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Abstract

Empirical testing of asymmetric information in the insurance market has
uncovered a negative correlation between risk levels and insurance purchases,
rather than the positive correlation predicted by the standard insurance
theory. Hemenway (1990) proposes an explanation for this negative correla-
tion, called “propitious selection”. He argues that potential insurance buyers
have different tastes for risk and that “individuals who are highly risk avoiding
are more likely both to try to reduce the hazard and to purchase insurance”
(p. 1064). Chiappori and Salanié (2000) also suggest that this line of
argument, which they call “cherry picking”, may explain the observed negative
correlation.
In this paper, we show that the propitious selection argument does not

imply negative correlation between risk levels and insurance purchases, be-
cause it fails to take into account the supply side of the insurance market.
To illustrate this claim, we provide a model where, although we assume that
individuals differ in risk aversion and that the more risk averse individuals
exert more precaution and buy more insurance, we end up with a positive
correlation between risk and insurance purchases at equilibrium. The reason
is that, in any separating equilibrium, the more risk averse individuals face
insurance overprovision which, combined with moral hazard, increases their
risk relative to the less risk averse individuals. To obtain the negative
correlation between risk and insurance purchases, one further needs the extra
condition of decreasing marginal willingness to pay for the less risk averse
individuals. Finally, we find that propitious selection has profound policy
implications for social insurance.
Keywords: preference-based adverse selection, cherry picking, precaution,

social insurance
JEL Classification: D82, G22.



1 Introduction

Most economic papers on insurance assume some form of asymmetric informa-
tion. The insured is assumed to either have information that is relevant to
the contract but that is unknown to the insurer (adverse selection) or to be
able to perform some relevant action that is hidden to the insurer (moral
hazard). In either case, asymmetric information has been shown to produce
a positive correlation between risk and insurance demand in equilibrium. In
the case of adverse selection, high risk individuals buy more insurance while,
in moral hazard settings, agents who, for some unexplained reasons, pick up
insurance with less coverage are encouraged to exert more effort, resulting
in a lower (endogenous) risk. Chiappori and Salanié (2000) stress that the
positive correlation between risk and insurance demand is fairly robust in
theory. For instance, it does not depend on the market structure (perfect
competition or monopoly), nor on specific properties of preferences (such as
single crossing).
However, there is scant empirical evidence of such a positive correlation.

Chiappori and Salanié (2000) use various parametric and non parametric
methods and find no evidence of a positive correlation in a French survey of
automobile insurance contracts. Saito (2003) comes to the same conclusion
with a Japanese data set also on automobile insurance. On the contrary,
various authors find evidence of a negative correlation: de Meza and Webb
(2001) for credit card purchase insurance (a lower proportion of credit cards
are reported stolen among those that are insured than among the uninsured),
Cawley and Philipson (1999) for the life insurance market (those who purchase
life insurance have a lower death rate than those who do not, even after
controlling for factors such as smoking status and income) and Finkelstein
and McGarry (2003) for health care (people who spend more on their own
health both buy more insurance and are less likely to use long-term nursing
home care).1

In a seminal paper, Hemenway (1990) has proposed an explanation for
this negative correlation. His theory, which he calls “propitious selection”
assumes that potential insurance buyers have different tastes for risk and
that they are consistent in their taste for risk across physical and financial
dimensions. To quote him, “The implication is that individuals who are
highly risk avoiding are more likely both to try to reduce the hazard and to
purchase insurance” (p. 1064), resulting in a negative correlation between
risk and insurance purchases. Chiappori and Salanié (2000) also suggest that
this line of argument, which they call “cherry picking”, may explain why they

1See also Hemenway (1992).
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do not find the positive correlation they test for.
The “propitious selection” argument is very appealing. It seems very

reasonable that agents differ according to their taste for risk, and that this
information is a priori unknown to the insurer. However, Siegelman (2004)
points that “until recently, this idea has not been taken seriously, nor has its
empirical plausibility been appreciated. In part, this may be because it takes a
theory to beat a theory, and the alternative to the standard adverse selection
story was never treated as anything more than a curious possibility”(p. 1264).
The purpose of this paper is to explore the propitious selection argument.

