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Abstract

Motivated by the higher price sensitivity and service homogenisation in the airline
industry in recent years, we propose a new methodology to deal with transaction
prices and to estimate the effect of alliances in the US domestic market. The
assumption that airlines compete on price allows us to take advantage of the
observational equivalence between Bertrand competition and the reverse English
auction. We then apply an MLE method, developed by Paarsch (1997) for esti-
mating auctions, to recover the distributional characteristics of air fares using a
sample of airline tickets from the US domestic market. This procedure allows us
to benefit from the heterogeneity of individual prices while most studies have used
average prices, which would have involved a loss of information and a potential
bias. We find that an alliance operating in a market is associated with prices on
average 18.9 percent higher. Additionally, we find the standard deviation of ticket
prices to be 4.3 percent higher, which is likely related to more efficient revenue
management practice by alliance partners operating together in the same market.
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1 Introduction

An airline alliance is an agreement between two or more carriers that allows them to
cooperate. More specifically, alliance partners can market their partner’s tickets and
collaborate in supplying a product (what is known as codeshare), they can coordi-
nate their schedules, and they can share frequent-flyer programmes and promotional
campaigns. International alliances, such as SkyTeam, Star and OneWorld, are very
well-known but they are different in a number of crucial ways from the US domestic
market alliances. Access to international markets is regulated, hence partnering with a
foreign competitor allows an airline to reach the foreign market and this is complemen-
tary to its home country operations. Additionally, these type of agreements generally
receive anti-trust immunity.2 The US domestic market, on the other hand, is not reg-
ulated and any carrier is free to provide service between any two cities.3 The networks
of alliance carriers can overlap and market access and complementarity of service are
no longer arguments for alliance formation. A number of concerns have been raised as
regarding to the potential anti-competitive effects of alliances, namely their effects on
prices, traffic and market entry. Alliance proponents have argued that improved oper-
ating efficiency, frequency of service and network reach would compensate consumers
for any potential anti-competitive effects. The Department of Justice does not grant
domestic alliances anti-trust immunity and has followed their operation closely since
their formation in the 1980’s. In this paper, we would like to focus on one particu-
lar competition aspect, the prices of alliance partners in overlapping markets, and to
provide a new methodology that we believe is useful for understanding this important
matter.

While there exists previous academic work on the effect of airline alliances on prices,
we believe that the more dynamic conditions in recent years in the US domestic mar-
ket oblige us to revisit the issue and previous results. Moreover, we propose a new
methodology that is motivated by the increasing competitiveness of this market, an
issue that has received much attention from industry experts.4 Our model emphasizes
the homogenisation of service and the increased price sensitivity in the airline market.
We assume the ticket sales process is adequately approximated by Bertrand competi-
tion, where the consumer makes his choice based on price and the competing airlines
try to offer the best price they can. Our methodology exploits the strategic equivalence
between the Bertrand game and a reverse English auction. A reverse English auction
has the ”inverse” set-up of a regular English auction - the auctioneer is the buyer, and

2For example, the Department of Justice gives anti-trust immunity to the following SkyTeam
airlines: Delta/Air France-KLM/Alitalia/Czech/Korean.

3One exception is airports where traffic congestion is monitored by the Department of Transporta-
tion, thereby the number of available slots and their allocation is regulated . However, only a few
airports are affected by this issue.

4To be discussed at length in the following pages.
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sellers compete in offering prices at which they would be willing to supply the good or
service. This interpretation allows us to consider the observed air fares as winning bids
and we propose to analyse their distribution by methods pertaining to the econometrics
of auctions.

Our methodology is different from what has been done previously, and we believe it
contributes to the literature by allowing for a more comprehensive treatment of the price
data. While previous empirical studies on the impact of airline alliances investigate
average fares, that is to say fares aggregated over passengers, per airline, per market
and per period, we work with individual transaction prices. The proposed auction game
allows us to model the distribution of prices and this way our analysis benefits from the
information we can extract from the full distribution rather than just the mean. We
avoid the risk of distorting the results that using an aggregated variable could create
when one is not always able to control for the impact of averaging in the estimation
method. We implement our method on the DB1B data direct service duopoly markets
operated by legacy carriers during Q3 of 2008. We find that the presence of an alliance
in a duopoly market (i.e., the two players in that market are in an alliance) is associated
with a 18.9 percent higher fares. Additionally, we find a positive effect of alliances on
the standard deviation of prices of 4.3 percent, demonstrating an improved ability of
the alliance partners to price discriminate.

In the rest of this section, we briefly discuss how the DB1B data has been used in
the literature, we review the research on airline alliances, and we describe the recent
changes in the competitive environment of the airline industry motivating our model.

