximum
surplus she can generate, it is a manager with a low reputation who has the
highest incentives to gamble. This is because a manager who is perceived to be
highly skilled has much to lose if her reputation becomes tarnished. Under the
“2-20” contract, however, a good manager does not generally extract the max-
imum surplus, which makes gambling less costly. We thus have the following
proposition.

PROPOSITION 6: Suppose that the manager commits to the contract described in
(i) and (ii). In addition, suppose that the manager has an option to reopen her
fund to new investors who supply funds as long as they expect to break even.
If r > σ 2/10, then there exists π such that for all π ≥ π , the manager with a
reputation π gambles.

PROOF OF PROPOSITION 6: See the Appendix. �

Proposition 6 shows that an option to receive more inflows, even if it occurs
only once, is sufficient to create gambling incentives. This suggests that typical
performance fees may be problematic in practice given that hedge funds are
typically open-ended and do have the option to increase their capital.

B. Optimal Contract with Contingent Bonus Deferral

Under the strong, and in our view unrealistic, assumption that the manager
can commit not to renegotiate a contract after her reputation has improved,
very simple contracts can eliminate risk shifting. For example, fully insur-
ing the manager by guaranteeing a fixed wage equal to aπ0 per period would
eliminate any incentives to gamble. This is not feasible in the more realistic
environment with one-sided commitment considered here—the manager can
walk away from such an insurance contract as soon as her reputation improves.

When commitment is one-sided, contracts must be structured in such a way
that the continuation utility of the manager at any date is at least as large as
her outside options given her current reputation. This implies that a contract
for a given initial π0 cannot be determined in isolation. Instead, all contracts for
all initial skill levels depend on each other through the channel of managerial
outside options. In this section, we present contracts that eliminate risk shifting
by exploiting the fact that the impact of gambling on investor beliefs vanishes
in the long run.

Before constructing these contracts, we illustrate the way they work using
the following simple contract. Suppose that investors and the manager sign
the following contract at date 0. The investors commit to invest one unit in the
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fund at each date between 0 and T . The manager does not receive any payment
until date T , at which she receives a single payment wT such that

wT = aπT

r

(
erT − 1

)
. (28)

Suppose, for now only, that after date T the manager no longer works. The
date 0 present value of the payment is

E0
[
e−rTwT

] = aπ0

r

(
1 − e−rT ),

which is exactly the present value of the excess returns that investors expect to
receive between 0 and T if the manager uses her alpha-generating technology
throughout. The contract resembles a deferred bonus with clawback provisions,
whereby the manager receives a single terminal payment that is contingent on
her entire track record over the period

[
0,T

]
, as summarized by πT .

Consider the manager’s incentives to gamble at date 0 given such a contract.
As in (13), if the manager decides to gamble, she chooses a distribution μ that
solves

�(π,T ) ≡ max
μ

∫ ∞

0
E0

[
πT R

a
σ2

1 − πT + πT R
a
σ2

|π0 = π

]
dμ(R) (29)

s. t.
∫ ∞

0
Rdμ(R) = 1.

The manager will not be tempted to gamble at date 0 if and only if

�(π0,T ) = π0. (30)

The following lemma establishes important properties of �(π,T ).

LEMMA 5: For all π ∈ (0,1), the function �(π,T ) decreases with respect to T
and is equal to π for all T sufficiently large. Furthermore, there exists π such
that, for all π ≥ π , �(π,0) = π .

PROOF OF LEMMA 5: See the Appendix. �
Because �(π,T ) decreases with respect to T , date 0 gambling becomes less

appealing as the payment date becomes more remote. This formalizes the in-
sight that the impact of gambling on investors’ beliefs diminishes over time.
Lemma 5 implies in particular that we can define for all π

τ (π ) ≡ inf
{
t ≥ 0 : �(π, t) = π

}
. (31)

If T ≥ τ (π0), then the manager does not gamble at date 0. As the reputation
of the manager improves, incentives to gamble decrease. Lemma 5 shows that
a manager with a sufficiently high reputation does not gamble even if the
payment is made at date 0.

In light of the forgoing, we are now ready to define an optimal contract.
There are two matters that the fixed-date single-payment contract outlined
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above does not address. First, while setting the payment date at τ (π0) deters
date 0 gambling, there is no guarantee that the manager will not be tempted to
gamble as the payment date approaches. Second, it is necessary to check that,
if the manager enters into a new single-payment contract after the current
one expires, this does not affect her incentives to gamble within the current
contract.

