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Jérôme Renault∗

Revised version, May 2013

Abstract

We consider a dynamic programming problem with arbitrary state space and bounded
rewards. Is it possible to uniquely define a limit value for the problem, when the “pa-
tience” of the decision-maker tends to infinity ? We consider, for each evaluation θ
(a probability distribution over positive integers) the value function vθ of the problem
where the weight of any stage t is given by θt, and we investigate the uniform conver-
gence of a sequence (vθk)k when the “impatience” of the evaluations vanishes, in the
sense that

∑
t |θkt − θkt+1| →k→∞ 0. We prove that this uniform convergence happens if

and only if the metric space {vθk , k ≥ 1} is totally bounded. Moreover there exists a
particular function v∗, independent of the particular chosen sequence (θk)k, such that
any limit point of such sequence of value functions is precisely v∗. The result applies
in particular to discounted payoffs when the discount factor vanishes, as well as to av-
erage payoffs where the number of stages goes to infinity, and extends to models with
stochastic transitions.

Keywords: dynamic programming, average payoffs, discounted payoffs, general evalua-
tions, limit value, vanishing impatience, uniform convergence of the values.

1 Introduction

In a dynamic programming problem with arbitrary state space Z and bounded
payoffs, is it possible to define a unique possible limit value when the “patience”
of the decision-maker tends to infinity ?

For each evaluation (probability distribution over positive integers) θ = (θt)t≥1,
we consider the value function vθ of the problem where the initial state is arbitrary
in Z and the weight of any stage t is given by θt. The total variation of θ, that we
also call the impatience of θ, is defined by TV (θ) =

∑∞
t=1 |θt+1− θt|. For instance,

for each positive integer n the evaluation θ = (1/n, ..., 1/n, 0, ..., 0, ...) induces the
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value function v̄n corresponding to the maximization of the mean payoff for the
first n stages; and for any λ in (0, 1] the evaluation θ = (λ(1−λ)t−1)t induces the
discounted value function vλ.

A well known theorem of Hardy and Littlewood (see e.g. Lippman, 1969) im-
plies that for an uncontrolled problem, the pointwise convergence of (v̄n)n, when
n goes to infinity, and of (vλ)λ, when λ goes to 0, are equivalent, and that in case
of convergence both limits are the same. However, Lehrer and Sorin (1992) pro-
vided an example of a dynamic programming problem where (v̄n)n and (vλ)λ have
different pointwise limits. But they also proved that the uniform convergence of
(v̄n)n and of (vλ)λ are equivalent, with equality of the limit in case of convergence.
And Sorin and Monderer (1993) extended this result to families of evaluations
satisfying some conditions. Mertens and Neyman (1982) proved that when the
family (vλ)λ uniformly converges and has bounded variation, then the dynamic
programming problem has a uniform value, in the sense that for all initial state
z and ε > 0, there exists a play with mean payoffs from stage 1 to stage T at
least v − ε provided T is large enough (see also Lehrer Monderer 1994 and Sorin
Moderer 1993 for proofs that the uniform convergence of (vλ)λ or (v̄n)n does not
imply the existence of the uniform value of the problem). And if the uniform
value exists, one can show that all value functions vθ are close to v∗, whenever
θ is a non increasing evaluation with small θ1. The reason is that whenever θ is
non increasing, the θ-payoff of a play can be expressed as a convex combination
of the Cesàro values (v̄n)n.

In the present paper, we investigate the uniform convergence of sequences
(vθk)k when the “impatience” of the evaluations vanishes, in the sense that∑

t |θkt − θkt+1| →k→∞ 0. We will prove in Theorem 2.5 that this uniform con-
vergence happens if and only if the metric space {vθk , k ≥ 1} (with the distance
between functions given by the sup of their differences), is totally bounded. More-
over the uniform limit, whenever it exists, can only be the following function,
which is independent of the particular chosen sequence (θk)k:

v∗ = inf
θ∈Θ

sup
m≥0

vm,θ,

where for each evaluation θ = (θt)t≥1, the function vm,θ is the value correspond-
ing to the evaluation with weight 0 for the first m stages and with weight θt−m
for stages t > m. Consequently, while speaking of uniform convergence of the
value functions when the impatience of the decision-maker goes to zero, v∗ can be
considered as the unique possible limit value. We also give simple conditions on
the state space, the payoffs and the transitions (mainly compactness, continuity
and non expansiveness) implying the uniform convergence of such value functions.

