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Abstract

We study the welfare impact of revenue management, i.e. intertemporal price discrimina-

tion when the product availability is limited both in time and quantity, and consumers’ arrival

is random. This practice is particularly relevant, and widely spread, in the transport indus-

try, but little is known about its implications on profits and consumer surplus. We develop

a theoretical model of revenue management allowing for heterogeneity in product characteris-

tics, capacity constraints, consumer preferences, and probabilities of arrival. We also introduce

dynamic competition between revenue managers. We solve this model computationally and

recover the optimal pricing strategies. We find that revenue management is welfare enhancing.

Revenue managers face two types of constraints: a limited booking period and fixed capacities.

Previous sales affect the relative slackness of these two constraints, explaining price variations.

Profits increase as the practice offers more leeway to the seller compared to posting a fixed price

throughout the booking period. Total consumer surplus also increases for a wide range of spec-

ifications, as revenue management raises the number of sales. In the presence of heterogeneous

consumers, consumers with low price sensitivity subsidize ones with high price sensitivity when

demand is low but both types benefit from the practice when demand is high. This sheds some

light on the impact of revenue management on the surplus of business and leisure passengers.
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tational models.
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1 Introduction

We study the welfare impact of revenue management and the dynamics of fares resulting

from this pricing strategy. We find that revenue management is generally welfare-enhancing.

Revenue management is widely used in transports, especially by airline and railway compa-

nies, but also to manage hotel bookings and ticket sales. This form of intertemporal price

discrimination allows the seller to manipulate the price of a product whose availability is

constrained both in time and in quantity. In a framework in which consumer arrival is un-

certain, the seller can react to the demand realization: she increases or decreases her prices

given the quantity already sold and the remaining time in which to sell the residual capacity.

Whether revenue management is welfare-enhancing or not is a difficult question which

remains, to the extent of our knowledge, unanswered. The practice might seem unfair, and

on the ground that it increases firms’ profits, raises suspicions that it harms consumers.

However, forcing the firm to post a fixed price does not ensure that it will post an affordable

one. When restricted to a fixed price, the revenue manager can no longer reward early

bookers through rebates or propose last minute deals at the end of the booking period.

We develop a model of revenue management allowing the seller to simultaneously propose

different products, heterogeneous in their characteristics but also in their availability, to

different types of consumers. For instance, a revenue manager in a railway company could

propose several trains on a given day for the same origin-destination leg. These trains could

differ in their departure time, number of stops along the way, or number of seats. Each

is characterized by a capacity constraint, i.e. its number of remaining seats. As a revenue

manager is also likely to react to the prices posted by her competitors, we introduce dynamic

competition between revenue managers.

We computationally solve this dynamic program by simulating stochastic arrivals of con-

sumers and their purchasing decisions. We then compute the subsequent optimal reaction

2



of the revenue manager. Our results are robust to several specifications for the arrival of

consumers as we allow for constant and increasing arrival rates.

Our approach allows us to answer the difficult questions of finding the equilibrium pricing

strategies and assessing the welfare impact of revenue management despite the absence of a

closed-form solution to our model. Another method to understand the strategies played at

equilibrium and to carry out this welfare analysis would have been to estimate a structural

model of revenue management. It is however difficult to procure sufficiently detailed data

on this topic as they are a very sensitive and strategic piece of information.

We first consider a simple model of revenue management with homogeneous products and

only one type of consumers. The revenue manager only faces one capacity constraint and

one time constraint. This allows us to illustrate the forces at play in revenue management:

the intensity of the constraints faced by the revenue manager can be represented by the

ratio of remaining units over the remaining time to sell them. For a given number of units,

if the remaining time to sell them decreases, the ratio increases, and the revenue manager is

pressured into lowering her prices. If, on the other hand, for a given deadline, the revenue

manager has less units to sell, the unit-time constraint faced by the revenue manager is

relaxed and she will try to sell the last units at a higher price.

We are able to recover a standard feature of the industry pricing: if the arrival rate of

consumers is sufficiently high compared to the total capacity, prices start low and increase

as time goes by. At the very end of the booking period, prices can dramatically fall as

the manager does not want to keep unsold units. When the intensity of demand is low

compared to the total capacity, the probability of the revenue manager being constrained

by the number of available units is almost zero and intertemporal price discrimination does

not occur in practice. We also show that compared to an optimal fixed price, revenue

management strongly increases consumer surplus through a higher number of sales without

hurting the profits of the company.
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We also consider the more complex and realistic case in which heterogeneous consumers

have to choose between heterogeneous products, for instance an off-peak and a rush-hour

train. The revenue manager now faces one time constraint but several capacity constraints.

Solving for the optimal pricing strategy of the revenue manager and for the optimal fixed

price, we compare the producer and consumer surpluses between these two pricing strategies.

For low intensities of demand compared to the total capacity, revenue management allows

price-sensitive consumers to be subsidized by the ones with a lower price elasticity. However

both categories of consumers benefit from the practice as the intensity of demand increases

for a given total capacity. Applied to the transport industry, this provides some insights

about the impact of revenue management on leisure and business passengers.

In the third part of the paper, we introduce both indirect and direct competition in the

model, and study their impact in terms of profit and welfare. We find that compared to

the monopoly case and holding demand constant, direct competition substantially increases

load rates through lower prices. We also study the impact of ex-ante strategic decisions on

social welfare, such as allowing revenue managers to choose the total capacity they propose

before they compete against each other. In this context, we find that competition between

two revenue managers reduces producer surplus only slightly compared to the monopoly case

but allows consumer surplus to be twice as large.

We review the literature in section 2 and present the model and our algorithm in sections 3

and 4. Results for the simplest one-product homogeneous-consumers case are presented

in section 5. Heterogeneous consumers are introduced in section 6. We analyse dynamic

competition between revenue managers and ex-ante competition in capacities in sections 7

and 8.
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2 Literature Review

The literature on revenue management is wide both in operations research and economic the-

ory. Our paper fills the gap between the two fields, answering a truly economic problematic

in the realistic framework of operations research.

In operations research, Talluri and Van Ryzin (2004, 2005) introduce a choice-based

model of revenue management and show the two forces driving the manager’s actions: the

will to boost demand by selling at a low price, and the incentive to post high prices after

a sufficient number of sales.1 The first force is prevalent at the beginning and at the end

of the booking period. They also show that the choice-based approach gives better results

than other methods of revenue management. We show that some of their results do not hold

when we allow the capacity constraint of the revenue manager to be multidimensional, e.g.

when the revenue manager maximizes profits over two different types of products instead

of one. In that case, the revenue manager may be willing to post prices which are not

efficient according to their definition. McAfee and Velde (2008) study a similar question,

restricting to demand functions satisfying constant price elasticity, which allows them to

derive a closed-form solution. They also use a reduced-form approach by modelling arrival

of consumers and their purchasing decision as a simultaneous process. To the extent of

our knowledge, Vulcano et al. (2010) is the first attempt to estimate consumers preferences

and to carry out counterfactuals in a revenue management context. Gallego and Van Ryzin

(1997) introduce the notion of multiple products and associated limited resources although

they adopt a reduced-form approach for the consumers’ behaviour. Modarres M. (2009)

study the pricing strategy when cancellation is possible and revenue managers do not update

their prices every period. McGill and Van Ryzin (1999) provide a comprehensive overview

of the issues raised by revenue management. This operations research literature does not

1A choice-based model is one which explicitly models consumers’ choices.
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provide any welfare analysis of revenue management, but rather focuses on the best way

to implement it from the perspective of the seller. Despite some similarities in the way we

model the maximization program of the revenue manager, our aim is radically different. We

also extend these models by introducing strategic choices and strategic interactions from and

among revenue managers.

The economic literature, starting with Stokey (1979), has dealt with intertemporal price

discrimination but not really with revenue management from an operational perspective. For

instance, Dana Jr (1999) studies how a firm can use revenue management to smooth demand

peaks and reduce capacity costs. He models revenue management as price discrimination

between two flights differentiated by their departure time, but does not consider fluctu-

ating prices for a given flight. Related to our topic, although more theoretical, Gershkov

and Moldovanu (2009) use a mechanism design approach to solve the revenue management

problem. This method has the advantage of providing a model with a closed-form solution.

However it stands on a theoretical ground which is far from the practitioners’ world. Hörner

and Samuelson (2011) study the allocation of a good when consumers are forward-looking.

This framework certainly improves the theory of revenue management but is, in our opinion,

less useful to study more practical issues such as its welfare impact. Indeed, forward-looking

consumers are supposed to be able to observe and react to any price change from the rev-

enue manager from the moment they realize they need a ticket to the end of the booking

period. We feel that search costs or aversion towards the risk of not finding a seat might

also play a role when booking a ticket. In that case, even forward-looking consumers could

behave like impatient ones. In practice, in the transport industry, we feel that consumers

looking for a ticket make their purchasing decisions comparing prices of travelling options

with close departure dates rather than trying to anticipate future prices. Because of this,

we choose to simplify the analysis and model our customers as impatient, which is a stan-

dard feature in the operations research literature. This allows us to model a more realistic
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framework including several substitutable products to choose from. We also address the pos-

sibility of partially forward-looking consumers in one specification of our model by allowing

the willingness to purchase the products to increase over time. This represents a situation

in which consumers are aware that there might not be any products left if they wait but

cannot anticipate the pricing strategy of the revenue manager. Lazarev (2012) empirically

studies the welfare impact of intertemporal price discrimination. His approach however does

not explicitly take into account revenue management but assumes an exogenous dynamics

of fares. Williams (2013) estimates a dynamic model of revenue management and price dis-

crimination using a framework similar to ours. He finds that revenue management benefits

consumers on average, which confirms our first result. However, he avoids the problem of

substitutability between products by focusing on single flights. We also conduct an analysis

of revenue management when the revenue manager can propose several types of products.