We develop a simple insurance model with moral hazard and adverse-selection
based on risk aversion. We assume two types of individuals differing in risk
aversion, so that we can use graphs to convey the intuition of our results.
The game we model has three stages: first, firms offer a menu of insurance
contracts. Second, individuals choose which contract if any to buy depending
on their risk aversion. Finally, given the contract chosen, they decide how
much precaution to exert.
Our results are threefold. First, we make explicit three key properties

underlying the propitious selection argument. These three properties are
regularity (precaution is increasing with risk aversion for any coverage rate),
single crossing (conditional on precaution choice, the marginal willingness
to pay for insurance increases with risk aversion for any coverage rate), and
monotonicity (conditional on precaution choice, the demand for insurance
increases with risk aversion). We also show that these three conditions are
not always easily obtained in the context of expected utility theory.
Second, our main result consists in showing that these three properties

do not suffice to guarantee a negative correlation between risk levels and
insurance purchases. This identifies a gap in Hemenway (1990)’s reasoning,
which does not take into account the equilibrium behavior of the insurance
providers. We show that, in order to separate individuals according to
their risk preferences, the insurance companies must offer the more risk
averse individuals more insurance than they would like (over-insurance).2

This in turn reduces their level of precaution, possibly to the point where
they become riskier than those who buy less insurance because they are less
risk averse. To obtain the negative correlation between risk and insurance
purchases, one further needs the extra condition of decreasing marginal willin-
gness to pay for the less risk averse individuals. This condition would be
satisfied with decreasing marginal utility of income, in the absence of moral
hazard. However, with moral hazard, the adverse effect of insurance on

2Hemenway (1990) assumes that insurance firms offer a pooling contract. We show
that this cannot be an equilibrium result when insurers are profit-maximizers.
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precaution can produce an increasing marginal willingness to pay for insurance.
We provide in the Appendix an example, based on Yaari(1987)’s dual theory
of choice under risk for which the regularity, single-crossing and monotonicity
properties are all satisfied, but where the marginal willingness to pay for
insurance is increasing (since marginal utility of income is constant) so that
we obtain a positive correlation between risk and insurance purchases. The
main message of this paper is thus that it is very difficult for the propitious
selection argument suggested by Hemenway (1990) to produce a negative
correlation between risk and insurance purchases at equilibrium.
Finally, the propitious selection argument has also very important norma-

tive and policy implications for social insurance, even when it generates a
positive correlation between risk and insurance purchases. We illustrate this
by showing that the introduction of a mandatory pooling social insurance
scheme that agents can complement with private insurance may be Pareto
damaging. The intuition for this result is simple: less risk averse agents
exhibit lower risk in equilibrium, due to the fact that they buy less insurance,
and thus suffer from being pooled with more risky individuals. This in turn
induces the private insurance market to increase overprovision to separate
the more risk averse individuals. If more risk averse agents are numerous
enough, the extra cost of overinsurance dominates the cross-subsidy benefit,
so that they also lose from the introduction of social insurance.

2 Propitious selection and private insurance

Wemodel an economy where all individuals face the same potential monetary
loss L. We study a three-stage game with two types of individuals who differ
only in risk aversion, which is not observable by insurance providers. In the
first stage, zero-profit insurance contracts are offered to the agents. They
consist of a premium π and of a coverage rate δ, i.e. the fraction of the
damage that will be reimbursed by the insurer in case the damage occurs. In
the second stage, individuals choose which, if any, private contract to buy.
In the last stage, they decide how much precaution to exert.
As usual, we solve this game backwards, starting with the precaution

choice. We make explicit some key properties underlying the propitious
selection argument, in order to show that they are not sufficient to guarantee
a negative correlation between risk and insurance purchases. In that sense,
we identify a (fatal) flaw in this argument without even disputing the key
properties which are themselves controversial.
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2.1 The precaution choice

The individual preferences over lotteries are represented by the von-Neuman-
Morgenstein3 utility function uθ, with θ denoting the individual risk aversion
level. Risk aversion is the only heterogeneity between individuals. We only
consider two levels of risk aversion, θ ∈ {L,H}, where an individual exhibits
a high risk aversion (type H) if her utility function uH is obtained by an
increasing concave transformation of uL.
We assume that all individuals have access to the same technology p(e)

which gives the loss probability p as a function of the (unobservable) amount
of precaution e they exert. The function c(e) denotes the non-monetary cost4

as a function of precaution effort. The cost of precaution is the same for all
individuals. We assume that p(e) is decreasing while c(e) is increasing and
convex.
The expected utility of an individual of type θ who exerts precaution e

and buys the insurance contract (π, δ) is

Uθ(e,π, δ) = p(e)uθ (w − π − (1− δ)L) (1)