The paper is organized as follows: section 2 contains the model and the main
results, which are shown to extend to the case of stochastic transitions. Section
3 contains a few examples and counterexamples and section 4 contains the proof
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of Theorem 2.5. In the last section we formulate the following conjecture, which
is shown to be true for uncontrolled problems: does the uniform convergence
of (v̄n)n, or equivalently of (vλ)λ, implies the general convergence of the value
functions, in the sense that: ∀ε > 0, ∃α > 0,∀θ ∈ Θ s.t. TV (θ) ≤ α, ‖vθ−v∗‖ ≤ ε
?

2 Model and results

2.1 General values in dynamic programming problems

We consider a dynamic programming problem given by a non empty set of states
Z, a correspondence F with non empty values from Z to Z, and a mapping r from
Z to [0, 1]. Z is called the set of states, F is the transition correspondence and r
is the reward (or payoff) function. An initial state z0 in Z defines the following
dynamic programming problem: a decision-maker, also called player, first has to
select a new state z1 in F (z0), and is rewarded by r(z1). Then he has to choose
z2 in F (z1), has a payoff of r(z2), etc... Intuitively, the decision-maker is inter-
ested in maximizing his “long-term” payoffs, for whatever it means. From now
on we fix Γ = (Z, F, r), and for every state z0 we denote by Γ(z0) = (Z, F, r, z0)
the corresponding problem with initial state z0. For z0 in Z, a play at z0 is a
sequence s = (z1, ..., zt, ...) ∈ Z∞ such that: ∀t ≥ 1, zt ∈ F (zt−1). We denote by
S(z0) the set of plays at z0, and by S = ∪z0∈ZS(z0) the set of all plays. The set
of bounded functions from Z to IR is denoted by V , and for v and v′ in V we use
the distance d∞(v, v′) = supz∈Z |v(z)− v′(z)|.

Cesàro values. For n ≥ 1 and s = (zt)t≥1 ∈ S, the average payoff of the play s
up to stage n is defined by: γ̄n(s) = 1

n

∑n
t=1 r(zt). And the n-stage average value

of Γ(z0) is: v̄n(z0) = sup
s∈S(z0)

γ̄n(s). By the Bellman-Shapley recursive formula,

for all n and z we have: n v̄n(z) = supz′∈F (z) (r(z′) + (n− 1) v̄n−1(z′)) . We also

have |v̄n(z)− supz′∈F (z) v̄n(z′)| ≤ 2
n
, and a pointwise limit of (v̄n)n should satisfy

v(z) = supz′∈F (z) v(z′) for all z.

Discounted values. Given λ ∈ (0, 1], the λ-discounted payoff of a play s =
(zt)t≥1 is γλ(s) = λ

∑∞
t=1(1 − λ)t−1r(zt), and the λ-discounted value at the

initial state z0 is vλ(z0) = sups∈S(z0) γλ(s). It is easily proved that vλ is the
unique mapping in V satisyfing the fixed point equation : ∀z ∈ Z, vλ(z) =
supz′∈F (z) (λ r(z′) + (1− λ) vλ(z

′)) . It implies |vλ(z)− supz′∈F (z) vλ(z
′)| ≤ λ, and

a pointwise limit of (vλ)λ should also satisfy v(z) = supz′∈F (z) v(z′) for all z.

General values. We denote by Θ the set of probability distributions over positive
integers. An element θ = (θt)t≥1 in Θ is called an evaluation.

Definition 2.1.
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The θ-payoff of a play s = (zt)t≥1 is γθ(s) =
∑∞

t=1 θtr(zt),

and the θ-value of Γ(z0) is vθ(z0) = sup
s∈S(z0)

γθ(s).

For each stage t we denote by δt the Dirac mass on stage t, so that an eval-
uation θ = (θt)t≥1 is also written θ =

∑∞
t=1 θtδt. We denote by n the Cesàro

evaluation (1/n, ..., 1/n, 0, ..., 0, ...) = (1/n)
∑n

t=1 δt, so that the notation vθ for
θ = n coincides with the Cesàro value v̄n = vn (this value is often simply denoted
vn, but we will avoid this notation here to prevent any confusion with the value
function with evaluation δn).

It is easy to see that for each evaluation θ, the Bellman recursive formula can
be written as follows:

vθ(z) = sup
z′∈F (z)

(θ1r(z
′) + (1− θ1) vθ+(z′)) ,

where if θ1 < 1, the “shifted” evaluation θ+ is defined as ( θt+1

1−θ1 )t≥1.