Finally, Goodwin (1992) and Wardman and Shires (2003) both conduct reviews of price

elasticities’ estimates in transports, respectively with a focus on short-term vs. long-term

and on the types of consumers. To carry out our analysis, we choose values of parameters

giving us price elasticities consistent with the average estimates in this literature.

3 The Model

3.1 Notations

Our revenue management problem features a seller, the revenue manager, proposing several

products, constrained in quantity, to a set of potential consumers. The revenue manager

can only sell her products during a finite period of time, which corresponds to the booking

period in the transport industry. In our model, this period starts at date T and ends at date

1. Consumers who purchased the products consume them at date 0.

We allow products to be heterogeneous in their characteristics and different types of prod-
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ucts can be simultaneously proposed to consumers by the revenue manager. For instance,

a revenue manager can simultaneously propose a first-class ticket and a second-class ticket.

All products are constrained in quantity and each type of products has its own constraint.

In the previous example, the number of first class tickets that the revenue manager can sell

is constrained by the number of first-class seats. Products characteristics are denoted by

i ∈ I.2 Xi denotes the remaining capacity for attribute i. The vector of remaining capacities

for all constrained characteristics in I is denoted X.

The range of possible prices for a product with attributes i is denoted Pi and contains

a price equal to +∞ for all i. At each period of the booking process, the revenue manager

chooses the menu of tariffs she proposes to the consumers. p̃ ∈
∏

i Pi is the vector of selected

tariff options for all products. We assume that when p̃i = +∞ is chosen, the product is

sold with probability 0. This tariff option is therefore equivalent to closing the sales of the

product. When bought, a product with attributes i is exchanged at price pi = p̃i.

We assume that no more than one consumer can buy a product within a period t of the

booking process.3 At each period t ∈ {T, . . . , 1}, a consumer arrives with probability λt,

observes the available tariffs, and chooses whether or not to purchase. The dummy di takes

value 1 when a product with attribute i is purchased. When the consumer selects the outside

option, d0 = 1−
∑

i di = 1.

In the following, we sometimes use the expressions market size or intensity of demand

when referring to the average rate of arrival E(λt).

2For the sake of simplicity, we chose to model only the products characteristics which are physically
constrained. We could easily add another layer of differentiation, such as the flexibility of a ticket. But this
would not change the flavour of our results.

3Although this might seem a bit restrictive, we can choose T as large as needed to ensure that this
assumption is empirically justified.

8



3.2 The Bellman Equation

At each period t of the booking process, the revenue manager observes the remaining capacity

X and chooses a menu of tariffs so as to maximize her overall profit. If she sells a product

during the period, she gets the instantaneous profit given by the price of the product plus

her continuation value when there is one less unit of product to sell. If she does not sell, she

just gets her continuation value for a remaining capacity X. Selling occurs if a consumer

arrives and decides to buy. Not selling occurs either because no consumer arrived or the

consumer chose not to buy. We denote Pr(di = 1|p̃) the probability that a consumer buys a

product i conditional on a proposed menu of tariffs p̃. We shall define this probability later

when we explicitly model the consumers’ behaviour.

Hence, the choices of the revenue manager must satisfy the following Bellman equation:

Vt(X) = max
p̃∈ΠiPi

∑
i

λtPr(di = 1|p̃) [p̃i + Vt−1(Xi − 1, X−i)]

+ [1− λt + λtPr (d0 = 1|p̃)]Vt−1(X) (3.1)

subject to the final constraints:


V0(Xi) = 0 ,∀Xi

Vt(X) = 0 , whenever
∑

iXi = 0

p̃i = +∞ , if Xi = 0

(3.2)

Denoting E(π|p̃) the instantaneous expected revenue given p̃, we can rewrite Equation
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3.1 as:

Vt(X) = max
p̃∈ΠiPi

λt

[
E(π|p̃)− Pr(d0 = 0|p̃)Vt−1(X)

+
∑
i

Pr(di = 1|p̃)Vt−1(Xi − 1, X−i)

]
+ Vt−1(X) (3.3)

subject to the final constraints 3.2.

In the last equation, Pr(d0 = 0|p̃) represents the total probability of purchase if the menu

p̃ of tariffs is chosen.

The three final constraints are respectively given by the fact that sales are closed at the

end of the booking process, the limited capacities, and the fact that the revenue manager

has to close the sales of a type of products when it is no longer available.

3.3 Demand Modelling

The probability with which a consumer buys a product with characteristics i given p̃ is

determined by the way we model demand. We adopt here a multinomial logit approach, in

which the utility of a consumer arriving in period t is given by:

 ut(pi) = v + αui − γpi + εit , when di = 1

ut0 = ε0t , when the outside option is chosen.
(3.4)

In the above equation:

• ε is the random part of the utility and is drawn from a type-I extreme value distribution,

with location parameter µ equal to the Euler-Mascheroni constant (≈ 0.5772) and scale

parameter σ = 1. These parameters ensure that ε is a zero-mean random variable with

a variance equal to π2

6
. Those noises are i.i.d across options and consumers.

• ū0 = 0 in case of no purchase, and ū(pi) = v+αui−γpi in case of a purchase of a product
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with attributes i at price pi, are the deterministic parts of the utility. ui represents the

observable characteristics of product i. The parameters α and γ respectively represent

the consumers’ sensitivity to these characteristics (such as the comfort class) and to

the price. v is a scale parameter. Note that we can allow these parameters do depend

on consumers’ observable characteristics.

Following Ben-Akiva and Lerman (1985), the choice probabilities Pr(di = 1|p̃) are given

by: 
Pr(di = 1|p̃) = eū(pi)∑

j∈I e
ū(p̃j)+1

Pr(d0 = 1|p̃) = 1∑
j∈I e

ū(p̃j)+1

(3.5)

Notice that the final constraints of the Bellman equation imply that the revenue manager

posts an infinite price pi when a product i is sold out. Looking at Equation 3.5 above, it

means that the probability of purchasing such a good is zero. If all products are sold out,

all prices are set to infinity and the probability of choosing the outside option is 1.

Remark 1. The relationship between γ and the price elasticity of demand η(p̃) is easily

derived. Denoting Si(p̃) the market share of a product with attributes i when consumers face

a price vector p̃, we get:

η(p̃) =
∂Si
∂pi

pi
Si

= −γpi(1− Si) (3.6)

3.4 Comments on the Theoretical Model

Compared to other models of revenue management in the operations research literature, we

differentiate ourselves in the following ways:

• We allow for a general product set, described by several capacity constraints.

• We choose a flexible structural approach to model purchasing decisions.
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• The revenue manager can choose the price of each available product but also which

products to propose using the option of an infinite price. By comparison, some revenue

management papers assume that if two products are identical in all their characteris-

tics but their prices, they constitute two different products. This leads to unrealistic

consumer behaviours: when proposed simultaneously to the low price product, the

high price product can be chosen by consumers with some positive probability.

Our model is therefore flexible enough to accommodate realistic pricing and consumption

decisions. This flexibility has a cost: our model does not have any closed-form solution and

some of the theoretical results that can be found in the literature do not extend here. More

details about these issues can be found in Appendix A.

The best approach to solve our model is to use computational techniques.

4 Algorithm

To recover the optimal pricing strategy of the revenue manager and assess the welfare im-

pact of revenue management, we construct an algorithm that solves the revenue manager

optimization problem and finds her optimal action at any given period during the booking

process and for any value of the state variable X.

First, we set the values of the different parameters driving consumers’ choices as well

as the choice sets of the revenue manager, Pi ∀i. All these values are chosen so as to be as

realistic as possible. Values of parameters for the preferences of the consumers were chosen

to match price elasticities estimated in the economic literature. (See Goodwin (1992) and

Wardman and Shires (2003).) The number of tickets that the revenue manager has to sell

matches the average capacity of a plane or a train. In our computations we choose capacities

going from 200 seats up to 400 seats. The price grid was constructed based on observations

about prices of train tickets in France and intra-European flights.

12



Given parameters for the preferences of the consumers and product characteristics, we

are able to construct the purchase probabilities for each product as well as the expected

instantaneous revenue using the demand model described above.

We therefore have all the elements necessary to solve the Bellman equation faced by the

revenue manager. We start from the final constraints where the continuation value of the

Bellman equation is zero and we compute the value functions at previous dates and for all

possible states by iteration. More precisely, we fill a matrix with T + 1 rows and
∑

iXi

columns. The first column corresponds to the case in which all products are sold and is

therefore filled with zeros. The first row corresponds to the end of the booking period when

the revenue manager can no longer sell the products. It is also filled with zeros. We can find

the value functions in the second row because we know all values in the preceding row are

zero. Using the Bellman equation, the value functions in the second row are the maximum

expected revenue conditional on the available products. A maximization program running

on the finite set of prices available to the revenue manager gives us this value function as well

as the optimal menu of prices. The continuation values in period 1 (second row) are plugged

into the Bellman equation, and we can solve it for period 2. We continue this iterative

process until period T . This gives us the optimal actions of the revenue manager for each t

and X.

Finally, we simulate arrivals of potential consumers during the booking period by random

draws from a binomial distribution with parameter λ. We also generate the random shocks

εit in the utility of the consumers and recover their purchasing decisions and surplus. Profits

and total consumer surplus are computed as the sum of individual purchases and surplus.

This being a stochastic process, we repeat the whole operation hundreds of times so as to

recover the expectation and variance of the profit and consumer surplus.4

4In the remaining of the paper, we present average profit and consumer surplus across all the simulations.
Prices at each period of the booking process are also averaged across all simulations. The number of
simulations varies between 500 and 1000 depending on the specification. (See Table 7 of Appendix B.)
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5 The Distributive Properties of Revenue Management

Although discrimination often creates an inefficient allocation of goods among consumers,

it can sometimes increase the consumer surplus through a higher volume of sales. In this

section we show that this is indeed the case with revenue management, using the model

developed in section 3, and realistic values of parameters.