+(1− p(e))uθ (w − π)− c(e)

where w denotes the wealth endowment.
In our model, the risk level p is endogenously determined by the optimal

precaution choice of the agent. The optimal precaution choice eθ(δ,π) of
type θ given the insurance contract (δ,π) is given by

eθ(δ,π) = argmax
e≥0

Uθ(e,π, δ) (2)

The optimal precaution decreases with the coverage rate, and so the
risk level of any individual increases with coverage rate. This is the moral
hazard effect. The optimal precaution with full coverage is zero for all. The
propitious selection argument first assumes that
Property 1 (Regularity): For any insurance contract, the more risk

averse individual exerts more precaution.
This property does not always hold with expected utility functions. Jullien

et al. (1999) give sufficient conditions for more risk averse individuals to

3Although we frame the analysis in the text in expected utility terms, our reasoning
would equally apply to other ways to model preference over lotteries. The appendix
develops a model using Yaari(1985)’s dual theory of choice under uncertainty.

4We discuss after Property 1 the alternative modelling assumption of a monetary cost
of effort.
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exert more precaution.5 This requires in particular partial insurance because
complete insurance induces minimum prevention and maximum risk for all
individuals regardless of risk aversion. Jullien et al. (2001) argue that the
most appropriate way to model the cost of precaution is to use a monetary
cost like U(R − c(e)), so that the marginal rate of substitution between
precaution and wealth does not depend on the shape of the utility function.
With this monetary formulation, they show that the regularity property does
not necessarily hold. The reason is that precaution reduces wealth even in
the event of a loss, so that more risk averse agents may choose to save on
the cost of precaution to increase their wealth in the bad state. Obviously,
for this effect to arise, the loss probability has to be sufficiently high.

2.2 The demand for insurance

We now look at individual preferences over insurance contracts (π, δ). Plug-
ging the optimal precaution choice (2) in the utility function (1), we obtain
the indirect utility function of type θ for an insurance contract. A crucial
question in terms of indirect preferences is whether they satisfy the single-
crossing property, (i.e. whether marginal willingness to pay for insurance
is monotone in risk-aversion). There are two opposite effects at play. On
the one hand, a higher risk-aversion results in a higher willingness-to-pay for
insurance given the same risk level. On the other hand, more risk averse
agents may exert more precaution and end up being less risky, which lowers
their willingness to pay for insurance. The propitious selection argument
assumes that:
Property 2 (Single crossing): Given the optimal precaution choice,

for any insurance contract, the marginal willingness to pay for insurance is
higher for the more risk averse individual.
In words, the preference effect dominates the risk effect on the willingness

to pay for insurance, for any given insurance contract, so that the more risk
averse individuals are more willing to pay for insurance even though they
face lower risk by behaving more cautiously. Jullien et al.(2001) show that
the single-crossing property always holds with the monetary formulation of
the cost of precaution. De Meza and Webb (2001) show that the single-
crossing condition between risk-neutral and risk averse individuals may not
be satisfied with non-monetary costs of precaution.
The last property underlying the propitious selection argument relates

to the equilibrium demand for insurance for each type when the insurance

5Eeckhoudt and Gollier (2002) focus on the impact of prudence (i.e., a positive third
derivative of the utility function) on precaution.
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market offers fair prices.
Property 3 (Monotonicity): Conditional on the optimal precaution

choice, the more risk averse individual will buy more insurance.
Jullien et al. (2001) give convexity conditions on the utility function, the

loss probability function and the cost of precaution to ensure that Property
3 holds.
To summarize, Properties 1 to 3 together reflect Hemenway (1990)’s

assumption that “individuals are (somewhat) consistent in their taste for risk
across physical and financial dimensions” (p. 1064). That is, the more risk
averse individuals will both exert more precaution and buy more insurance.

2.3 Equilibrium insurance contracts

We now solve the first stage of the game assuming that Properties 1 to 3
(as implied by the propitious selection argument) hold, and we look at the
equilibrium insurance contracts these properties imply. Consider that low
risk aversion individuals (denoted by type L) are in proportion λ and high
risk aversion individuals (type H) are in proportion 1 − λ. We first show
using Figure 1 that there cannot exist a pooling equilibrium with partial
coverage.