Lemma 2.2. For all evaluations θ in Θ and all states z in Z,

|vθ(z)− sup
z′∈F (z)

vθ(z
′)| ≤ θ1 +

∑
t≥2

|θt − θt−1|.

Proof: Consider any z1 ∈ F (z), and for ε > 0 a play s = (z2, z3, ..., ) in S(z1)
such that γθ(s) ≥ vθ(z1)− ε. We have:

vθ(z) ≥ θ1r(z1) +
∞∑
t=2

θtr(zt)

≥ θ1r(z1) +
∞∑
t=2

θt−1r(zt) +
∞∑
t=2

(θt − θt−1)r(zt)

≥ vθ(z1)− ε−
∞∑
t=2

|θt − θt−1|.

Conversely, choose s = (z1, z2, ...) in S(z) such that γθ(s) ≥ vθ(z)− ε.

vθ(z) ≤ ε+ θ1r(z1) +
∞∑
t=2

θt−1r(zt) +
∞∑
t=2

(θt − θt−1)r(zt)

≤ ε+ θ1 + vθ(z1) +
∞∑
t=2

|θt − θt−1|.

�

Definition 2.3. The total variation of an evaluation θ = (θt)t≥1 is

TV (θ) =
∞∑
t=1

|θt+1 − θt|.
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We have supt θt ≤ TV (θ) ≤ 2. In the case of a Cesàro evaluation θ = (1/n, ..., 1/n,
0, 0, ...), we have TV (θ) = 1/n. For a discounted evaluation θ = (λ(1− λ)t−1)t≥1,
we have TV (θ) = λ. A small TV (θ) corresponds to a patient evaluation, and
sometimes we will refer to TV (θ) as the impatience of θ. We will consider here
limits when TV (θ) goes to zero, generalizing the cases where n −→∞ or λ −→ 0.
Notice that if an evaluation θ is non increasing, i.e. satisfies θt+1 ≤ θt for all t,
we have that TV (θ) = θ1. In the case of a sequence of non increasing evaluations
(θk)k, the condition TV (θk) −−−→

k→∞
0 is equivalent to the condition supt≥1 θ

k
t −−−→

k→∞
0.

We always have:

(1− θ1)
∑
t≥1

|θt − θ+
t | ≤ θ1 + TV (θ),

so if TV (θ) is small, the L1-distance between θ and the shifted evaluation θ+ is
also small. Notice also the following inequalities.

For any given T , denote by θ(T ) the arithmetic mean of θ1,..., θT . We have
for all t = 1, ..., T :

|θt − θ(T )| ≤
T−1∑
t′=1

|θt′ − θt′+1| ≤ TV (θ).

So if TV (θ) is small, then for all T and t ≤ T , the weight θt is close to the average
θ(T ).

Given an evaluation θ and m ≥ 0, we write vm,θ for the value function asso-
ciated to the evaluation θ′ =

∑∞
t=1 θtδm+t. Lemma 2.2 implies that d∞(vθ, v1,θ) ≤

θ1 +
∑

t≥2 |θt− θt−1| ≤ 2TV (θ). The following function will play a very important
role in the sequel:

Definition 2.4. Define for all z in Z,

v∗(z) = inf
θ∈Θ

sup
m≥0

vm,θ(z).

2.2 Main results

We now state the main result of this paper. Recall that a metric space is totally
bounded (or precompact) if for all ε > 0 it can be covered by finitely many balls
with radius ε.

Theorem 2.5. Let (θk)k≥1 be a sequence of evaluations such that TV (θk) −−−→
k→∞

0.

We have for all z in Z:

v∗(z) = inf
k≥1

sup
m≥0

vm,θk(z).
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Moreover, the sequence (vθk)k uniformly converges if and only if the metric space
({vθk , k ≥ 1}, d∞) is totally bounded. And in case of convergence, the limit value
is v∗.

This theorem generalizes Theorem 3.10 in Renault, 2011, which was only
dealing with Cesàro evaluations1. In particular, there is a unique possible limit
point for all sequences (vθk)k such that TV (θk) −−−→

k→∞
0, and consequently any

(uniform) limit of such sequence is v∗. Notice that this is not true if we replace
uniform convergence by pointwise convergence: even for uncontrolled problems,
it may happen that several limit points are possible. As an immediate corollary
of Theorem 2.5, when Z is finite the sequence (vθk)k is bounded and has a unique
limit point, so it converges to v∗.

Corollary 2.6. Assume that Z is endowed with a distance d such that: a) (Z, d) is
a precompact metric space, and b) the family (vθ)θ∈Θ is uniformly equicontinuous.
Then there is general uniform convergence of the value functions to v∗, i.e.