We develop here the simplest case possible with homogeneous products and only one

type of consumers. Products are only differentiated through their price. Average values of

proposed prices, profit and consumer surplus are found using the algorithm described above.

The values of parameters we chose are summarized in Table 7 of Appendix B, column (1).

We simulate this setup for constant arrival rates:

λt = λ, ∀t with λ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

5.1 Price Variations in Revenue Management

In a first setup, we illustrate the revenue management practice using a range of possible

prices, P , equal to {40, 90}.5 The selected values of parameters and Equation 3.6 allow us to

compute the price elasticity of demand in this case: η ≈ −0.51 when p = 40 and η ≈ −2.1

when p = 90. These are in line with price elasticities’ estimates in the rail industry: in

Goodwin (1992), the average price elasticity for the demand for train tickets is −0.79 over

92 quoted values. In a more recent review, Wardman and Shires (2003) find an average price

elasticity of −0.9 over 456 inter-urban rail demand elasticities in Great Britain, with highest

elasticities around −3.2.

Figure 1 represents the change in posted average prices in such a setup for λ = 0.4 and 0.7.

The averaging is performed over all the simulations at a given period of the booking process.

5These bounds have been chosen after observing the change in ticket prices on the second class Paris-Lyon
over the whole booking period.
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Figure 1: Change in posted average prices as a function of the booking period. Figure
(a) deals with a demand of medium intensity, λ = 0.4; Figure (b) deals with a demand of
high intensity, λ = 0.7. Note: The averaging is performed over all the simulations at a
given period of the booking process. To facilitate the reading, we use a non-parametric fit
of average prices over the booking period. The confidence interval in red is the smoothed
confidence interval of the mean.

We notice that for a medium market size, the revenue manager tends to start with a low

price: the time constraint dominates the capacity constraint. In that case, the revenue

manager has the incentive to sell fast as many units as possible. When enough sales are

made, prices start to increase: the capacity constraint now dominates and the incentive to

sell the remaining units at high prices counterbalances the incentive to sell all units. At the

end of the booking period, the opportunity cost of having unsold units dominates again and

prices go down.

When the market size is larger compared to the total capacity, the frequent arrival of

consumers makes it very likely that all units will be sold by the end of the booking period.

Therefore, the capacity constraint already dominates at the beginning of the booking period

and prices start high. This explains the shape of the price curve when λ = 0.7.6

6In practice, prices vary through time according to shape (a) rather than shape (b). This would mean that
the proposed capacity is quite high compared to the market size. A possible explanation is that given the
risk stemming from the random arrival of consumers, revenue managers prefer to underestimate the market
size when maximizing their profit. However, such risk aversion is not modelled here. Another explanation
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Note that this general shape is not a feature of the particularly simple price structure we

adopted in this example. We performed the same exercise with five different prices between

20 and 100 and reported the price variations for λ = 0.5 in Figure 5 of Appendix H.1.

Although variations are less pronounced, the general shape remains the same.

This shape of the price curve is standard in the revenue management literature: it cor-

responds to the price curve found in McAfee and Velde (2008) and the incentives faced by

revenue managers are mentioned in Talluri and Van Ryzin (2004). We can also retrieve this

shape looking at transport prices, for instance airline prices, which usually increase as time

goes by but can drop at the last minute before the departure of the flight.

5.2 Revenue Management vs. Optimal Fixed Price

Revenue management offers more leeway to the seller than an optimal fixed price strategy.

It is therefore expected that a revenue management strategy including the optimal fixed

price in the choice set of the seller must (at least weakly) increase her profit compared to the

optimal fixed price alone. In this section, we test this prediction and measure to which extent

revenue management including the optimal fixed price raises profits and affects consumer

surplus.

To do so, we compute the optimal fixed price po and the average profit and consumer

surplus associated with this price. We then construct the choice set P of the revenue manager

to include po and some small variations around this price:

P = {po − ξ, po, po + ξ} ξ = 1, 2, . . .

Although the revenue manager’s choice set is small, Figures 6 and 7 of Appendix H.2 show

that revenue management weakly increases both profits and consumer surplus. The increase

would be that firms choose not to reduce the proposed capacity so as to avoid a shortage of units to sell and
possible consumer discontent.
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is significant only for market sizes which are high compared to the capacity constraint. When

λ ≥ 0.7, revenue management increases profits by 1% compared to the fixed price strategy,

and for the same values, the increase in consumer surplus lies between 2% and 3%. These

values are significant and indicate that simply adding some leeway in the choice set of the

seller can benefit both the company and the consumers.

We find no significant profit increase for λ ≤ 0.4. In these cases, the price posted by the

revenue manager is always the optimal fixed price. For these values of the arrival rate, the

observation of a high volume of sales during the booking process is very unlikely. The revenue

manager does not have any incentive to modify her posted price because she anticipates that

the capacity constraint will not be binding. Further discussion of these results can be found

in Appendix C.

5.3 Revenue Management and Increasingly Impatient Consumers

Consumers are obliged to choose the outside option if all products are sold out. Although

we do not model the consumers’ behaviour in a dynamic way, one way to introduce concerns

for the future would be to consider consumers with an increasing willingness-to-pay.

Indeed, let us assume a semi-sophisticated consumer who is well aware of the possibility

that she might not get a ticket if she waits but cannot fully anticipate the pricing strategy

of the revenue manager. If this consumer arrives at the beginning of the booking period,

she might think that she has enough time to find another option if she chooses not to buy

immediately. Her value for the product is pretty low relative to her value for the outside

option. But if she arrives at the end of the booking period, there is a high probability that

all products will be sold out soon and she is running out of time to find a decent outside

option. Her willingness to buy the product becomes high compared to the outside option.

Taking the example of someone looking for plane tickets, she might feel that she has

plenty of other opportunities at the beginning of the booking period and might refuse a
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high-price ticket. At the end of the booking period however, her other options may be

less enticing or riskier — for instance other means of transportation might not be available

anymore. In this case, she might be willing to pay a higher price for her ticket.

We model this situation by allowing the scale parameter in the utility function of the

consumer to be a decreasing function of t ∈ [T, 1]. Hence, when purchasing product i, the

consumer gets the following utility:

ut(pi) = v + 1− t− 1

T
+ αui − γpi + εit (5.1)

Revenue management might allow the seller to extract even more profit compared to

committing to a fixed price strategy. Indeed, the seller can be flexible and adapt her prices

to the arrival of consumers who are more willing to pay high prices.

As we want to compare this situation to the case in which consumers have always the

same willingness to pay, we choose v in Equation 5.1 to be equal to 1, thus ensuring that

the expected utility for purchasing a product at price pi averaged over the booking period

is equal to their expected utility when they have a constant willingness to purchase.

Figures 14 and 15 of Appendix H.2 show our results when consumers have an increasing

willingness to purchase the product. For λ ≤ 0.4, revenue management has no effect on

profits. When λ ≥ 0.5, the relative impact of revenue management compared to a fixed

price on profits is slightly stronger if consumers have an increasing willingness to purchase.

Indeed, the increase in profits due to revenue management lies around 1%, which is similar to

the case in which consumers have a constant willingness to purchase throughout the booking

process. This impact is even stronger in some instances with a peak at 1.5% when λ = 0.5.

However, the effect of revenue management on consumer surplus in this situation becomes

ambiguous as it increases or decreases consumer surplus depending on the value of the arrival

rate. More surprisingly, revenue management has some positive effect on the consumer
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surplus even for low values of λ: as consumers now have an increasing valuation for the

product, the revenue manager has an incentive to deviate from the optimal fixed price when

λ ≤ 0.4. When λ ≥ 0.6, the relative impact of revenue management is similar in both cases

of constant and increasing willingness to purchase, around 2 − 3%. But it appears that

for intermediate values of the arrival rate, the impact of revenue management on consumer

surplus becomes negative. This demonstrates that in this situation, the fact that revenue

management creates surplus through a higher number of sales can be offset by a greater

ability to capture consumer surplus. This is confirmed by the observation that the value

for the arrival rate yielding the highest profits is also the one yielding the lowest consumer

surplus.

5.4 Revenue Management with Noisy Arrival Rates

Another practical issue is the fact that the revenue manager can face some noise in her

prediction of the arrival rate of consumers. Even though the prediction is good on average,

i.e. over several similar booking periods, for a given booking period unobserved shocks might

shift this arrival rate. Formally:

λ̃ = λ+ ν

where λ̃ is the realized arrival rate and ν is a Gaussian white noise.

Revenue management has the extra advantage over a fixed price to be flexible enough

to limit the loss of profits due to these unobserved shifts. Suppose λ̃ > λ. The seller

underestimates the size of the market and might post a price which is too low. However,

because she sells her products more quickly, she will be able to raise her prices on her

remaining inventory over a longer period of time.

To model this situation, we use the same framework as in section 5.2 except that we add
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a normally distributed noise to λ when we simulate the arrival of consumers.7 We choose

ν ∼ N(0, 0.02). Hence, the optimal pricing strategy of the revenue manager is computed

using λ but the actual arrival rate of consumers is simulated using λ̃. Other values of

parameters remain unchanged.

Figures 16 and 17 of Appendix H.2 show our results when the arrival rate of consumers is

noisy. For λ ≤ 0.4, the realized arrival rate of consumers is too low for revenue management

to make any difference with an optimal fixed price. In the following, we focus on λ ≥ 0.5.