[Insert Figure 1: Non existence of pooling equilibria]

The plain curves represent the fair price for each type, denoted by π(i), i =
{L,H}. Regularity ensures that type-L agents are more risky than type-H
agents, for any given coverage rate 0 < δ < 1, and thus that π(L) lies
everywhere above π(H), except for δ ∈ {0, 1}. The fair price when both
types are lumped together and charged the same price is represented by the
dashed curve whose formula is given by λπ(L) + (1− λ)π(H). Due to moral
hazard, the fair price is an increasing and convex function of coverage rate for
both types. We have also depicted the single-crossing indifference curves of
the two types (labelled vL and vH) passing through a pooling contract with
partial coverage6. It is clear from the graph that given this pooling contract,
it is always possible for an insurer to propose a contract that can attract only
the more risk averse (who are also less risky by the regularity property) and
make a positive profit. This separation is possible given the single-crossing
property of indifference curves.

6Although all Figures have been drawn with convex indifference curve, the reader can
check that convexity plays no role in Figures 1 and 2.
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Likewise, Figure 1 also makes clear that a pooling contract with full
coverage can not be an equilibrium, since it would be possible to offer a
contract with less coverage that attracts the more risk averse type (possibly
together with the less risk averse) and makes a positive profit.
Figure 2 illustrates the existence of a separating equilibrium. In this

equilibrium, the less risk averse individuals obtain their most-preferred contract
(i.e. point A). Whenever the incentive compatibility constraint of type-L
is binding at equilibrium (which is the case in Figure 2 since all feasible
contracts preferred by type-H to B0 -the shaded area- are also preferred by
type-L individuals to contract A), type-H individuals are proposed a fair
contract with more coverage than they would wish. The intuition for this
equilibrium is that it is necessary to overprovide insurance to the more risk
averse individuals in order to separate them from the less risk averse.

[Insert Figure 2: Separating equilibrium with overinsurance]

We are now in position to make our central point that the correlation
between risk and insurance demand is a priori ambiguous at equilibrium. On
one hand, more risk averse individuals are less risky than less risk averse
individuals if they all face the same coverage rate. On the other hand, in the
separating equilibrium more risk averse agents get more insurance, which
reduces their relative level of precaution. Figure 3 shows that more risk
averse individuals are in fact more risky, in any separating equilibrium, if the
indifference curve of the less risk averse individuals through this contract is
convex.

[Insert Figure 3: Relative risks in separating equilibria]

The straight line going through point A shows all fair contracts at the
equilibrium risk level of type-L individuals. The slope of this line is lower
than the slope of π (L) at point A (due to the moral hazard induced convexity
of π (L)), which is equal to the slope of L’s indifference curve (because A is
type L’s most-preferred fair contract). The convexity of vL together with the
fact that π (H) lies below π (L) for all 0 < δ < 1 ensure that the indifference
curve through A crosses π (H) (at point B0) above the intersection between
the line through A and π (H). It follows from the fact that any equilibrium
contract for type H is actuarially fair and above (or at) point B0 that type
H is more risky than type L at any separating equilibrium, and that risks
and demand of insurance are positively correlated.

We then obtain the follow result.
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Result 1 Under Properties 1-3, the equilibrium insurance contracts are
separating, with the more risk averse individuals buying more coverage. More-
over, the more risk averse individuals display higher (lower) risk if the marginal
willingness to pay for insurance of the less risk averse individual is increasing
(decreasing) with coverage.
We thus obtain that Properties 1 to 3 are not sufficient for the negative

correlation between insurance coverage and risk to emerge. Even though
more risk averse agents tend to behave more cautiously, the also buy more
insurance at equilibrium. This in turn induces the more risk averse individuals
to behave less cautiously than the less risk averse individuals who purchase
less insurance. To obtain that more risk averse individuals are less risky
at equilibrium, we need the extra condition that the willingness to pay for
insurance of the less risk averse individuals be decreasing.
Observe that there are two opposite forces shaping the willingness to pay

for insurance. For a fixed risk, the concavity of the utility function decreases
the willingness to pay for insurance as coverage increases. With moral hazard,
risk increases with coverage, which in turn means that willingness to pay for
insurance increases with coverage. The net effect can then go either way.
However, the reference individual is the less risk averse one, so that we
can expect the moral hazard effect to dominate the concavity of the utility
function effect. This is certainly true if the less risk averse individuals are
almost risk neutral.
In the appendix, we solve the model using Yaari (1987)’s dual theory of

preferences under risk and show that, although Properties 1 to 3 are naturally
satisfied in this context, the marginal willingness to pay for insurance of the
less risk averse individual is increasing with coverage, resulting in a positive
coverage between risk and insurance purchase.