∀ε > 0,∃α > 0,∀θ ∈ Θ s.t. TV (θ) ≤ α, ‖vθ − v∗‖ ≤ ε.

The proof of Corollary 2.6 from Theorem 2.5 follows from 1) Ascoli’s theorem,
and 2) the fact that the convergence of (vθk)k to v∗ for each sequence of evalua-
tions such that TV (θk) −−−→

k→∞
0 is enough to have the general uniform convergence

of the value functions to v∗.

Whenever Z is endowed with a distance d, we say that F is non expansive
(with respect to d) if: ∀z ∈ Z, ∀z′ ∈ Z, ∀z1 ∈ F (z),∃z′1 ∈ F (z′) s.t. d(z1, z

′
1) ≤

d(z, z′).

Corollary 2.7. Assume that Z is endowed with a distance d such that: a) (Z, d)
is a precompact metric space, b) r is uniformly continuous, and c) F is non
expansive. Then we have the same conclusions as Corollary 2.6, there is general
uniform convergence of the value functions to v∗, i.e.

∀ε > 0,∃α > 0,∀θ ∈ Θ s.t. TV (θ) ≤ α, ‖vθ − v∗‖ ≤ ε.

Proof of Corollary 2.7. One can proceed as in the proof of corollary 3.9 in
Renault, 2011. Given two states z and z′, one can construct inductively from
each play s = (zt)t≥1 at z a play s′ = (z′t)t≥1 at z′ such that d(zt, z

′
t) ≤ d(z, z′)

for all t. Regarding payoffs, we introduce the modulus of continuity ε̂ of r by:
ε̂(α) = supz,z′s.t.d(z ,z ′)≤α |r(z)− r(z′)| for each α ≥ 0.

So |r(z)−r(z′)| ≤ ε̂(d(z, z′)) for each pair of states z, z′, and ε̂ is continuous at 0.
Using the previous construction, we obtain that for z and z′ in Z, for all k ≥ 1,
|vθk(z) − vθk(z′)| ≤ ε̂(d(z, z′)). In particular, the family (vθk)k≥1 is uniformly
equicontinuous, and Corollary 2.6 gives the result. �

1In this paper it is also proved that if the Cesàro values (vn̄)n uniformly converge then the
limit can only be infn≥1 supm≥0 vm,n̄ which in this case is also equal to supm≥0 infn≥1 vm,n̄.
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A completely different proof of Corollary 2.7, with another expression for the
limit value v∗, can be found in Theorem 3.9 of Renault Venel 2012.

2.3 Extension to stochastic transitions

We generalize here Theorem 2.5 to the case of stochastic transitions. We will
only consider transitions with finite support, and given a set X we denote by
∆f (X) the set of probabilities with finite support over X. We consider now
stochastic dynamic programming problems of the following form. There is an
arbitrary non empty set of states X, a transition given by a multi-valued mapping
F : X ⇒ ∆f (X) with non empty values, and a payoff (or reward) function
r : X → [0, 1]. The interpretation is that given an initial state x0 in X, a
decision-maker has to choose a probability with finite support u1 in F (x0), then
x1 is selected according to u1 and there is a payoff r(x1). Then the player has
to select u2 in F (x1), x2 is selected according to u1 and the player receives the
payoff r(x2), etc...

Following Maitra and Sudderth (1996), we say that Γ = (X,F, r) is a Gam-
bling House. We identify an element x in X with its Dirac measure δx in ∆(X),
we write Z = ∆f (X) and an element in Z is written u =

∑
x∈X u(x)δx. In case

the values of F only consist of Dirac measures on X, we are in the previous case
of a dynamic programming problem.

We linearly extend r and F to ∆f (X) by defining for each u in Z, the payoff
r(u) =

∑
x∈X r(x)u(x) and the transition F (u) = {

∑
x∈X u(x)f(x), s.t. f : X →

Z and f(x) ∈ F (x) ∀x ∈ X}. A play at x0 is a sequence σ = (u1, ..., ut, ...) ∈ Z∞
such that u1 ∈ F (x0) and ut+1 ∈ F (ut) for each t ≥ 1, and we denote by Σ(x0) the
set of plays at x0. Given an evaluation θ, the θ-payoff of a play σ = (u1, ..., ut, ...)
is defined as: γθ(σ) =

∑
t≥1 θtr(ut), and the θ-value at x0 is:

vθ(x0) = sup
σ∈Σ(x0)

γθ(σ).

vθ is by definition a mapping from X to [0, 1], and we define as before, for all x
in X:

v∗(x) = inf
θ∈Θ

sup
m≥0

vm,θ(x).