Clearly, the relative impact of revenue management compared to a fixed price on profits is

stronger when the arrival rate is noisy. Indeed, revenue management increases profits from 1

to 2% whereas the increase was at most 1% in the absence of noise. The fact that the seller

cannot perfectly infer the arrival rate of consumers gives therefore an additional advantage

to revenue management compared to a fixed price.

However, the impact on consumer surplus is ambiguous. In some cases, e.g. λ = 0.5,

revenue management lowers consumer surplus by 1 to 2% whereas there is no significant

impact in the noiseless case. For higher values of λ, as revenue management leads to more

purchases, consumer surplus still increases compared to a fixed price, but to a lesser extent

than in the noiseless case. Our interpretation is that when arrival rates are noisy, the

sub-optimality of the revenue manager’s pricing strategy given λ̃ creates inefficiencies. For

instance, if the arrival rate is overestimated, prices will be too high for too long at the

beginning, and this will preclude consumers to purchase. This phenomenon is not offset by

cases in which the arrival rate is underestimated because the increase in surplus due to low

prices is bounded by the number of available products.

Remark 2. The revenue manager could also use variations in proposed prices to try to learn

about the real value of the arrival rate during the booking process. She would then be able to

update her pricing strategy using her estimated value for λ̃. This would increase the impact

7The added noise is constant for the whole booking process.

20



of revenue management on profits. Such a learning model falls beyond the scope of our paper.

6 Heterogeneous Consumers and Products

We now turn to the case in which consumers are heterogeneous and have to choose between

two types of products heterogeneous in their quality. Indeed, intertemporal price discrimi-

nation can seem unfair to consumers since two buyers can pay largely different prices for the

same products. In particular, in the transport industry, business passengers are more likely

to pay higher fares since they do not plan their trips in advance and buy their tickets when

demand and prices are at their highest. For the same level of service, they might end up

paying twice as much as a leisure passenger.

However, some papers in the literature argue that business passengers actually benefit

from the presence of leisure passengers since the latter drive peak-demand prices down. (See

Dana Jr (1999).)

The situation we model here corresponds to the case in which a revenue manager opti-

mizes profit over a single leg, i.e. same origin-destination, but she can offer two types of

products, for instance tickets for a train early in the morning or for a train in the middle of

the afternoon. In this case, high quality products are tickets for the more convenient train,

which we call the rush-hour train because everyone wants to take it. The less convenient

train is called the off-peak train.

In this section, we focus on a transport setting and test whether or not revenue manage-

ment acts as a redistributive tool (and in which direction) in a general framework in which

leisure passengers with a high price elasticity have a constant arrival rate through time and

business passengers with a low price elasticity have an increasing arrival rate.8

Figure 2 depicts the unconditional probabilities of arrival of each type of consumers when

8Business passengers can have a low price elasticity because their company covers their travel expenses
for instance.
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demand is low. Our model for the dynamic arrival of consumers and the extension of the

Bellman equation to heterogeneous consumers are thoroughly described in Appendix D.
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Figure 2: Change in the arrival rates of leisure and business passengers (unconditional
probabilities) as a function of the booking period when the intensity of demand is low:
E(#arrival) = 400.

Analysing revenue management as a redistribution tool requires to define different sets

of parameters for each group of consumers. We consider here the case of business and leisure

passengers. A summary of our simulation setup can be found in Table 7 of Appendix B,

column (2). The arrival rates are defined so as to induce an expected number of arrivals over

the booking period:

E(arrivals) ∈ {400, 600, 800, 1000, 1200, 1400, 1600, 1800}

In each case, the number of consumers’ arrivals is in expectation equally divided between

business and leisure passengers. Hence, leisure passengers are relatively more frequent at the

beginning of the booking period and vice versa.

Both business and leisure passengers have identical preferences except for their price
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sensitivity. Using Equation 3.6, the price elasticity of demand is η ≈ −0.65 for a business

passenger facing a ticket for the more convenient train at price p = 100 and η ≈ −1.45 for a

leisure passenger facing a ticket for the less convenient train at price p = 60. As a reference,

in their meta-analysis of price elasticities in U.K. rail transport industry, Wardman and

Shires (2003) find that the price elasticities of demand for inter-urban trains by London

business passengers range from −0.54 to −0.63 in the short-run and from −0.79 to −0.92

in the long-run. The same elasticities for the London leisure passengers respectively range

from −1 to −1.17 and from −1.47 to −1.72 in the short and long-run.

We compute the optimal fixed price vector po and the associated average profit and

consumer surplus. We then compute the same average profit and consumer surplus in the

case of a revenue management strategy using the algorithm presented in section 4. The

choice set of the revenue manager is defined by:

Pi = {30, 50, 80, 100, 120, 135, 150, 165, 180, 195, 210, 230, 250, 290} , i = 1, 2

This choice set covers a wide range of possible prices but is not optimized and has

deliberately been chosen to be coarse.

The results are summarized in Tables 1 and 2. The impact of revenue management on

profits is even more noticeable than in the previous sections as the effect is positive and

significant whether the arrival of consumers is frequent or not.

Table 1 shows that revenue management significantly increases profits compared to an

optimal fixed price strategy, even if the set of prices from which the revenue manager can

choose has not been optimized. Indeed, revenue management can increase profits from 1.3%

up to 13.7%, depending on the market size. The impact on profits is also larger for small

market sizes, which greatly contrasts with our results on homogeneous consumers.

The variations in consumer surpluses between business and leisure passengers indicate
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Table 1: Profit and consumer surplus under revenue management and a
fixed price strategy for different market sizes and heterogeneous consumers.

Avg. Avg. Surplus Avg. Surplus
E(arrivals) Pricing po Profit Business Leisure

400 Fixed 135/135 16202 152 14
RM 18421 130 86

Gain from RM 13.7%∗∗ −14.5%∗∗ 491%∗∗

600 Fixed 135/135 24333 226 22
RM 26841 207 99

Gain from RM 10.3%∗∗ −8.2%∗∗ 355%∗∗

800 Fixed 135/135 32502 304 30
RM 34763 286 95

Gain from RM 7.0%∗∗ −5.8%∗∗ 220%∗∗

1000 Fixed 135/135 40624 378 38
RM 42581 357 85

Gain from RM 4.8%∗∗ −5.5%∗∗% 127%∗∗

1200 Fixed 148/136 48186 422 34
RM 49575 417 70

Gain from RM 2.9%∗∗ −1.1%∗∗% 107%∗∗

1400 Fixed 164/130 55655 472 35
RM 56680 461 53

Gain from RM 1.8%∗∗ −2.3%∗∗ 51%∗∗

1600 Fixed 182/140 62463 482 29
RM 63449 479 31

Gain from RM 1.6%∗∗ −0.6% 6.5%

1800 Fixed 199/154 68826 479 20
RM 69741 487 23

Gain from RM 1.3%∗∗ 1.7%∗∗ 12%

Significance levels: † : 10%; ∗ : 5%; ∗∗ : 1%
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that revenue management benefits leisure passengers at the expense of business ones for small

market sizes. However, as the market size increases, the negative impact of revenue manage-

ment on business surplus disappears and the effect even becomes significantly positive. The

impact on leisure surplus on the other hand is reduced and becomes non-significant. For

instance, when the expected number of arrivals is 1800, profits are increased by 1.3% due to

revenue management, while the impact on business and leisure passengers is positive with

their respective surplus increasing by 1.7% and 12%. The impact on leisure passengers is

non-significant. When the expected number of arrival is 400, revenue management increases

both profits and leisure consumer surplus by respectively 13.7% and 491%, and lowers busi-

ness surplus by 14.5%. Revenue management increases social welfare compared to a fixed

price strategy for sufficiently high intensities of demand (E(arrival) ≥ 1600) but has a more

ambiguous impact for lower intensities as the increase in profit and leisure surplus comes at

the expense of business passengers.

Table 2 gives us some intuition about why revenue management affects consumer surplus:

for low values of demand, revenue management actually decreases the load rates for business

passengers to the benefit of leisure passengers. Indeed, the shape of the arrival of the different

types of consumers allows the revenue manager to discriminate easily between them, i.e. to

fill the train with leisure passengers at the beginning of the booking period and to extract

business surplus as much as possible when business demand is high. Higher values of demand

call for discrimination between the two trains, as shown by the levels of the optimal fixed

prices. The revenue manager wants to allocate leisure passengers to the off-peak train.

Revenue management makes this discriminatory process more efficient, which leads to higher

load rates, thus higher surplus.

Figures 18 and 19 of Appendix H.3 give us some additional evidence about the discrim-

inatory process. First, Figure 18 shows how often each price of the choice set P is chosen

for each train. For each demand intensity, the revenue manager chooses several prices with
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Table 2: Comparison of load rates between revenue management and a fixed price
strategy for different intensities of demand when consumers are heterogeneous.