We construct the optimal contract as follows. At date 0, the investors com-
mit to pay wT0 = aπT0

r (erT0 − 1) at a random date T0 that is defined as fol-
lows. Initially, T0 is equal to τ (π0). Then, for all n ≥ 1, if T(n−1)�t = 1 the
payment is made and the contract ends. Otherwise, the date is revised as
Tn�t = max{T(n−1)�t − 1; τ (πn�t)}. After the payment of this current contract is
made, a new similar contract is initiated at date T with initial reputation πT .
We have the following proposition.

PROPOSITION 7: If the manager is compensated according to a sequence of single-
payment contracts such that a contract that starts at date t promises the payment
aπT

r (erT − 1) at a random date T as defined as above, she never gambles and
extracts the maximum expected surplus.

PROOF OF PROPOSITION 7: Investors can commit to this contract because, by
construction, investors break even ex ante. We therefore only need to prove
two remaining results: first, the manager’s continuation utility is higher than
her outside option at any date, and second, the manager never finds it optimal
to gamble.

With respect to the first point, we define the random payment date of the
current contract as T . At date t, the manager expects to receive

Et

[
e−r(T −t)

(
wT + aπT

r

)]
= ertaπt

r
≥ aπt

r
.

Turning to the second point, we observe that, by construction, the random
payment date T is such that the manager has no incentive to gamble in order
to increase the expected payment from the current contract. It may still be the
case that the manager finds it worthwhile to gamble to increase her expected
payoff on the subsequent contracts that follow the terminal payment of the
current one. Notice that, from Lemma 5, the case that is most conducive to
gambling is that in which all the payments from subsequent contracts are
made once and for all at date T . Even in this case, the expected payment
is aπT

r , which is proportional to wT = aπT
r (erT − 1) and thus not conducive to

gambling.

Notice that this contract can be implemented in practice with share grants
to the manager instead of cash bonuses provided that (i) the manager is suf-
ficiently senior or important within the firm that her decisions actually affect
the share price, and (ii) the vesting schedule is stochastic, depending on the
manager’s entire track record as described above.

It is interesting to compare this contract with the one that emerges from
models of dynamic moral hazard such as, for example, DeMarzo and Sannikov
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(2006) or He (2009). In these models, an agent may secretly divert cash flows
instead of reporting her entire output to the principal. The optimal contract
in this case consists, as in ours, of adjusting the present value of the future
payments promised to the agent as her track record evolves.

However, the timing conditions of the future payments are rather different
in the two settings. In our contract it is crucial that the investors can commit
to not accelerating the timing of payments upon observing stellar performance.
In moral hazard models, a stellar track record results in accelerated payments
being made to the agent.

This difference arises because the contracts are driven by different economic
considerations. In our model, a stream of fixed payments would completely
eliminate any risk-shifting incentives. However, such fixed payments are not
viable because investors are forced to adjust the manager’s continuation value
as her reputation improves. If not, a good track record would lead the manager
to repudiate her current labor contract and sign a new one that reflects her new
improved reputation. The necessity of adjusting the continuation value creates
risk-shifting incentives that can be addressed by the investors’ commitment to
deferring payments.

In contrast, in moral hazard models, an adjustment of continuation values
is meant to provide the agent with incentives to report the highest possible
output instead of diverting some of it. Thus, the sooner the agent reports high
income, the better.

C. Current Financial Reforms and Contingent Bonus Deferral Contract

There is a widely shared view that inappropriate compensation schemes
within the financial services industry contributed to the financial crisis that
erupted in 2008. According to “Principles for Sound Compensation Practices”
published by the FSF and summarizing the outcome of multiple surveys of fi-
nancial institutions, “over 80 percent of market participants believe that com-
pensation practices played a role in promoting the accumulation of risks that
led to the current crisis.”

In the face of these compensation issues, public authorities around the world
have issued guidelines for compensation reforms. These guidelines prominently
feature the deferral of bonuses and the introduction of clawback mechanisms.
For example, in the United States, “Guidance on Sound Incentive Compen-
sation Policies,” jointly issued by several authorities,7 lists four methods of
making compensation more sensitive to risk, including “deferral of payment”
with explicit mention of clawbacks, “longer performance periods,” and “reduced
sensitivity to short-term performance.” The FSF similarly advises that “One
way to align time horizons is to place a portion, and in some cases up to the en-
tirety, of any given year’s bonus grant, both cash and equity, into the equivalent
of an escrow account. All or part of the grant is reversed if the firm as a whole

7 The authorities include Office of the Comptroller of the Currency, Federal Reserve, Federal
Deposit Insurance Corporation, Treasury, and Office of Thrift Supervision.
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performs poorly, or if the exposures the employee caused the firm to assume in
the year for which the bonus was granted perform poorly (a clawback).”