3 Effect of social insurance

If propitious selection does not necessarily produce negative correlation bet-
ween risk and insurance purchases, it nevertheless has profound policy impli-
cations for social insurance. To see this, we now introduce a partial social
insurance that agents can complement with extra private insurance. We
assume that social insurance is pooling, with everybody paying the same
premium and offered the same coverage rate. We show that the classical
efficiency gain from social insurance through cross-subsidization is turned
on its head when the marginal willingness to pay of the less risk averse
individuals is increasing with coverage, as in Figure 3. We illustrate this
result in Figure 4, where we measure total coverage rate (i.e. the sum of
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social and complementary private insurance) on the horizontal axis and total
premium on the vertical axis. We assume that, with only private insurance,
type L’s incentive compatibility constraint is binding at equilibrium, so that
there is overprovision on the private market, with type-L’s contract at point
A and type-H’s contract at B0.

[Insert Figure 4: Pareto worsening public insurance]

Consider that the social insurance coverage is less than or equal to the
amount of private insurance the type-L would buy on the market in absence
of any social insurance. So we do not force the less risk averse to buy more
insurance than he would like (which would otherwise have an extra negative
welfare effect). Therefore, type-L individuals’ total coverage is unchanged
after the introduction of social insurance (perfect crowding out). However,
social insurance is pushing up the price of insurance for the less risk averse
individuals because in equilibrium this type is less risky and thus cross-
subsidizes the more risky type (i.e. the more risk averse individuals). In
Figure 4, type-L’s equilibrium point moves fromA toA0when social insurance
is introduced, so these individuals are made worse off. Further note that
this utility loss increases with the extent of social insurance and with the
proportion of type H individuals.
This utility loss will increase the incentive for type-L to claim the contract

intended for type-H. As a result, the separation of the two types is made
more difficult, which increases the overprovision to the more risk averse
individuals required to separate them out. At the same time, type-H agents
benefit from the cross-subsidization from type-L. Graphically, the new equili-
brium point for type-H agents (point B”) is located to the right of point B0
(because of increased overprovision), on type-L’s indifference curve through
A0 (indicating that type-L’s incentive constraint is binding) and below the
actuarially fair contract curve for type-H (because of the cross-subsidization).
Note that the vertical distance between B” and π (H) is decreasing with
the proportion of type-H individuals. It is clear from Figure 4 that, if
the proportion of type-H is large enough, then they will also lose when
introducing social insurance. We then have the following result.
Result 2 Under Properties 1-3, if the marginal willingness to pay for

insurance of the less risk averse individuals is increasing with coverage rates,
then the introduction of social insurance is Pareto inferior when the proportion
of more risk averse individuals is sufficiently high.
The intuition for this result is simple: less risk averse agents have a lower

risk in equilibrium due to lower coverage and thus suffer from being pooled
with more risky individuals. This in turn induces the private insurance
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market to increase overprovision to separate the more risk averse individuals.
If more risk averse agents are numerous enough, the incentive cost dominates
the cross-subsidy benefit so that they also lose from social insurance.

4 Conclusion

The propitious selection (also called advantageous selection) theory compares
individuals with different risk aversions and assumes that those with high risk
aversion are more likely both to purchase insurance and to exert precaution.
Those with less risk aversion will tend to buy less insurance and to act less
cautiously. The presumed implication is that those buying more insurance
have also the lower accident probabilities (i.e. negative correlation between
risk and insurance purchases), contrarily to the prediction of classical insurance
models. We identify three properties implicit in this reasoning: regularity
(more risk averse individuals exert more care), single-crossing (more risk
averse individuals have stronger preference for insurance) and monotonicity
(more risk averse individuals buy more insurance). We show that the negative
correlation between risk and coverage is not guaranteed even when these
three properties are satisfied: a negative correlation at equilibrium also
requires that the marginal willingness to pay for insurance of the less risk
averse individuals be decreasing with coverage. The reason is that there is
overprovision of insurance in equilibrium. Thus we conclude that the concept
of propitious selection does not necessary lead to a negative correlation
between risk and insurance purchases, as it claims. We also point out the
possibility in this context for social insurance to be Pareto damaging.
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Appendix: Example of propitious selection with the
dual theory of choice under risk.
We model individuals’ risk preferences using Yaari (1987)’s theory, which