Avg. Avg. Avg. Avg.
Load Rate Load Rate Load Rate Load Rate

Posted Rush-Hour Rush-Hour Off-Peak Off-Peak
E(arrivals) Pricing Prices Train (B) Train (L) Train (B) Train (L)

400 Fixed 135/135 33% 4% 20% 3%
RM 29% 20% 18% 12%

∆(load) −4%∗∗ 16%∗∗ −2%∗∗ 10%∗∗

600 Fixed 135/135 50% 7% 30% 4%
RM 46% 24% 28% 15%

∆(load) −3%∗∗ 18%∗∗ −2%∗∗ 11%∗∗

800 Fixed 135/135 66% 9% 40% 6%
RM 63% 24% 38% 16%

∆(load) −3%∗∗ 15%∗∗ −2%∗∗ 10%∗∗

1000 Fixed 135/135 82% 11% 50% 7%
RM 75% 21% 51% 16%

∆(load) −7%∗∗ 10%∗∗ 0.8%∗∗ 9%∗∗

1200 Fixed 148/136 89% 9% 63% 8%
RM 84% 14% 65% 18%

∆(load) −5%∗∗ 5%∗∗ 2%∗∗ 11%∗∗

1400 Fixed 164/130 91% 7% 80% 11%
RM 90% 8% 78% 17%

∆(load) −0.5%∗∗ 1%∗∗ −2%∗∗ 5%∗∗

1600 Fixed 182/140 93% 4% 87% 10%
RM 94% 5% 86% 10%

∆(load) 1%∗∗ 0.3%∗∗ −0.7%∗∗ 0.8%∗∗

1800 Fixed 199/154 95% 3% 90% 7%
RM 96% 3% 91% 7%

∆(load) 1%∗∗ 0.2%∗ 0.5%∗∗ 0.1%

Significance levels: † : 10%; ∗ : 5%; ∗∗ : 1%
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positive probability through the booking period, which illustrates intertemporal price dis-

crimination. However, for an expected number of arrivals inferior to 800, the distributions of

chosen prices for the off-peak and rush-hour trains are almost identical: second-order price

discrimination is suboptimal in that case. For an expected arrival greater than 1000, the

distribution of prices for the rush-hour train slides to the right of the distribution for the

off-peak train: differentiation between the off-peak and the rush-hour train becomes optimal

when demand is sufficiently high, i.e. when resources (here sold seats) become limited.

Figure 19 displays the dynamics of fares through the booking period and gives another

evidence of this mechanism. For E(arrivals) = 600, i.e. for a small market, the probability

that there remains some empty seats in each train at the end of the booking period is

almost one and prices evolve in an almost completely deterministic way. Intertemporal price

discrimination is only driven by the increasing arrival of high-value consumers and posted

prices are de facto independent of past sales. The increasing scale shape of the price function

comes from the revenue manager trying to extract the business surplus as the arrival rate

of business passengers increases.9 For E(arrivals) = 1800, the price curves are smooth and

have the classic revenue management shape, indicating that, as the number of available seats

is probably binding, posted prices are now non-monotonic functions of the previous sales.

7 Revenue Management and Intermodal Competition

In this section, we test how competition affects revenue management practices. As transport

industry is the most likely economic sector featuring competition between revenue managers,

we focus on the two following cases of competition:

• Indirect competition — for instance Rail Vs. Road : Larger road infrastructures re-

9The small irregularities in the shape of the off-peak train price functions are due to the two opposite
incentives of the revenue manager: as time goes by, business passengers are more frequent but filling the
train also becomes more urgent.
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duce driving costs (either time or fuel consumption costs) and thus affect demand for

trains. Since the building decisions concerning these infrastructures are mainly po-

litical and have long-term impacts on the market, strategic interactions between the

revenue manager and the policy maker are non-existent and we model this setup using

a reduced-form approach. The level of competition in that case is adjusted via the

value of the outside option. We present this part of the analysis of competition in

Appendix E.

• Direct competition — for instance Rail Vs. Air : As both railway and airline industries

use revenue management and are substitutable for distances between 400 and 1000

kilometres, decisions of both revenue managers are highly strategic and must be studied

through a game-theoretic approach. We use the concept of subgame-perfect Nash

equilibrium to predict probable outcomes of these repeated strategic interactions.

7.1 The Revenue Management Game

Two revenue managers play a stochastic game with finite horizon. Each revenue manager

proposes homogeneous products, which can be thought of as tickets for a transport mode,

e.g. a plane or train ticket. However, we allow for heterogeneity between revenue managers.

In the following, a type of products i is associated with a revenue manager. In that case, −i

denotes the products of the other revenue manager.

We assume that consumers are not forward-looking and maximize their utility when

making their purchasing decision. We model demand using a multinomial logit approach.

The utility of consumers is therefore defined along the lines of section 3.3:

 ut(θi) = v + αi − γpi + εit , for product i at price pi.

ut0 = ε0t , when the outside option is chosen.
(7.1)
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We also assume that at any stage of the game the number of remaining units of each

type of products is common knowledge among revenue managers.

The game is defined by:

• 2 revenue managers R and A, which respectively stand for railway and airline.

• The total capacities of both types of products: X̄ = (X̄R, X̄A)′.

• The booking period of length T .

• The state space Xt ∈ T ×
{

0, . . . , X̄R
}
×
{

0, . . . , X̄A
}

, which represents any possible

remaining capacity X at any date t of the booking process.

• At each period, each revenue manager proposes a price in P̃ = {pi, p̄i,+∞} for i =

R,A, where pi and p̄i respectively represent a low and a high price. When a revenue

manager chooses +∞, her product is bought with zero probability. It is direct that

for any action and state space, action p̃i = +∞ for i = R,A is dominated by posting

a positive and finite price, unless X i = 0. Indeed, posting the high price yields the

maximum possible profit with a positive probability regardless of the competitor’s

action. Conversely, a revenue manager cannot choose p̃i finite when X i = 0. The

action p̃i chosen at each period by revenue manager i when X i 6= 0 is therefore any

element of P̃ or any probability distribution over {pi, p̄i}

• The transition probabilities between states Prt : Xt × P̃ 7−→ Xt−1, defined by:


Prt(X

i
t−1 = X i

t − 1, X−it−1 = X−it |Xt, p̃) = eū(p̃i)

eū(p̃i)+eū(p̃−i)+1

Prt(Xt−1 = Xt|Xt, p̃) = 1∑
i∈{R,A} e

ū(p̃i)+1

, i = R,A; t = T, . . . , 1.

(7.2)
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• The gain functions φit at date t for each revenue manager i. These gain functions

correspond to the value functions in the monopolistic case. φit represents the profit of

revenue manager i from date t onwards if strategies (p̃τ )τ≤t are played and remaining

capacities are given by X:

φit(X, p̃t) = λt
{
Pr(X i − 1, X−i|X, p̃)

[
p̃i + φit−1(X i − 1, X−i, p̃t−1)

]
+ Pr(X i, X−i − 1|X, p̃)φit−1(X i, X−i − 1, p̃t−1)

}
+
[
1− λt + λtPr(X|X, p̃)φit−1(X, p̃t−1)

]
= λt

{
Pr(X i−1, X−i|X, p̃)

[
p̃i+φit−1(X i−1, X−i, p̃t−1)−φit−1(X, p̃t−1)

]
+ Pr(X i, X−i−1|X, p̃)

[
φit−1(X i, X−i−1, p̃t−1)− φit−1(X, p̃t−1)

]}
+φit−1(X, p̃t−1) (7.3)

Definition 1. A subgame-perfect equilibrium of this game is defined by:

• Consumers maximize their utility when making their purchasing decision.

• At each period, each revenue manager plays her best response against the action of the

other revenue manager.

The existence of such an equilibrium is a standard result. This game can be solved

by backward induction. Finding an subgame-perfect equilibrium of the game amounts to

solving the following Bellman equation for i = R,A:

V i
t (X, p̃−i) = max

pi
φi
∗
t (X, p

i, p̃−i) (7.4)

in which φi
∗
t is the gain function of player i at date t when a subgame-perfect equilibrium is

played in the continuation game at t− 1.
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To deal with the multiplicity of equilibria and properly solve this game, we restrict our

set of equilibria at each continuation game in the following way:

• If only one equilibrium in pure strategies exists, it is played.

• If several equilibria in pure strategies exist, the one maximizing the joint payoff is

played.

• If no equilibrium in pure strategies exists, both revenue managers use mixed strate-

gies.10

7.2 Computation of the equilibrium

The only difference between the algorithms used for the duopoly and the monopoly lies in

the way we compute the value function, as the action of one player is now influenced by the

action of the other. We use backward induction to solve for the equilibrium of this finite

sequential game. In the last period, the continuation values are zero and we compute the

best response functions of all players.

If there exists a unique equilibrium in pure strategies, we can move up to the previous

period using equilibrium profits as continuation values. If there are multiple equilibria,

we select one according to the selection rule mentioned above. If only a mixed strategy

equilibrium exists, we compute the mixing probabilities using the formula in Appendix F.

The generation of consumers arrival and purchasing decisions is straightforward except

that we also draw a realization of the mixed strategies in the case of a mixed equilibrium.

7.3 Mono-Product Duopoly Vs. Multi-Product Monopoly

To investigate the impact of competition between revenue managers, we compare profits and

consumer surpluses generated by a mono-product duopoly and a multi-product monopoly.

10For a derivation of a mixed equilibrium of the game, see Appendix F.
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By multi-product monopoly, we mean a situation in which one revenue manager controls

the prices of both types of products. This allows us to isolate the impact of competition

between revenue managers while preserving the structure of the market. As explained in

more details in Appendix G, given our consumer preferences and multinomial logit approach,

competition introduces a de facto horizontal differentiation between products, even when

they have identical characteristics. Compared to a mono-product duopoly, a mono-product

monopolist would therefore suppress this differentiation and reduce the total probability of

purchasing a product relative to the outside option.

In the following, we assume that a homogeneous population of consumers is indifferent

between the two types of products. Values of parameters used in this setup are summarized

in Table 7 of Appendix B, column (4). The sets of prices from which the duopoly and

monopoly can choose are identical and equal to {40, 90}. Arrival rates belong to the following

set: λ ∈ {0.2, 0.3, 0.4, 0.5, 0.7}.11

Note that the only differentiation here between the products is horizontal and the total

capacity for each type is 200 units. Therefore, the profits generated by each revenue managers

are perfectly equal. In Table 3, we only report the profit of one firm and not the joint profits

of the industry. However, in addition to the consumer surplus generated by each firm, we

choose to report the total consumer surplus generated during the booking period. For the

multi-product monopoly, we report the monopoly profit and total consumer surplus.