The industry is gradually beginning to follow this guidance. The Interna-
tional Institute of Finance, surveying the practices of 37 financial institutions
representing more than half of global banking activity, concludes that8 “The
industry has begun to take steps to strengthen the link between delivery of
deferred compensation and the continued performance of the individual. Over
40% of the firms surveyed include performance-based criteria in their deferred
compensation schemes, although in a majority of cases this takes simply the
form of a penalty for gross misconduct or large-scale unexpected losses. A num-
ber of firms have developed more sophisticated approaches that incorporate a
final payout multiplier that adjusts compensation up or down based on current
year or historical performance.”

Interestingly, the stochastic payment dates that we introduce in this section
strongly resemble this introduction of bonus deferral and clawbacks. While our
optimal contract follows the spirit of these reforms, we believe that it also raises
some important caveats. Our model suggests that setting the bonus payment
date once and for all is in general not optimal, even if the terminal bonus is
adjusted for subsequent performance. Additionally, it is important to commit to
adjusting the payment date as events unfold. For example, our analysis shows
that a three-year deferral might induce excessive risk taking at the end of year
2 if the manager has not performed well and the bonus is due in one year.

III. Conclusion

Financial innovation has come under severe criticism after the crisis that
erupted in 2007. Several papers document that a number of structured products
appeared to be aimed mostly at exploiting investors’ weaknesses or ignorance.9

In this paper, we suggest that, by enlarging the set of financial instruments
available to fund managers, financial innovation may exacerbate agency costs
even when investors are sophisticated, provided that investors cannot perfectly
monitor the positions of the fund managers.

We introduce a novel framework to study this agency problem between man-
agers and investors. In this framework, a manager’s compensation depends on
investors’ perception of the manager’s ability to generate excess returns above
a fair compensation for risk (alpha). The manager can temporarily distort the
perception of her alpha-generating skill by trading a rich menu of financial
instruments.

8 In “Compensation in Financial Services, Industry Progress and the Agenda for Change,” March
2009. The International Institute of Finance is the leading global association of financial institu-
tions.

9 For example, Coval, Jurek, and Stafford (2009a) and Coval, Jurek, and Stafford (2009b) argue
that senior CDO tranches aimed at exploiting the misperception of correlation risk by rating
agencies, and that of systematic exposure by investors. Henderson and Pearson (2011) consider
a class of structured equity products offered at prices that are hard to reconcile with purchasers’
rationality.
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The model delivers two main implications. First, in the absence of careful
contracting, this friction may lead managers to take on hidden tail risk in order
to distort their perceived skill temporarily. Second, while current compensa-
tion reforms based on the deferral and clawback of bonuses appear to be an
appropriate tool for addressing this issue, in their current form these reforms
miss the point that the payment dates must be dynamically adjusted as the
cumulative performance of the manager evolves.

In general, there are ways to address risk shifting in delegated asset manage-
ment other than through the compensation design. Possible solutions include
increased transparency, or restrictions on the set of instruments that managers
can trade. In this paper, we focus on solving the risk-shifting problem using
compensation design alone. This makes the problem more challenging. Future
research could combine optimal contracting with these additional means of
addressing the risk-shifting problem. On the other hand, we assume that po-
sitions are always valued at a fair market price. Instruments that are more
difficult to value such as illiquid securities or exotic derivative contracts are
likely to provide fund managers additional risk-shifting incentives if trading
losses can be concealed for some time. Future research could further explore
these channels for engaging in risk transformation.

Initial submission: December 17, 2011; Final version received: December 18, 2014
Editor: Campbell Harvey

Appendix: Proofs

PROOF OF LEMMA 1: As �t → 0, the optimal fund size and maximal expected
surplus solve

lim
�t→0

q(π ) = arg max
q

q(πa − βq
1
α−1 ),

lim
�t→0

v(π ) = max
q

q(πa − βq
1
α−1 ).