Theorem 2.5 easily extends to this context.

Theorem 2.8. Let (θk)k≥1 be a sequence of evaluations with vanishing total vari-
ation, i.e. such that TV (θk) −−−→

k→∞
0. We have:

∀x ∈ X, v∗(x) = inf
k≥1

sup
m≥0

vm,θk(x).

Moreover, the sequence (vθk)k uniformly converges if and only if the metric space
({vθk , k ≥ 1}, d∞) is totally bounded. And in case of convergence, the limit value
is v∗.
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Proof. Consider the deterministic dynamic programming problem Γ = (Z, F, r).
For any evaluation θ, the associated θ-value function ṽθ : Z −→ [0, 1] is the affine
extension of vθ : X −→ [0, 1]. We put, as in Definition 2.4, for all z in Z:

ṽ∗(z) = inf
θ∈Θ

sup
m≥0

ṽm,θ(z).

Notice that as an “infsup” of affine functions, there is no reason a priori for ṽ∗ to
be affine. However, the restriction of ṽ∗ to X is v∗.

Consider now a sequence (θk)k≥1 of evaluations with vanishing total variation.
Applying Theorem 2.5 to Γ, we first obtain that for all x in X:

v∗(x) = inf
k≥1

sup
m≥0

vm,θk(x).

Moreover, given two evaluations θ and θ′, we have (using the same notation d∞
for the distances on [0, 1]X and on [0, 1]Z):

d∞(ṽθ, ṽθ′) = sup
z∈Z
|ṽθ(z)− ṽθ′(z)|,

= sup
z∈Z
|
∫
p∈X

vθ(p)− vθ′(p)du(p)|,

= d∞(vθ, vθ′).

Consequently, ({vθk , k ≥ 1}, d∞) is totally bounded if and only if ({ṽθk , k ≥
1}, d∞) is, and this completes the proof. �.

3 Examples

The first very simple example shows that, even when the set of states is finite,
it is not possible to obtain the conclusions of Theorem 2.5 or Corollaries 2.6 and
2.7 with sequences of evaluations satisfying the weaker convergence condition:
supt≥1 θ

k
t −→k→∞ 0.

Example 3.1. Consider the following dynamic programming problem with 2
states: Z = {z0, z1}, F (z0) = {z1}, F (z1) = {z0}, with payoffs r(z0) = 0 and
r(z1) = 1. We have a deterministic Markov chain, so that any play alternates
forever between z0 and z1. Define for each k the evaluations θk = 1

k

∑k
t=1 δ2t−1

and θ′k = 1
k

∑k
t=1 δ2t. We have vθk(z0) = vθ′k(z1) = 1, and vθk(z1) = vθ′k(z0) = 0

for all k. Define now νk as θk when k is even, and θ′k when k is odd. The
evaluation νk satisfies supt ν

k
t = 1

k
−→k→∞ 0, however (vνk(z0))k and (vνk(z1))k

do not converge. �

Lehrer and Sorin (1992) proved that the uniform convergence of the Cesàro
values (v̄n)n≥1 was equivalent to the uniform convergence of the discounted values
(vλ)λ∈(0,1]. The following example shows that this property does not extend to
general evaluations: given 2 sequences of TV-vanishing evaluations (θk)k≥1 and
(θ′k)k≥1, the uniform convergence of (vθk)k and (vθ′k)k are not equivalent.
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Example 3.2. In this example, (v̄n)n will pointwise converge to the constant 1/2
whereas for a particular sequence of evaluations (θk)k with total variation going
to zero, we will have vθk(z) = 1 for all k and z.

We construct a dynamic programming problem defined via a rooted tree T
without terminal nodes (as in Sorin Monderer 1992 or Lehrer Monderer 1994). T
has countably many nodes, and the payoff attached to each node is either 0 or 1.

We first construct a tree T1, with countably many nodes and root z0. Each
node has an outgoing degree one, except the root which has countably many
potential successors z1, z2,..., zn... On the nth branch starting from zn, each node
has a unique successor and the payoffs starting from zn are successively 0 for n
stages, then 1 for n stages, then 0 until the end of the play.

T1

z0 �
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�

�
�

@
@
A
A
A
A

B
B
B
B
B
B

�
�
�
�
�
�
�
�

n

0 1 0........................................................