The DB1B survey

The US Department of Transportation (DOT) publishes a comprehensive data source,
the Airline Origin and Destination Survey (DB1B), since 1993. It is a 10 percent sample
of all airline tickets sold in the US domestic market with information on the price, the
origin and destination, and the itinerary details of the passengers. The DB1B, thus,
is the standard data set used for analysing any issue that pertains to the US airline
industry.

Each observation in the DB1B data set corresponds to an actual individual sale. The
main feature of the data is that while the observation contains the fare paid for the sale
(the transaction price), only the market5 and product6 characteristics of the ticket sale

5The relevant market is defined as the directional city pair: the origin and the destination of the
flight.

6The product characteristics are the operating airline, and whether the flight is direct or connecting.
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are recorded. The flight7 characteristics and advance purchase8 for that ticket sale are
not available in the DB1B. To illustrate this issue, consider the following example. Let’s
take the sale of a direct return ticket by United Airlines between Chicago and Seattle
sold 5 days in advance for a 9 AM outbound flight on Monday and 6 PM inbound flight
on Wednesday. From the DB1B, we are not able to tell if the outbound flight was on
Monday or on Wednesday, at 9 AM or at 9 PM, and similarly for the inbound flight.
We are also not be able to tell of the ticket was purchased 15 or 5 days in advance.
However, we do know the relevant market (Chicago to Seattle), the operating carrier
(United) and that the flight is direct.

The DB1B has been used extensively to analyse different market and product features
of the US domestic industry as it is freely available and standardised by aggregating
prices at the market or product levels, respectively. Airline alliances on the US domestic
market have also been analysed using the DB1B, with some studies focusing on their
market impact as in Gayle (2008) and some - on the different kinds of alliance products
as in Ito and Lee (2007). We discuss this work with more detail in the next section.9

Domestic alliances in the literature

A large portion of the literature on domestic airline alliances uses the DB1B prices
aggregated at the market level when estimating the impact of alliances. This means

7The flight is characterised by the hour and day of the week of take-off for the outbound and
inbound flights.

8Advance purchase provides the number of days between the date of purchase and the date of
take-off.

9A different branch of literature is concerned with the variation of prices, or price dispersion, that
is partially due to the unobserved flight features and advance purchase in the DB1B data set. This
variation is generally seen as evidence of the airline to price discriminating between customers based
on flight characteristics and inter-temporally. The ability to price discriminate may be related to a
number of factors, such as the level of competition or stochastic demand. The price dispersion literature
typically uses the Gini coefficient as a measure of the variation, following the early work by Borenstein
and Rose (1994). More recently, data with flight-level and advance purchase characteristics has become
publicly available for collection through online marketing of tickets by the airlines themselves and
by online travel agents. Escobari (2012) uses data from Expedia to study the dynamic pricing of
inventories with uncertain demand and over a finite horizon. Similarly, Lazarev (2012) and Williams
(2013) examine the issue of dynamic pricing in a structural framework. The structural approach
applied to data collected from online sources has great potential for discovering more about airline
dynamic pricing. However, the data collection process should be carefully considered for external
validity. Moreover, structural models using this kind of data so far are limited to the monopoly case
because of the high complexity of modelling competition in this framework. This is the case in both
Williams (2013) and Lazarev (2012). Additionally, there is the issue of the ownership of the data and
airlines may not be willing to grant access to it, as experienced by McAfee and te Velde (2006) with
American Airlines.
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the impact of an alliance is the difference in prices between markets with and without an
alliance, before and after the alliance entry or cross-sectionally. One of the first studies
of alliances in the US domestic market is Bamberger, Carlton and Neumann (2004), who
use a before-after approach to compare fares and traffic in connecting markets where the
alliances operate relative to non-alliance interline10 markets. Similarly, Armantier and
Richard (2006) use panel data methods to estimate the effect of the presence of alliance
products on markets when the markets are segmented based on whether at least one
carrier already offers a non-stop service. Lastly, Gayle (2008) focuses on own (alliance
members only) and market price and traffic effects of the Continental-Northwest-Delta
alliance, again using a before-after approach. These early studies find higher fares
in markets where the alliance partners operate, but they also find increase in traffic
volume in many markets. Armantier and Richard (2006) attribute the increased prices
to alliance partners being able to price discriminate and manage the stochastic demand
more profitably.