Direct computations show that

lim
�t→0

q(π ) =
(
α − 1
αβ

aπ
)α−1

,

lim
�t→0

v(π ) = β1−α (α − 1)α−1

αα
(aπ )α . �

PROOF OF PROPOSITION 1: We first show point-wise convergence. That is, we
establish (6) for a fixed π0 = π . By Bayes’s theorem, πn�t, the perceived skill at
date n�t satisfies

πn�t = π0ϕn�t

1 − π0 + π0ϕn�t
, (A1)
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where

ϕn�t = exp
{

a
σ 2

(
a
(
θ − 1

2

)
n�t + σBn�t

)}
(A2)

is the likelihood ratio process. Let us introduce the continuous-time process
(πt)t≥0 that obeys

dπt = a
σ
πt(1 − πt)dBt, π0 = π,

where Bt = 1
σ

(θat + σBt − a
∫ t

0 πsds). Then (Bt)t≥0 is a standard Wiener process
under the agents’ filtration (see Liptser and Shiryaev (1978)). Further, as�t →
0 and n�t → t, πn�t → πt a.s. (see Liptser and Shiryaev (1978)). Hence, V (π )
can be written as

V (π ) = E0

∫ ∞

0
e−rtv(πt)dt,

s.t. dπt = a
σ
πt(1 − πt)dBt, π0 = π. (A3)

By the Feynman–Kac formula, the function V solves the following linear
second-order differential equation:

a2

2σ 2π
2(1 − π )2V

′′
(π ) − rV (π ) + v(π ) = 0. (A4)

From (A3) it follows that

V (0) = v(0)/r, V (1) = v(1)/r. (A5)

The corresponding homogeneous equation

a2

2σ 2π
2(1 − π )2V

′′
(π ) − rV (π ) = 0 (A6)

has two regular singular points at zero and one. All solutions of the homoge-
neous equation are linear combinations of the two independent solutions

g (π ) = (1 − π )
1
2 + 1

2ψπ
1
2 − 1

2ψ, ψ =
√

1 + 8rσ 2/a2,

h(π ) = g(1 − π ).

From here, formulas (6) and (7) are standard results in the theory of nonhomo-
geneous differential equations. The function G is the Dirichlet–Green function
for the differential operator associated with the homogeneous differential equa-
tion (see, for example, Driver (2003)).
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We now show that V (π,�t) converges to V (π ) uniformly in π as �t → 0. We
have

V (π ) − V (π,�t) = E

[ ∞∑
n=0

∫ (n+1)�t

n�t

(
e−rtv(πt) − e−rn�tv(πn�t)

)
dt|π0 = π

]
.

Thus, it is enough to show that ∀ε > 0, ∃�t such that ∀�t < �t and ∀π ∈ [0,1]

sup
s≤�t

sup
π∈[0,1]

|E (v(πs) − v(π )
) | < ε. (A7)

By a change of variables, (A7) can be written as

sup
s≤�t

sup
π∈[0,1]

|E (̂v(π, Bs, s) − v̂(π,0,0)
) | < ε,

where

v̂(π, x, t) = v

(
π exp

{ a
σ 2

(
a
(
θ − 1

2

)
t + σ x

)}
1 − π + π exp

{ a
σ 2

(
a
(
θ − 1

2

)
t + σ x

)}) . (A8)

Because v is uniformly continuous over [0,1], it is enough to show that ∀π ∈
[0,1] and ∀ε > 0, ∃�t such that ∀�t < �t

sup
s≤�t

|E (̂v(π, Bs, s) − v̂(π,0,0)
) | < ε. (A9)

This follows from the weak convergence of the measures induced by Bs to the
measure concentrated at zero as s → 0. �

PROOF OF PROPOSITION 2: Suppose that investors believe that the manager
invests in her private technology. In this case, if the manager does invest in
her private technology, then πt evolves according to (A3). If, on the other hand,
she invests in the risk-free asset, πt evolves according to

dπ = a
σ
π (1 − π )

(
r′ − r + σ 2

2
− (πa − c(qt))

)
dt.

Suppose that at time t the manager allocates percentage xt of her funds to her
alpha-generating technology and invests the rest in the risk-free asset. Then
her continuation utility is

V (π, x) = E0

∫ ∞

0
e−rtv(πt)dt, (A10)

s.t. dπt = a
σ
πt(1 − πt)

(
(1 − xt)

(
r′ − r + σ 2

2
− (πa − c(qt))

)
+ xtdBt

)
, π0 = π.
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The optimal investment policy xt that maximizes (A10) satisfies the HJB
equation:

sup
x∈[0,1]

x2ψ2
2 V ′′ + (1 − x)ψ1V ′ − rV + v = 0, (A11)

where

ψ1 = a
σ
πt(1 − πt)

(
r′ − r + σ 2

2
− (πa − c(qt))

)
< 0,

ψ2 = a
σ
πt(1 − πt) > 0.