0 0 1 1 0...................................

0........0 1........1 0...........................

0.............0 1.............1 0...........................

We now define T inductively from T1. T2 is obtained from T1 by attaching
the tree T1 to each node of T1\{z0}. This means that for each node z of T1\{z0}
we add a copy of the tree T1 where z plays the role of the root of T1. And for
each l, the tree Tl is obtained by attaching the tree T1 to each node of Tl−1\Tl−2.
Finally, T is defined as the union

⋃
l≥1 Tl.

Starting from z0, any sequence of n consecutive payoffs of 1 has to be preceeded
by n consecutive payoffs of 0, so v̄n(z0) ≤ 1/2 for each n ≥ 1, and for each node
z and even integer n it is possible to get exactly n/2 payoffs of 0 followed by n/2
payoffs of 1. Consequently one can deduce that (v̄n(z))n converges to 1/2 for each
state z. But supz∈Z v̄n(z) = 1 for each n, and the convergence is not uniform.

Consider now for any k, the evaluation θk = (0, ...0, 1
K
, ..., 1

K
, 0, ...) = 1

K

∑K
t=1 δt+K .

We have vθk(z) = 1 for all k and z, so (vθk)k uniformly converges to v∗ = 1. �

Example 3.3. The condition ({vθ, θ ∈ Θ}, d∞) totally bounded is satisfied with
the hypotheses of Corollary 2.6 or Corollary 2.7, and is sufficient to obtain the
general uniform convergence of the value functions. This condition turns out to
be stronger than having ({vθk , k ≥ 1}, d∞) totally bounded for every sequence of
evaluations with vanishing TV.
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In the following example, there is no control and the state space Z is the set
of all integers, with transition given by the shift: F (z) = {z + 1}. The payoffs
are given by r(0) = 1 and r(z) = 0 for all z 6= 0.

For all evaluations θ = (θt)t≥1, we have supz∈Z vθ(z) = supt θt, so we have
general uniform convergence of the value functions to v∗ = 0.

For all positive t, we can consider the evaluation given by the Dirac measure
on t. We have vδt(−t) = 1, and vδt(z) = 0 if z 6= −t. The set {vδt , t ≥ 1} is not
totally bounded. �

4 Proof of Theorem 2.5

We start with a few notations and definitions. We define inductively a sequence
of correspondences (F n)n from Z to Z, by F 0(z) = {z} for every state z, and
∀n ≥ 0, F n+1 = F n ◦ F (the composition being defined by G ◦ H(z) = {z” ∈
Z, ∃z′ ∈ H(z), z” ∈ G(z′)}). F n(z) represents the set of states that the decision-
maker can reach in n stages from the initial state z. We also define for every state
z, Gm(z) =

⋃m
n=0 F

n(z) and G∞(z) =
⋃∞
n=0 F

n(z). The set G∞(z) is the set of
states that the decision-maker, starting from z, can reach in a finite number of
stages.

For all θ in Θ, m ≥ 0 and initial state z, we clearly have:

vm,θ(z) = sup
z′∈Fm(z)

vθ(z
′) = sup

s∈S(z)

∞∑
t=1

θtr(zm+t).

In the sequel, we fix a sequence of evaluations (θk)k≥1 such that TV (θk) −−−→
k→∞

0.

Lemma 4.1. For all m0 ≥ 0 and z in Z,

lim inf
k

sup
m≤m0

vm,θk(z) = lim inf
k

vθk(z).

Proof: For each k, we have vθk(z) ≥ v1,θk(z) − θk1 − TV (θk) by Lemma 2.2, so
vθk(z) ≥ v1,θk(z)− 2TV (θk). Iterating, we obtain that:

vθk(z) ≥ supm≤m0
vm,θk(z)− 2m0TV (θk). �

A key result is the following proposition, which is true for all evaluations θ.

Proposition 4.2. For all evaluations θ in Θ and initial state z in Z,

sup
z′∈G∞(z)

vθ(z
′) ≥ lim sup

k
vθk(z).

Proof of Proposition 4.2 z and θ being fixed, put β = supz′∈G∞(z) vθ(z
′). Fix

ε ∈ (0, 1], there exists T0 such that
∑∞

t=T0+1 θt ≤ ε, and fix T1 ≥ T0/ε.
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For any play s = (z1, ..., zt, ...) in S(z), we have by definition of β that for all
T ,
∑∞

t=T+1 θt−T r(zt) ≤ β. Let m be a non negative integer, we define:

Am =

(m+1)T1−1∑
T=mT1

∞∑
t=T+1

θt−T r(zt) ≤ T1β.