Table 3 shows that, compared to the duopoly, the monopoly yields higher profits and

reduces the consumer surplus through lower load rates. As shown in the following section,

higher monopoly prices drive these results.

11For arrival rates greater than 0.7, both means of transportation are full with probability one by the end
of the booking period and results are therefore similar to the case in which λ = 0.7.
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Table 3: Profit, consumer surplus, and load rates for various intensities of de-
mand and revenue management pricing with P = {40, 90} in the mono-product
duopoly and multi-product monopoly.

Mono-product Multi-product
Duopoly Monopoly

Avg. Avg. Avg. Tot. Avg. Avg. Avg. Avg.
λ Profit Surplus Surplus Load Rate Profit Surplus Load Rate

0.2 5829 191 522 73% 13516 188 38%

0.3 9021 236 679 99% 20360 281 57%

0.4 12929 166 589 99% 27063 375 75%

0.5 16638 111 523 99% 33649 475 94%

0.7 18000 91 497 100% 36000 497 100%

Note: The average profit, consumer surplus, and load rates for the duopoly corre-
spond to the profit, consumer surplus and load rates generated by one firm.

7.4 Price Dispersion and Competition

We study the impact of competition on price dispersion by comparing the average prices

posted during the booking period and their average standard deviation for a multi-product

monopoly and a mono-product duopoly. As we assume no vertical differentiation between

products, results are perfectly symmetric.

Table 4 shows that competition reduces the average prices posted by revenue managers.

In the monopoly, price dispersion is low as the revenue manager always posts the high price.

In the duopoly, when the arrival rate of consumers is intermediate, the revenue managers

have incentives to switch between the low and high prices, and price dispersion is high.

For extreme values of demand, consumers should expect a low price dispersion as the

revenue managers will only post either low prices or high ones.12

12Note that part of these results are due to the coarse choice sets we chose. They might differ if we include
the optimal fixed price in the choice sets of the revenue managers.
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Table 4: Comparison of average prices and
their standard deviations between a multi-product
monopoly and a mono-product duopoly for differ-
ent intensities of demand.

Mono-Product Multi-Product
Duopoly Monopoly

Avg. Avg.
λ Price Dispersion Price Dispersion

0.2 40 0 90 0

0.3 45.5 14.9 90 0

0.4 64.8 24.7 90 0

0.5 84.2 13.7 90 0

0.7 90 0 90 0

8 Strategic Decisions and Revenue Management

In this section, we explore to which extent revenue management can affect the strategic

decisions of an operations manager. In particular, as revenue managers base their pricing

decisions considering the number of unsold units, adjusting the total capacity can have an

impact on the seller’s profits and the consumer surplus. Hence, in a situation of competition

between two revenue managers, such as the one exposed in section 7.1, is there such a thing

as an optimal capacity?

8.1 The Capacity Game in the Mono-Product Duopoly

Before competing against each other, firms using revenue management pricing may be able

to choose their capacity. In the transport industry, this might translate in choosing the size

of planes that an airline company affects to a given origin-destination leg.

As in section 7.1, we suppose that revenue managers maximize their profit for a given

total capacity. However, we consider an additional ex-ante stage during which two strate-
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gic decision makers choose their capacity constraint among a fixed set of choices C =

{100, 150, 200, 250}. Solving for the equilibrium in the second stage of the game, i.e. the

Revenue Management game, we get the payoff matrix and corresponding average consumer

surpluses presented in Table 5 for the capacity game.

Table 5: First-stage payoffs and consumer surplus in the static duopolistic capacity
game.

Payoffs (×103) Consumer surplus

100 150 200 250 100 150 200 250

100 9/9 9/13.4 9/14.8 9/15.1 100 250 307 385 483
150 13.4/9 13.1/13.1 12.5/13.9 11.6/14.2 150 309 380 476 579
200 14.8/9 13.9/12.5 12.9/12.8 11.9/13.2 200 382 473 591 698
250 15.1/9 14.2/11.6 13.2/11.8 12.2/12.2 250 481 582 695 826

Note: The figures presented here are averaged across 500 simulations of the revenue
management game with a price set P = {40, 90} and λ = 0.4.

Unsurprisingly, the matrix is symmetric. The unique static subgame-perfect Nash equi-

librium of the game is given by C∗ = (250, 250), i.e. both firms choose the highest possible

capacity at equilibrium. This static equilibrium yields a total consumer surplus of 826.

However, this equilibrium is not Pareto optimal since both firms would benefit from a

similar increase in their profit by playing C = (150, 150), i.e. by restraining the capacity.13

If firms were able to commit to limit their capacity to 150 seats, they would be able to

secure an increase in profits of 7.3%. This increase in profits is driven by a decrease in the

importance of the time constraint relative to the capacity constraint. This leads to a lower

opportunity cost of posting a high price and selling units more slowly.

13In fact, if we consider the repeated game, we can easily implement (150, 150) as an equilibrium, using
the static Nash reversion, as long as decision makers are moderately patient:

13.1

1− δ
≥ 14.2 + δ

12.2

1− δ
⇔ δ ≥ 0.55

In that case, the consumer surplus strongly decreases and is equal to 380. However, this story of tacit
collusion falls beyond the scope of our paper.
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8.2 Comparison with the Multi-Product Monopoly

We now compare this result to the case in which the revenue manager is in a situation of

monopoly and prior to the booking period chooses the capacity constraints over her two

types of products. To make the comparison clear, we choose the case of a multi-product

monopoly and no vertical differentiation between the two types. The results are presented

in Table 6.

Table 6: First stage payoffs and consumer surplus in the static
monopolistic capacity game.

Payoffs (×103) Consumer surplus

100 150 200 250 100 150 200 250

100 18 22.4 23.8 24.1 100 251 309 386 480
150 22.4 26.3 26.8 26.8 150 310 370 398 403
200 23.8 26.8 27 27.1 200 385 398 378 378
250 24.1 26.8 27.1 27 250 482 405 375 378

Note: The figures presented here are averaged across 1000 simula-
tions with a price set P = {40, 90} and λ = 0.4.

Compared to the duopoly, the situation in which the capacities on both types of products

are at their maximum is no longer necessarily played. As long as at least 200 units of each

type are available, profits are maximized.14 Taking the example of transports and assuming

that proposing larger trains involves larger fixed costs, the monopoly chooses to restrict the

capacity.

We find an increase of 11% in overall profits compared to the duopoly. Consumer surplus

on the other hand is less than half the consumer surplus when there is competition between

revenue managers. Even in the case of collusion on the proposed capacity, the joint profit

and consumer surplus would be similar to the ones under the monopoly, but for a reduced

capacity. The welfare effects on competition between revenue managers are therefore positive.

14The differences in the last two rows and columns of Table 6 are not significant.
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9 Conclusion

Revenue management is the main pricing practice in the transport industry and as such, its

impact on welfare deserves to be studied. Revenue management in itself has a number of

properties which affect profits and consumer surplus compared to other pricing strategies.

By offering more leeway to the seller in her choice set, it weakly increases profits compared to

an optimal fixed price strategy. We also show in our computations that revenue management

as an intertemporal price discrimination practice is only useful when there is a sufficiently

high probability that profits are constrained by the number of available units. In this case,

revenue management implies a higher consumer surplus compared to a situation in which

only the optimal fixed price is posted. Such an increase comes from higher load rates and

weakly lower average prices under revenue management. Coming back to transports, revenue

management can increase welfare because more potential passengers can afford to travel.

Revenue management is also a useful way to optimally respond to demand without actually

having to optimize profits over the proposed set of prices. Even using a coarse set of prices

to choose from and for different intensities of demand, the revenue manager succeeds in

achieving at least as well as an optimal fixed price.

Applying our methodology to heterogeneous consumers, we are able to shed some light

on the controversial issue of the fairness of revenue management practices. We find that for

high values of demand, revenue management benefits all types of consumers. When demand

is low, consumers with low price elasticities subsidize the ones with high price elasticities.

Applied to transports, when demand is high, revenue management allows leisure passengers

to buy cheap tickets without hurting business passengers. But, when demand is low, business

passengers no longer benefit from the relatively lower prices they would pay under a fixed

price policy.

In the second part of the paper, we study competition between revenue managers and
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find classic results: compared to a multi-product monopoly, revenue management in a mono-

product duopoly lowers the average price and increases consumer surplus through higher load

rates.

We also consider a setup in which revenue managers can choose their total capacity before

competing against each other. We find that compared to the monopolistic case, competition

between revenue managers does not reduce by much the joint profit of the industry but

allows consumer surplus to be twice as high.
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A Notes on the Theoretical Model

Our model of revenue management is in the spirit of Talluri and Van Ryzin (2004) who study

revenue management in the transport industry. But in their model one product consists

of a seat and a price. Therefore the same seat proposed at two different prices actually

constitutes two different products. In contrast, we consider that the price is a separate

variable.15 Modelling the price as an additional variable implies that the revenue manager

never proposes the exact same product at two different prices. This is useful when we allow

for some randomness in the preferences of consumers. Indeed in Talluri and Van Ryzin

(2004), the revenue manager can simultaneously propose the same product at two different

prices, and when demand is simulated using a multinomial logit approach, consumers choose

the highest price with a positive probability, which is unrealistic.

An additional difference is that we allow for different products to have different capacity

constraints. Taking the example of two flights departing the same day, once all the tickets

for the first one have been sold, the revenue manager can only propose tickets for the second

one.