If xt ≡ 1, then πt is a martingale and by Jensen’s inequality (v(π ) = πα)

Ev(πt) ≥ v(π0).

Therefore, at the optimal investment policy xt, rV (π, x) ≥ v(π ). Thus, (A11)
implies that the optimal policy is indeed xt ≡ 1. �
PROOF OF PROPOSITION 3: Suppose that the manager gambles and realizes
return R over

[
0,�t

]
, and from then on invests in her alpha-generating tech-

nology. Let
(
π R

n�t

)
n∈N

denote the process under the manager’s filtration of her
skill as perceived by investors who believe instead that she has invested in her
storage technology at date 0. These investors believe that

R = e
(
r+θa−c(q0)− σ2

2

)
�t+σB�t

.

From (A1) and (A2) it follows that

π R
�t = π0 R

a
σ2 e

a
σ2

(
σ2
2 +c(q0)−r− a

2

)
�t

1 − π0 + π0 R
a
σ2 e

a
σ2

(
σ2
2 +c(q0)−r− a

2

)
�t
,

∀n ≥ 0, π R
(n+1)�t =

π R
�t

ϕ(n+1)�t
ϕ�t

1 − π R
�t + π R

�t
ϕ(n+1)�t
ϕ�t

. (A12)

As �t → 0,

lim
�t→0

π R
�t = π0 R

a
σ2

1 − π0 + π0 R
a
σ2
,

and

lim
�t→0

ϕ(n+1)�t

ϕ�t
= πt

1 − πt

1 − π0

π0
.

Therefore,

lim
�t→0,n�t→t

π R
n�t = πt R

a
σ2

1 − πt + πt R
a
σ2
. (A13)

�
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PROOF OF PROPOSITION 4: Part 1. We first show that, if σ 2 > αa, then the
manager does not engage in risk shifting. Proposition 2 demonstrates that
the manager will not invest in the alternative technology at the risk-free rate
provided that r′ < r − σ 2/2. We now show that she will not invest in any risky
gamble as well.

Suppose the manager believes that she is skilled with probability π . At the
same time, suppose that investors believe that the manager is skilled with
probability π ′ and that the manager never engages in risk shifting. We show
that the manager has no incentives to deviate by taking a one-shot risky gamble
in this case.

Suppose the manager takes a gamble and realizes return R. Let
W(π, π ′, R,�t) be the expected utility of the manager conditional on realiz-
ing a first-period return of R. Similar to the proof of Proposition 3, one can
show that investors’ perception of the manager’s skill π R

t is

π R
t = πt R

a
σ2

(1 − πt) (1−π ′)π
(1−π)π ′ + πt R

a
σ2
. (A14)

Proposition 1 implies that

lim
�t→0

W(π, π ′, R,�t) =
∫ 1

0
G (π, x) v

(
xR

a
σ2

(1 − x) (1−π ′)π
(1−π)π ′ + xR

a
σ2

)
dx. (A15)

Differentiating twice with respect to R shows that this function is concave
in R when σ 2 ≥ αa. Hence, the manager has no incentives to take a one-shot
risky gamble in this case. Because this holds for arbitrary heterogeneous priors
π, π ′, this implies that multi-period deviations cannot be desirable by backward
induction.

Part 2. We now show that, if σ 2 < αa and rσ 2 > a2

2 α (α − 1), then for π0 = π

small enough there exists a one-period gamble that makes the manager better
off. Let R = (1 − ρ)−σ

2/a, ρ ∈ [0,1). Consider the following gamble:{
R Prob. 1/R
0 Prob. 1 − 1/R.

From (A15) the expected net gain from the above one-period gamble over
perpetual investment in the efficient storage technology is∫ 1

0
G (π, x) xαu(x, ρ)dx, (A16)

where

u(x, ρ) = (1 − ρ)σ
2/a

(1 − ρ(1 − x))α
− 1. (A17)



Rewarding Trading Skills without Inducing Gambling 955

Since σ 2 < αa, there exists x̄ and some ρ̂ ∈ (0,1) such that for all x ∈ [0, x̄],
(1−ρ̂)σ

2/a

(1−ρ̂(1−x))α > 1 + ε for some ε > 0 and therefore u(x, ρ̂) > ε > 0. Thus, for π small
enough ∫ 1

0
G (π, x) xαu(x, ρ̂)dx >

∫ 1

π

G (π, x) xαu(x, ρ̂)dx.