Am =
∞∑

t=mT1+1

r(zt)

min{(m+1)T1−1,t−1}∑
T=mT1

θt−T ,

≥
(m+1)T1∑
t=mT1+1

r(zt)(θ1 + ...+ θt−mT1),

≥ (1− ε)
(m+1)T1∑
t=T0+mT1

r(zt),

≥ (1− ε)

 (m+1)T1∑
t=1+mT1

r(zt)− (T0 − 1)

 .

We obtain:
T1β ≥ (1− ε)T1γmT1,T1

(s)− (1− ε)(T0 − 1),

and

γmT1,T1
(s) ≤ β

1− ε
+ ε. (1)

We now consider γθk(s) for k large. We compute
∑∞

t=1 θ
k
t r(zt) by dividing the

stages into blocks of length T1. For each m ≥ 0, let θk(m) be the Cesàro average
of θkt , where t ranges from mT1 + 1 to (m + 1)T1. Notice that for all such t, we

have |θkt − θk(m)| ≤
∑(m+1)T1−1

t′=mT1+1 |θt′ − θt′+1|. We have:

(m+1)T1∑
t=mT1+1

θkt r(zt) ≤
(m+1)T1∑
t=mT1+1

θk(m)r(zt) +

(m+1)T1∑
t=mT1+1

|θkt − θk(m)|r(zt),

≤ θk(m)γmT1,T1
(s) + T1

(m+1)T1−1∑
t=mT1+1

|θkt − θkt+1|,

≤ θk(m)

(
β

1− ε
+ ε

)
+ T1

(m+1)T1−1∑
t=mT1+1

|θkt − θkt+1|.

where the last inequality follows from Equation (1). Summing up over m, we
obtain:

γθk(s) ≤ β

1− ε
+ ε+ T1 TV (θk).

Consequently, lim supk vθk(z) ≤ β
1−ε + ε, and this is true for all ε. �
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Corollary 4.3.
inf
θ∈Θ

sup
m≥0

vm,θ = inf
k≥1

sup
m≥0

vm,θk .

Proof: Consider an initial state z, and write α = infk supm vm,θk(z). It is clear
that α ≥ infθ∈Θ supm≥0 vm,θ(z). Now for each k ≥ 1 there exists m(k), such that
vm(k),θk(z) ≥ α − 1/k, and we define the evaluation θ′k =

∑∞
t=m(k)+1 θ

k
t−m(k)δt.

We have TV (θ′k) = TV (θk) −−−→
k→∞

0, so by Proposition 4.2 we obtain that for all

evaluations θ, supz′∈G∞(z) vθ(z
′) ≥ lim supk vθm(k),k(z) ≥ α. �

From Lemma 4.1 and Proposition 4.2, one can easily deduce the following
corollary.

Corollary 4.4. For all m0 ≥ 0 and z in Z,

inf
k≥1

sup
m≤m0

vm,θk(z) ≤ lim inf
k

vθk(z) ≤ lim sup
k

vθk(z) ≤ inf
k≥1

sup
m≥0

vm,θk(z).

And we can now conclude the proof of the Theorem 2.5, proceeding as in
the proof of Theorem 3.10 in Renault, 2011. For all states z and z′, we define
d(z, z′) = supk≥1 |vθk(z)− vθk(z′)|. The space (Z, d) is now a pseudometric space
(may not be Hausdorff).

End of the proof of Theorem 2.5. By assumption, there exists a finite set of
indices I such that for all k ≥ 1, there exists i in I satisfying d∞(vθk , vθi) ≤ ε.
Consider now the set {(vθi(z))i∈I , z ∈ Z}, it is a subset of the compact metric
space [0, 1]I with the uniform distance, so it is itself precompact and we obtain
the existence of a finite subset C of states in Z such that:

∀z ∈ Z, ∃c ∈ C, ∀i ∈ I, |vθi(z)− vi(c)| ≤ ε.

We have obtained that for each ε > 0, there exists a finite subset C of Z such that
for every z in Z, there is c ∈ C with d(z, c) ≤ ε. The pseudometric space (Z, d) is
itself precompact. Equivalently, any sequence in Z admits a Cauchy subsequence
for d. Notice that all value functions vθk are clearly 1-Lipschitz for d.