We show that introducing physically constrained characteristics has an impact on the

revenue manager’s strategy. Talluri and Van Ryzin (2004), show that the revenue manager

only proposes menus on the efficient frontier when optimizing her profit function. For them,

a menu is efficient if linear combinations of other menus cannot do better in terms of ex-

pected revenue E(π|p̃) except by increasing the total probability of purchase. We show that

this is not necessarily the case in our model. We take the example of two types of products,

each limited to 200 units. Possible prices for each product are P = {50, 70, 90, 110}. Con-

sumer preferences are defined as in section 5. In Figure 3, we plotted all combinations of

15We can consider that in Talluri and Van Ryzin (2004), the revenue manager can only control which types
of products to propose. Our revenue manager has control over two dimensions: which types of products to
propose and at what price.
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Figure 3: Total probability of purchase (horizontal axis) and the associated expected revenue
(vertical axis) of the different possible menus of prices. Efficient frontiers are represented by
plain lines. Menu A, which is not on the efficient frontier, is played 12.9% of the time when
the arrival rate of the consumer is λ = 0.6.

products and possible prices according to their total probability of purchase and expected

revenue. Product-price combinations that are efficient according to Talluri and Van Ryzin

(2004) are represented by coloured dots and linked together. According to the theoretical

result of Talluri and Van Ryzin (2004), other combinations should not be proposed by the

revenue manager. However, by computationally solving for the optimal pricing of the rev-

enue manager, when λ = 0.6, the revenue manager proposes an inefficient menu of prices,

(90, 50), in 12.9% of the periods of the booking process. This percentage corresponds to

an average over 1000 simulations. We attribute this to the fact that we allow for several

capacity constraints.

B Values of Parameters

In Table 7, we summarize the values we use for consumer preferences and train character-

istics. Simulations (1) refer to the simulations in the distributive properties of the revenue
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management. Simulations (2) refer to the case of heterogeneous consumers. Simulations (3)

and (4) respectively stand for indirect and direct competition. Finally, simulations (5) are

used in robustness checks presented in Appendix ??.

Table 7: Summary of parameters’ values used in the different simulations.

(1) (2) (3) (4) (5)

# trains 1 2 1 2 2

Xi 400 200 400 200 200

v 1.5 1.5 1.5 1.5 1.5

α 0 -0.5 0 0 -0.5

γ 0.03 γB = 0.01 ; γL = 0.03 0.03 0.03 0.03

v0 1 1 {0.1, 0.5, 1, 1.5, 2} 1 1

T 2000 2000 2000 2000 2000

# simulations 1000 1000 1000 500 1000

C Discussion of Revenue Management Vs. Optimal

Fixed Price

We define the load rate as the ratio between the number of sold units over the total number

of available units of the same type. If we take the example of a plane with load rates of 100%

for first-class tickets and 80% for economy seats, it means that all seats in first class were

booked and 80% of the economy seats in the plane were booked. It is therefore a measure of

how full the plane is. Compared to the fixed price strategy, the increase in consumer surplus

is driven by higher amounts of sold units or load rates. This is due to the finer choice set

of the revenue manager which allows her to post higher or lower prices depending on the

past sales. For instance, for λ = 0.9, when the spread around the optimal price is equal to
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5, the revenue manager posts the lowest and highest prices with a relatively high frequency:

respectively 21% and 17% of the time. Of course, the larger the spread, the smaller the

frequencies at which the lowest and highest prices are posted since they become dominated

by the fixed price.

This seems to indicate that revenue management is especially useful for large market

sizes (at least when consumers are homogeneous) because in that case it allows the revenue

manager to temporarily decrease the posted price when there is no sales and to take some

risk in the other case. When demand is low and it is nearly impossible to sell all available

units, sales variations never reach the point which induces the revenue manager to change

the optimal fixed price. Intertemporal discrimination in this case becomes useless as the

changes in the probability of reaching the capacity constraint are negligible compared to the

coarseness of the price grid.

Figure 4 displays the average posted price as a function of the booking period for different

intensities of demand and a small spread, ξ = 7. Obviously, the average level of posted prices

increases with the arrival rate of consumers. We also observe that the optimal fixed price is

played with probability 1 at the beginning of the booking period. Then, in the middle of the

booking period, the average posted price is roughly equal to the optimal fixed price, with

some noise or without, respectively when λ = 0.7, 0.9 and when λ = 0.3. When λ = 0.5, it is

even slightly higher. This indicates that deviations from the optimal fixed price may occur

if the market is sufficiently large, but these deviations might be centred around the optimal

fixed price, i.e. the revenue manager might have on average equal incentives to lower or

increase the price. At the end of the booking period, the revenue manager tends to post the

lowest price more often. This is consistent with the incentives derived from the theoretical

model.

Remark 3. To test whether this result is robust to a more complete choice set, we do the same
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Figure 4: Change in posted average prices as a function of the booking period when the
price set is P = {po − 7, po, po + 7}. Figures (a),(b),(c),(d) deal with increasing intensities
of demand, corresponding to an expected arrival of respectively 600, 1000, 1400, and 1800
consumers.
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exercise allowing the choice set of the revenue manager to be richer. In these simulations:

P = {po, po ± 5i|1 ≤ i ≤ ξ} for ξ = 1, 2, . . .

As shown by Figures 8 and 9 of Appendix H.2, we find similar qualitative results in that

case. Consumer surplus does not decrease even if the action set of the revenue manager is

richer. The average price throughout the booking period is again very close to the average

optimal price (within 1 unit) but the load rates are significantly higher when λ is sufficiently

high and the revenue manager actually discriminates. For instance, at λ = 0.9, the load rate

under revenue management is around 99.7% against 98% for optimal pricing.

All these findings are robust to a more general specification including different substi-

tutable types of products.

In a more realistic framework, the revenue manager has to optimize her profit over two

types of products from which consumers can choose. We want to test whether or not adding

more flexibility in the choices of consumers affects the comparison between revenue man-

agement and a fixed price strategy. We suppose that the choice set P of prices available to

the revenue manager remains identical between the two types of products. In the case of a

fixed price strategy, we also assume that the proposed price is identical for both types. In

transports, this could correspond to a situation in which the revenue manager is required

to set an identical price for all transports running on a particular origin-destination leg.

The parameters used in this section can be found in Table 7 of Appendix B, column (5).

α = −0.5 means that consumers now prefer product 1 over 2. For instance, if the two types

of products refer to two different flights the same day on the same origin-destination leg,

this can be interpreted as one flight being more convenient than the other.

We test whether or not revenue management is an improvement over a fixed price strategy

and measure to which extent revenue management including the optimal fixed price raises
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profits and affects consumer surplus.

To do so, we compute the optimal fixed price po for the two types of products and the

simulated average profit and consumer surplus associated with this price. We then construct

the choice set P of the revenue manager to include the optimal fixed price and some small

variations around it:

P = {po − ξ, po, po + ξ}i=1,2 ξ = 1, 2, . . .

The revenue manager’s choice set is again small but Figures 10 and 11 of Appendix H.2

show that revenue management strongly increases both profits and consumer surplus. In

fact, all the conclusions we found for one type of products seem to extend to this case. For

small market sizes, the effect is not significant. For λ ≥ 0.4, revenue management increases

both profits and consumer surplus. For some spread values, profits rise from 4% for λ = 0.5

up to 12% for λ = 0.9. This corresponds to large increases in consumer surplus: between

20% and 30% for the same spread values.

The importance of the impact on profit in this case is easily explained by the way we

construct the optimal fixed price: we consider a unique fixed price for two types of products,

i.e. rule out any possibility to price discriminate between the two types even though one

is more attractive than the other. Introducing revenue management offers this possibility

despite identical choice sets for the two types. This gives more leeway to the company and

considerably raises profits. However, price discrimination between the two types is only

profitable when the arrival rate is sufficiently high.

What is more surprising is the huge positive impact on consumer surplus. One might

expect that price discrimination between the two types of products allows the firm to extract

consumer surplus more easily. We attribute this result to the increase in load rates: more

consumers can afford to purchase a product, especially at the beginning of the booking
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period. For instance, for λ = 0.5, 88% of the seats of the less attractive product are sold

under revenue management with a spread ξ = 15 whereas only 61% of the seats are sold

under a fixed price strategy.

Remark 4. To isolate the sole impact of revenue management as intertemporal price dis-

crimination from the impact of price discrimination between types of products, we also carry

out an analysis in which we compute an optimal fixed price for each type. The resulting price

vector is denoted po. We then construct the choice set P of the revenue manager to include

for each type, its optimal fixed price and some small variations around this price:

P = {poi − ξ, poi , poi + ξ}i=1,2 ξ = 1, 2, . . .

In this case, the results are similar in nature although the importance of the impact of

revenue management is much weaker, as seen in Figures 12 and 13 of Appendix H.2. For

λ ≥ 0.4, the increase in profit lies between 0.8% and 1.7%, with a more pronounced impact

for high intensities of demand. For the same arrival rates, the increase in consumer surplus

varies between 1% and 2.7%.

D Extension to Heterogeneous Consumers

D.1 Increasing Arrival Rates

To simulate two types of consumers randomly arriving at each period, we first have to simu-

late the probability that one consumer arrives at a given period, then draw the type. Indeed,

we cannot have two consumers arriving during the same period. Since in the application to

transports, the business type has a probability of arrival increasing as time comes closer to

departure and the arrival probability of the leisure type is constant, the overall probability

of arrival must increase as well.
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Considering this, we define the probability of arrival of one consumer as :λt(ρl, ρbt) =

ρl+ρb
ρl+1

, where ρl and ρb are the relative rates of arrival of respectively leisure and business

passengers. The probabilities of being of type τ(= b, l) conditional on an arrival are defined

as:

P (τ |arrival) =
ρτ

ρτ + ρ−τ
τ = b, l

The unconditional probability of a type-τ arrival is therefore given by:

P (τ) = P (τ ∩ arrival) =
ρτ

ρl + 1
τ = b, l

We find this way of modelling arrivals convenient since it implies that for all values of ρl,

λt(ρl, .) goes to 1 as ρb goes to 1, which allows us to model a very intense demand towards

the end of the booking period.