Using (7) we have∫ 1

π

G (π, x) xαu(x, ρ̂)dx = 2σ 2

ψa2 g(π )
∫ 1

π

xα− 3
2 − 1

2ψ (1 − x)−
3
2 + 1

2ψu(x, ρ̂)dx. (A18)

Notice that rσ 2 > a2

2 α (α − 1) implies that ψ > 2α − 1. Therefore, the integral∫ 1

π

xα− 3
2 − 1

2ψ (1 − x)−
3
2 + 1

2ψu(x, ρ̂)dx

diverges as π → 0. In this case, the sign is determined by the sign of u(·, ρ̂) in
the neighborhood of zero, which is positive. Thus, the net gain from the gamble
is positive. �

PROOF OF LEMMA 3: Suppose that investors believe that the manager does not
gamble. Then their posterior probability about her ability upon observing R is

π1(R) = π0χRa/σ 2

π0χRa/σ 2 + 1 − π0
, χ = e−a(a−σ 2)/2σ 2

.

If the manager does not gamble, she expects to get

γ (π0ea + 1 − π0) + π0. (A19)

Consider π0 such that

4π0(1 − π0) < χ (1 + γ (ea − 1))−2. (A20)

Suppose that the manager deviates and enters into a gamble that generates
gross return

√
1−π0
π0χ

with probability 1/
√

1−π0
π0χ

and zero otherwise. Direct com-
putations show that, in this case, the manager expects to get

γ + 1
2

√
π0χ

1 − π0
. (A21)

Comparing (A21) with (A19) one can see that the manager obtains a higher
utility if she gambles, provided that (A20) holds. �

PROOF OF LEMMA 4: We solve for an equilibrium in which the manager invests
in her private technology with probability 1 − q and gambles otherwise. If the
manager gambles, she receives zero with probability x and a return between
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z and z + dz with probability (1 − x)ϕ(z)dz. For the ease of computations, we
write ϕ(z) as

ϕ(z) = 1

z
√

2πσ 2
e− ln2(z)/2σ 2

g(z), (A22)

where g(z) ≥ 0. In such an equilibrium, upon observing a realized return z,
investors’ posterior is10

π1(z) = π0
(1 − q)χza/σ 2 + q(1 − x)g(z)

(1 − q)(π0χza/σ 2 + 1 − π0) + q(1 − x)g(z)
, χ = e−a(a−σ 2)/2σ 2

. (A23)

Let Eμ (E0) be the expectation operator if the manager gambles (invests in her
alpha-generating technology). When the manager gambles she takes investors’
posterior π1 in (A23) as given and chooses a gamble that solves

sup Eμπ1(z)

s. t. Eμz = 1.

We show in the Internet Appendix that the solution to this problem coincides
with the solution to its dual problem:

inf
(A, B)∈R2

A+ B

s. t. ∀z ≥ 0, A+ Bz ≥ π1(z), (A24)

where A and B are some real numbers.
The dual problem admits a simple and practical interpretation: it minimizes

the value at one of a straight line that is above the graph of π1(z). The optimal
gamble then has its support included in the set where this line coincides with
π1(z). We also show in the Internet Appendix that this solution can be realized
with a binary gamble. In this particular case, a binary gamble cannot be the
equilibrium solution, however, because it would be detected. Thus, it must
be that π1(z) has linear portions that coincide with the minimal straight line
A+ Bz.

Given that π1(z) is first convex and then concave, it is easy to see that there
must be two real numbers z1 and z2 such that π1(z) = Bz for z ∈ 0 ∪ [z1, z2]
and π1(z) < Bz otherwise. Figure 1, Panel (B), illustrates this for a particular
numerical example. The interval [z1, z2] is the support of the gamble when it
does not yield zero.