is dual to the expected utility theory in the sense that it is linear in wealth but
non linear in probabilities. This formulation allows us to separate attitude
towards risk from attitude towards wealth: with Yaari’s approach, risk avers-
ion is entirely driven by a transformation of probabilities whereby bad outcomes
are given more weight while good outcomes are given less weight.
Following De Donder and Hindriks (2003), the utility function of an

individual faced with a loss probability p and who buys the insurance contract
(π, δ) is

u(π, δ, p;α) = (1 + α)p (w − π − (1− δ)L) (3)

+(1− (1 + α)p) (w − π)

= w − π − (1 + α)(1− δ)pL

where w denotes his exogenous income and α ≥ 0 is his risk aversion parame-
ter. In words, the individual overestimates by a fraction α his expected
financial damage. The utility without insurance is

u(0, 0, p;α) = w − (1 + α)pL

and the reservation premium is

r(δ, p;α) = (1 + α)pδL. (4)

Therefore risk aversion α in our model takes the form of a relative markup
over the actuarially fair price.
We first solve for the optimal precaution choice given the insurance contract

(δ,π) bought:

max
e
w − π − (1 + α)p(e)(1− δ)L− c(e).

We assume that c(e) = e2 , L = 1, p(e) = (1−e)
2
∈ [0, 1

2
] for e ∈ [0, 1] and

define θ = (1 + α)/2 (with θ ∈ [1
2
, 1]). The optimal precaution choice for

type θ is

eθ(δ) =
(1− δ)θ

2
∈ [0, 1

2
]

and the corresponding risk for type θ is

pθ(δ) =
1

2
− (1− δ)θ

4
∈ [1
4
,
1

2
].
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Property 1 (regularity) is then satisfied, and the induced utility function for
type θ from insurance contract (δ,π) is

Vθ(δ,π) = w − π − 2θ(1− δ)pθ(δ)− c(eθ(δ))

= w − π − θ(1− δ) +
(1− δ)2

4
θ2.

With our functional forms, marginal willingness to pay for insurance
(using an envelope argument with respect to precaution choice) is

dπ

dδ

¯̄̄̄
Vθ

= θ − (1− δ)

2
θ2 ≡ s(δ, θ).

We thus obtain naturally the single-crossing condition (property 2).
We turn to the insurance contracts offered to the individuals. The contract

curve composed of all fair contracts proposed to an individual of type θ is
given by

π (δ, θ) =

µ
1

2
− (1− δ)

4
θ

¶
δ

where δ ∈ [0, 1].
The slope of this contract curve in the space (π, δ) is given by

∂π(δ, θ)

∂δ
=
1

2
− θ(1− 2δ)

4
≡ σ(δ, θ).

It is readily verified that the contract curve is convex, due to moral hazard.
Moreover, we have π (0, θ) = 0, π (1, θ) = 1/2 (since no precaution is exerted
and everybody shares the same risk) and π (δ, L) > π (δ, H) for all 0 < δ < 1
and all L < H, reflecting the higher risk level of less risk averse agents.
The reader can check that the optimal choice of an insurance contract

along the actuarially fair contract curve of each individual satisfies the mono-
tonicity condition (property 3). On the other hand, moral hazard results in
both indifference curves and contract curves being convex in the (π, δ)-space,
with indifference curves less convex than contract curves (because utility
functions incorporate the cost of precaution while contract curves do not).
Using the dual theory of risk preferences, we then end up with the same
situation as the one described in the text: although properties 1 to 3 are
satisfied, propitious selection generates a positive correlation between risk
and insurance purchase.
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Figure 1: Non-existence of pooling equilibria
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Figure 2: Separating equilibrium with overinsurance
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Figure 3: Relative risks in separating equilibria
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Figure 4: Pareto worsening social insurance
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