We want the arrival rate of leisure types to be constant and the one of business types to

increase in time. Hence ρb has to vary across time. We model it as a discretized version of

an exponential distribution:

ρbt = e−
t
µ for t = T, . . . , 1

Here, µ is a large number which we use to parametrize the curvature of ρbt . As t is large,

i.e. far from the departure date, ρbt is close to zero and tends to 1 as t goes to 1.

Table 8 gives the correspondence between the expected number of arrivals we want to

model and our two parameters, µ and ρl.
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Table 8: Correspondence between the expected number of arrivals,
µ, and ρl.

E(arrivals) 400 600 800 1000 1200 1400 1600 1800

µ 223 355 511 710 988 1430 2290 4815

ρl
1
9

3
17

1
4

1
3

3
7

7
13

2
3

9
11

D.2 The Modified Bellman Equation

The Bellman equation of section 3 naturally extends to this new set-up:

Vt(X) = max
p̃∈ΠiPi

∑
τ∈{b,l}

∑
i

Prt(τ)Pr(di = 1|p̃, τ) [p̃i + Vt−1(Xi − 1, X−i)]

+ [1− λt + Pr(l)Pr (d0 = 1|p̃, τ = l)

+ Prt(b)Pr (d0 = 1|p̃, τ = b)]Vt−1(X) (D.1)

subject to the final constraints:


V0(Xi) = 0 ,∀Xi

Vt(X) = 0 , whenever
∑

iXi = 0

p̃i = +∞ , if Xi = 0

(D.2)

The demand mechanism is modelled as before except that coefficients in the utility func-

tions are type-dependent.

E A Reduced-Form Model of Indirect Competition

To evaluate the impact of indirect competition on revenue management, we study how av-

erage profits, consumer surplus and load rates change with the value of the outside option.

50



E.1 Demand Modelling with Variable Outside Option

The consumer utility when she chooses the outside option is now: u0 = ln(v0) + ε0, in which

v0 ∈ R+∗ is a parameter capturing the competition intensity and ε0 is the random part of

the utility defined as before. In the benchmark model of section 3.3, v0 = 1. The higher v0,

the higher the intensity of indirect competition.

This new specification yields the following market shares:


Pr(di = 1|p̃) = eū(pi)∑

j∈I e
ū(p̃j)+eln(v0)+E(ε0)

= eū(pi)∑
j∈I e

ū(p̃j)+v0

Pr(d0 = 1|p̃) = 1∑
j∈I e

ū(p̃j)+eln(v0)+E(ε0)
= v0∑

j∈I e
ū(p̃j)+v0

(E.1)

It is obvious that:

lim
v0→0

Pr(d0 = 1|p̃) = 0 and lim
v0→∞

Pr(d0 = 1|p̃) = 1

The other features of the model remain the same.

E.2 Values of Parameters and Results

Values of parameters used in this setup are summarized in Table 7 of Appendix B, column

(3). The arrival rates are the same as before, i.e. λ ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, and

the choice set of the revenue manager is given by P = {20, 40, 60, 80, 100, 120, 140, 160}.

Figures 20 and 21 of Appendix H.4 summarize our results for indirect competition: as

competition increases, profits go down while consumer surplus increases. Since we model an

increase in competition as an increase in the value of the outside option, these results are

quite intuitive: a higher outside option means that the revenue manager’s products are less

attractive (hence less profits) whereas it also mechanically raises the final consumer surplus
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through the utility of consumers who do not purchase.

We also look at the impact of indirect competition on average prices posted during the

booking period and on price dispersion. These results are summarized in Figure 22 of

Appendix H.4. Unsurprisingly, stronger indirect competition drives prices down. However,

its impact on price dispersion is more ambiguous: for low arrival rates, price dispersion is

higher when competition is weak; the opposite is true for high arrival rates.

F Mixed Equilibria

In a mixed equilibrium, players randomize over their action set, here: P̃ = {pi, p̄i,+∞} , i =

R,A. We have shown that in this special case, p̃i = +∞ is always dominated by the other

prices unless X i = 0. Therefore, any mixed equilibrium of a continuation game at t is a

randomization over {pi, p̄i} for i = R,A. In the following, we denote σi = P (p̃i = pi) and

by abuse of notation σi also denotes the action of player i when she randomizes.16

Finding an equilibrium in mixed strategies of the continuation game at t amounts to find

σi for i = R,A:

Suppose i plays σi. Then, −i needs to be indifferent between p−i and p̄−i to play a mixed

strategy, which is summarized by the following condition:

φ−i
∗
t (X, σ

i, p−i) = φ−i
∗
t (X, σ

i, p̄−i) (F.1)

where:

φ−i
∗
t (X, σ

i, p) = σiφ−i
∗
t (X, p

i, p) + (1− σi)φ−i∗t (X, p̄i, p)
16Although any pure strategy is a mixed strategy, here we refer to mixed strategies if and only if σi ∈ (0, 1)
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Equation F.1 therefore yields:

σi =
φ−i
∗
t (X, p̄

i, p̄−i)− φ−i∗t (X, p̄i, p−i)
φ−i∗t (X, p̄

i, p̄−i)− φ−i∗t (X, pi, p̄−i) + φ−i∗t (X, p
i, p−i)− φ−i∗t (X, p̄i, p−i)

(F.2)

G Multinomial logit approach and horizontal differen-

tiation

Here are more detailed explanations about why overall demand for the proposed products

increases if we introduce an additional vertically undifferentiated choice. Assume that given

a vector of price p, the utility of buying any product is given by u whether we are in the

monopolistic or the duopolistic case.

Then, in the monopolistic case, the probability of buying a product is:

pm(buy|p) =
eu

eu + 1
= 1− 1

eu + 1

In the duopolistic case, the probability of taking of choosing the product of one firm (e.g.

firm 1) is given by:

pd(buy 1|p) =
eu

2eu + 1

which is of course lower than the probability of buying a product in the monopoly. However,

the overall probability of buying in the duopoly is given by 1− 1
2eu+1

, which is higher than

in the monopoly.

To give some economic intuition to this result, we say that adding an additional type of

products, even vertically undifferentiated, can create horizontal differentiation.
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H Simulation Results

H.1 Dynamics of Prices
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Figure 5: Average change in prices when λ = 0.5 and the revenue manager chooses the price
from {20, 40, 60, 80, 100}.
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H.2 The Distributive Properties of Revenue Management
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Figure 6: Average change in profit between optimal fixed pricing and revenue management
for different intensities of demand for homogeneous products.
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Figure 7: Average change in consumer surplus between optimal fixed pricing and revenue
management for different intensities of demand for homogeneous products.
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Figure 8: Average change in profit between optimal fixed pricing and revenue management
for different intensities of demand for homogeneous products and various sizes of choice sets.
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Figure 9: Average change in consumer surplus between optimal fixed pricing and revenue
management for different intensities of demand for homogeneous products and various sizes
of choice sets.
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Figure 10: Average change in profit between optimal fixed pricing and revenue management
for different intensities of demand and two types of products. The optimal fixed pricing
consists here of a unique optimal price for all products.
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Figure 11: Average change in consumer surplus between optimal fixed pricing and revenue
management for different intensities of demand and two types of products. The optimal
fixed pricing consists here of a unique optimal price for all products.

60



lambda=0.2 lambda=0.3 lambda=0.4 lambda=0.5

lambda=0.6 lambda=0.7 lambda=0.8 lambda=0.9

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0 10 20 300 10 20 300 10 20 300 10 20 30
Spread around the Optimal Price

%
 In

cr
ea

se
 in

 P
ro

fit

Non−Significant (5%) Significant (5%)

Figure 12: Average change in profit between optimal fixed pricing and revenue management
for different intensities of demand and two types of products. We compute here a fixed
optimal price for each type of products.
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Figure 13: Average change in consumer surplus between optimal fixed pricing and revenue
management for different intensities of demand and two types of products. We compute here
a fixed optimal price for each type of products.
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Figure 14: Average change in profit between optimal fixed pricing and revenue management
for different intensities of demand when consumers have an increasing willingness to purchase.
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Figure 15: Average change in consumer surplus between optimal fixed pricing and revenue
management for different intensities of demand when consumers have an increasing willing-
ness to purchase.
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Figure 16: Average change in profit between optimal fixed pricing and revenue management
for different intensities of demand when the arrival rates of consumers is noisy.
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Figure 17: Average change in consumer surplus between optimal fixed pricing and revenue
management for different intensities of demand when the arrival rate of consumers is noisy.

66



H.3 Revenue Management and Heterogeneous Consumers

E(arrivals)=400 E(arrivals)=600 E(arrivals)=800 E(arrivals)=1000

E(arrivals)=1200 E(arrivals)=1400 E(arrivals)=1600 E(arrivals)=1800

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

100 200 300 100 200 300 100 200 300 100 200 300
Posted Price

F
re

qu
en

cy

Off−Peak Rush−Hour

Figure 18: Distribution of the revenue manager’s choices for each type of products in the
case of heterogeneous consumers.
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Figure 19: Change in posted average prices as a function of the booking period in the case
of heterogeneous consumers. Figures (a) and (b) respectively deal with the off-peak and
rush-hour trains for an expected arrival of 600 consumers. Figures (c) and (d) respectively
deal with the off-peak and rush-hour trains for an expected arrival of 1800 consumers.
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H.4 Revenue Management and Intermodal Competition
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Figure 20: Average profit generated by revenue management for different market sizes and
different values of the outside option.
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Figure 21: Average consumer surplus generated by revenue management for different market
sizes and different values of the outside option.
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Figure 22: Average price and price dispersion in the case of revenue management for different
market sizes and different values of the outside option.
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