We are now ready to solve for the manager’s gambling strategy. We first
determine B. Direct computations show

qEμπ1(z) + (1 − q)E0π1(z) = π0(1 − qx). (A25)

10 We continue to assume that π1(z) is continuous at zero.
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Because the manager randomizes between gambling and investing in her
alpha-generating technology, it must be that she is indifferent between gam-
bling or investing efficiently:

Eμ(γ z + π1(z)) = E0(γ z + π1(z)),

or

Eμπ1(z) = E0π1(z) + γπ0(ea − 1). (A26)

Expressions (A25) and (A26) together imply that

B = Eμπ1(z) = (1 − qx)π0 + γ (1 − q)π0(ea − 1). (A27)

Since π1(z) = Bz for z ∈ 0 ∪ [z1, z2], we can solve for g(z) from (A23):

g(z) =
⎧⎨⎩

(1−q)π0χza/σ2
(

Bz+B(1−π0)(π0χ)−1z1−a/σ2 −1
)

q(1−x)(π0−Bz) if z ∈ [z1, z2],

0 otherwise.
(A28)

Continuity of π1(z) implies that it must be the case that

π0χza/σ 2

i

π0χza/σ 2

i + 1 − π0

= Bzi, i = 1,2,

or

1 = Bzi + B(1 − π0)(π0χ )−1z1−a/σ 2

i , i = 1,2. (A29)

Notice that, because a > σ 2, equation (A29) can have at most two solutions.
We are left with two free parameters: q and x. The parameters are determined

in equilibrium from requiring that (i) ϕ(z) be a density and (ii) the gamble have
expected return equal to one: ∫ ∞

0
ϕ(z)dz = 1, (A30)

(1 − x)
∫ ∞

0
zϕ(z)dz = 1. (A31)

�
PROOF OF PROPOSITION 5: First, suppose that the manager is skilled so that the
excess return on the alpha-generating technology is a. Whenever qt < 1, the
manager’s continuation utility is a martingale and therefore solves

0 = −rW + Wqqt(r + a) + 1
2

Wqqσ
2q2

t . (A32)

�
The ODE (A32) has a general solution of the form

W(qt) = C+qρ
+

t + C−qρ
−

t ,
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where the constants ρ+ and ρ− solve the quadratic equation

− r + ρ

(
r + a − 1

2
σ 2
)

+ 1
2
σ 2ρ2 = 0. (A33)

Solving (A33), we have

ρ± = − (r + a − 1
2σ

2
)±

√(
r + a − 1

2σ
2
)2 + 2rσ 2

σ 2 . (A34)

There are two boundary conditions (at q = 0 and at q = 1):

lim
qt→0

W(qt) = 0,

W ′(1) = k.

Thus,

W (qt) = kρ−1qρt , ρ = − (r + a − 1
2σ

2
)+

√(
r + a − 1

2σ
2
)2 + 2rσ 2

σ 2 . (A35)

If the manager is unskilled, then a = 0 and ρ = 1. Thus, if the manager is
skilled with probability πt, then her continuation utility is

W (qt) = k(πtρ
−1qρt + (1 − πt)qt). (A36)

PROOF OF PROPOSITION 6: First, we compute the expected surplus that the
manager expects to get from new investors if she reopens her fund when its
size is q∗. As in Proposition 5, we first consider the case in which the manager
is skilled with probability one. Let xt = ln(qo

t /q
∗). Then

dxt = (r + a − 1
2
σ 2)dt + σdBt, x0 = 0. (A37)

Let mt be the running maximum of xt, mt = max0≤s≤t xt. The manager is paid
whenever xt = mt. Whenever xt < mt, the manager’s continuation utility follows
a martingale and therefore solves

0 = −rWn + Wn
x (r + a − 1

2
σ 2) + 1

2
Wn

xxσ
2. (A38)

The ODE (A38) has a general solution of the form

Wn(xt,mt) = f (mt)eρ
+xt + g(mt)eρ

−xt ,

where the constants ρ+ and ρ− solve the quadratic equation (A33), and there-
fore are as in (A34). The functions f (mt) and g(mt) are arbitrary functions of mt.
Because limxt→−∞ Wn(xt) = 0 it must be the case that g(mt) ≡ 0. Without loss of
generality, the solution is

Wn(xt,mt) = eρ(xt−mt) f (mt), ρ = ρ+.
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The boundary condition at xt = mt is

f ′(mt) − ρ f (mt) + k(1 − q∗emt ) = 0. (A39)

A general solution to (A39) is

f (mt) = k
(

qemt

1 − ρ
+ 1
ρ

)
+ Ceρmt , (A40)

where C is a constant. When qo
t reaches one for the first time, the stake of the

new investors in the fund becomes zero. This implies that f (− ln(q∗)) = 0, and
therefore