Fix z in Z, and consider now the sequence of sets (Gm(z))m≥0. For all m,
Gm(z) ⊂ Gm+1(z) so using the precompacity of (Z, d) it is not difficult to show
(see, e.g. step 2 in the proof of Theorem 3.7 in Renault, 2011) that (Gm(z))m≥0

converges to G∞(z), in the sense that:

∀ε > 0, ∃m ≥ 0,∀z′ ∈ G∞(z),∃z′′ ∈ Gm(z), d(z′, z′′) ≤ ε. (2)

We now use Corollary 4.4 to conclude. We have for all m :

inf
k≥1

sup
z′∈Gm(z)

vθk(z′) ≤ lim inf
k

vθk(z) ≤ lim sup
k

vθk(z) ≤ inf
k≥1

sup
z′∈G∞(z)

vθk(z′).
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Fix finally ε > 0, and consider k ≥ 1 and m ≥ 0 given by assertion (2). Let
z′ in G∞(z) be such that vθk(z′) ≥ supz′∈G∞(z) vθk(z′) − ε. Let z′′ in Gm(z) be
such that d(z′, z′′) ≤ ε. Since vθk is 1-Lipschitz for d, we obtain vθk(z′′) ≥
supz′∈G∞(z) vθk(z′)−2ε. Consequently, supz′∈Gm(z) vθk(z′) ≥ supz′∈G∞(z) vθk(z′)−2ε
for all k, so

inf
k≥1

sup
z′∈Gm(z)

vθk(z′) ≥ inf
k≥1

sup
z′∈G∞(z)

vθk(z′)− 2ε.

We obtain lim infk≥1 vθk(z) ≥ lim supk≥1 vθk(z) − 2ε, and so (vθk(z))k converges.
Since (Z, d) is precompact and all vθk are 1-Lipschitz, the convergence is uniform.
�

5 An open question

We know since Lehrer and Sorin (1992) that the uniform convergence of the
Cesàro values (vn)n≥1 is equivalent to the uniform convergence of the discounted
values (vλ)λ∈(0,1]. Example 3.2 shows that is possible to have no uniform conver-
gence of the Cesàro values (or equivalently of the discounted values) but uniform
convergence for a particular sequence of evaluations with vanishing TV. Could it
be the case that the Cesàro values and the discounted values have the following
“universal” property ?

Assuming uniform convergence of the Cesàro values, do we have general uni-
form convergence of the value functions, i.e. is it true that (vθk)k uniformly
converges for every sequence of evaluations (θk)k≥1 such that TV (θk) −−−→

k→∞
0 ?

The above property is true in case of an uncontrolled problem, i.e. when the
transition F is single-valued.

Proposition 5.1. For an uncontrolled problem, the uniform convergence of the
Cesàro values implies the general uniform convergence of the value functions:

∀ε > 0,∃α > 0,∀θ ∈ Θ s.t. TV (θ) ≤ α, ‖vθ − v∗‖ ≤ ε.

Proof: Fix ε > 0. By assumption there exists N such that for all states z in Z,
|v̄N(z) − v∗(z)| ≤ ε. Consider an arbitrary evaluation θ and an initial state z0.
For each positive t we denote by zt the state reached from z0 in t stages, we have
vθ(z0) =

∑∞
t=1 θtr(zt) and v∗(z0) = v∗(zt) for all t.

Divide the set of stages into consecutive blocks of lengthN : B0 = {1, ..., N},...,
Bm = {mN + 1, ..., (m + 1)N},... Denote by θ̄(m) the mean of θ over Bm, we
have

∑∞
m=0Nθ̄(m) = 1. We also write r̄(m) for the mean 1

N

∑
t∈Bm r(zt). We

have r̄(m) = v̄N(zmN), so |r̄(m)− v∗(z0)| ≤ ε for all m.
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Computing payoffs by blocks, we have

vθ(z0) =
∞∑
m=0

∑
t∈Bm

θtr(zt),

=
∞∑
m=0

∑
t∈Bm

(θt − θ̄(m))r(zt) +
∞∑
m=0

Nθ̄(m)r̄(m).

So we obtain:

vθ(z0)− v∗(z0) =
∞∑
m=0

∑
t∈Bm

(θt − θ̄(m))r(zt) +
∞∑
m=0

Nθ̄(m)(r̄(m)− v∗(z0)),

and

|vθ(z0)− v∗(z0)| ≤
∞∑
m=0

N
∑
t∈Bm

|θt+1 − θt|+ ε ≤ N TV (θ) + ε.

If TV (θ) ≤ ε
N

, we get |vθ(z0)− v∗(z0)| ≤ 2ε, hence the result. �
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