Wn(xo
t ,ht) = k

(
xo

t

ht

)ρ (1 − hρt
ρ

+ ht − hρt
1 − ρ

)
, (A41)

where ht = q∗emt . Thus,

Wn(q∗) ≡ Wn(q∗,q∗) = k
(

1 − (q∗)ρ

ρ
+ q∗ − (q∗)ρ

1 − ρ

)
. (A42)

Cox and Miller (1965) show that

Ee−rνq∗ = ρ − ρ−

ρ(q∗)ρ− − ρ−(q∗)ρ
. (A43)

Thus, the present value of the opportunity to reopen the fund at date 0 if the
manager uses only her alpha-generating technology is

V = sup
q∗

k
ρ − ρ−

ρ(q∗)ρ− − ρ−(q∗)ρ

(
1 − (q∗)ρ

ρ
+ q∗ − (q∗)ρ

1 − ρ

)
. (A44)

Suppose at time 0 the manager takes a gamble that delivers a gross return q∗ <
1 with probability p and a gross return 1 + p(1 − q∗)/(1 − p) with probability
(1 − p). Suppose also that, if a return q∗ is realized, then the manager reopens
the fund. Then the expected continuation utility of the manager is

k
[

p
(

q∗

ρ
+ Wn(q∗)

)
+ (1 − p)

(
p(1 − q∗)/(1 − p) + 1

ρ
+ V

)]
. (A45)

The manager will gamble if and only if the above utility is greater than her
expected utility if she does not gamble. Thus, she will gamble if and only if

sup
q∗

Wn(q∗) − (1 − q∗)(1 − ρ)
ρ

> V .

Direct computations show that

sup
q∗

Wn(q∗) − (1 − q∗)(1 − ρ)
ρ

= 1.
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The supremum is achieved at q∗ = 0. So the skilled manager will gamble if
V < 1. By looking at ρ and ρ− one can see that they depend only on r/σ 2 and
a/σ 2. Direct but tedious calculations show that V < 1 as long as r/σ 2 > 0.1. �

PROOF OF LEMMA 5: The integrand in (29) is initially convex and then concave
in R. We show in the Internet Appendix that this implies that the optimal
gamble is a simple binary gamble such that, for some R > 1, the manager
earns R with probability 1/R and loses everything otherwise. Therefore,

�(π, t) ≡ sup
R≥1

Rλ−1 E0[h(πt, R)|π0 = π ],

where

h(π, R) = π

1 − π + πRλ
, λ = a

σ 2 . (A46)

For any R ≥ 1, h(π, R) is a concave function of π , which implies that h(πt, R)
is a supermartingale. Therefore, �(π, t) is a decreasing function of t. As t →
∞, E0[h(πt, R)|π0 = π ] → πR−λ. Therefore, for large t, �(π, t) ≤ πR−1, and the
optimal choice of R is one, that is not to gamble. Direct computations show
that, if π > λ−1

λ
, then

π ≤ �(π, t) ≤ sup
R≥1

Rλ−1h(π, R) = π.

�

LEMMA 6: Suppose conditions (15) hold. Then there exists a finite limit

0 < lim
π→0

V (π )π−α < ∞. (A47)

PROOF OF LEMMA 6: We have

V (π ) =
∫ 1

0
G (π, x) xαdx

= 2σ 2

a2ψ

[
(1 − π )

1
2 (1+ψ)π

1
2 (1−ψ)

∫ π
0 (1 − x)−

1
2 (ψ+3)xα+ 1

2 (ψ−3)dx

+(1 − π )
1
2 (1−ψ)π

1
2 (1+ψ)

∫ 1
π

(1 − x)
1
2 (ψ−3)xα− 1

2 (3+ψ)dx

]
,

where ψ is defined in (8). Further, rσ 2 > a2

2 α (α − 1) implies that ψ > 2α − 1.
Therefore,

∃ lim
π→0

(1 − π )
1
2 (1−ψ)π

1
2 (1+ψ)

∫ 1

π

(1 − x)
1
2 (ψ−3)xα− 1

2 (3+ψ)dx × π−α < ∞,

and

∃ lim
π→0

(1 − π )
1
2 (1+ψ)π

1
2 (1−ψ)

∫ π

0
(1 − x)−

1
2 (ψ+3)xα+ 1

2 (ψ−3)dx × π−α < ∞.

�
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