Another strand of the literature emphasizes the type of cooperation between alliance
partners as a feature of the offered product. Ito and Lee (2007) analyse different
itineraries11 within a market, and distinguish between virtual code-shared products
(where one partner operates the flight, and the other can sell tickets on that flight) and
traditional code-shared products (where both partners are involved in the operation
of the flight and both can sell tickets).12 Their conclusion is that alliance products
are seen as inferior by consumers in comparison pure online flights (flights operated
and marketed by the same airline), and used by airlines to price-discriminate between
consumers with different willingness to pay. Gayle (2008) performs a somewhat similar
exercise, but he focuses on the market price effect of the presence of traditional and
virtual code-share flights. More recently, Urdanoz and Sampaio (2012) use panel data
extracted from the DB1B database to explore the persistence of gaps in the fares of
different kinds of alliance and non-alliance products over a period of six years and find
that these gaps are diminishing over time.

While the empirical evidence on the competitive effect of alliances is rich, it is difficult
to draw unilateral conclusions. For example, Gayle (2008) and Ito and Lee (2007)
both look at the same time period, but the effects they estimate are different. The first
examine the impact that each cooperation type has on the market-level fares and traffic.
The second, on the other hand, focus on cooperation type as a product characteristic.

10Internline products or markets are such that the service is performed by two carriers with no
agreement, hence the service of each carrier is independently provided.

11Their definition of itinerary is what we call here products, or prices identified by a combination
of market and operating and marketing carrier.

12It is also interesting to note that traditional code-sharing, which takes advantage of the comple-
mentarity of the networks of alliance partners, is not as widespread as some might believe. In fact, Ito
and Lee (2007) report that 85 percent of their products are virtual code-shares and 70 percent exhibit
overlap of service between alliance partners.
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Another difference is that Gayle (2008) performs a before and after estimation, while
Ito and Lee (2007) look at a cross-sectional difference in price between different type
of cooperation products. As a result, comparison between empirical studies can be
difficult. While Gayle (2008) finds a positive price effect of the presence of virtual
code-shared products in a market (on both the market fare and the alliance carrier
fare), Ito and Lee (2007) show that virtual code-shared products are sold at a discount
compared to online products.

The degree of competition in the airline industry

The US airline industry was regulated until 1978, and the major carriers of the period
(the so-called legacy carriers) had exclusive rights to operation in certain regions of the
US market and prices were set by the Civilian Aeronautics Board. During the regulated
period carriers put emphasis on continuously improving the quality of service. After
deregulation, the market was open to entry and price competition. Legacy carriers
started forming alliances with international carriers in the early 90’s, and these type
of agreements were soon extended to other domestic legacy carriers, the first being the
agreement between Northwest (NW) and Continental (CO) in 1998. While the majority
of early research work on the industry focused on competition and network formation in
the post-deregulation period, recently the industry has experienced a number of other
developments. The entry and increased market share of low cost carriers (LCCs),
the economic crises, advances in aviation technology, higher oil costs, and transparent
internet ticket sales have all put pressure on the market players, and the industry has
witnessed quite a few bankruptcies in the 2000’s. These changes have been explored in
the literature that we summarize below.

Intense competitive pressure in the airline industry has led to lowered emphasis on
quality and increased product homogenisation. In their recent study of determinants of
airline profitability in the years between 1999 and 2006, Berry and Jia (2010) find that
legacy carriers have reduced their services and started to compete more intensively on
prices. Brueckner, Lee and Singer (2012) suggest that service homogenisation is linked
to competition from of LCCs, who have significantly expanded their operations in the
last decade. An additional contributor to this effect, noted by Borenstein and Rose
(2013), is the elimination of search costs by internet ticket sales. The different kinds of
tools that have recently become available on the internet (e.g. Kayak, Expedia, Orbitz,
Google Flights) facilitate search based on ticket parameters, and the comparison of
prices and characteristics. This has reduced the demand for full-fare unrestricted tickets
and induced the ”unbundling” of services that are now available at additional fees (e.g.
meals and check-in luggage).
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Price elasticity has also increased considerably in the recent period. Berry and Jia
(2010) find an increase in aggregate price elasticity by 8 percent between 1999 and 2006,
with both business and tourist-specific elasticities rising. The authors credit the dot-
com bust and internet ticket sales for this trend, and demonstrate that these changes in
demand explain roughly 50 percent of the observed reduction in legacy carrier profits in
the examined period. In their study of LCCs and adjacent airports, Brueckner, Lee and
Singer (2012) similarly discuss how in recent years internet ticket sales have increased
price transparency and business travellers have become more prudent, resulting in the
increase of price sensitivity of customers.

Lastly, there has been higher provision of direct flights resulting from a combination of
increased consumer sensitivity to connections, higher fuel price and aviation technology
improvements. Berry and Jia (2010) find a 13 percent increase in direct passengers
and a 23 decrease in connecting passengers over the period between 1999 and 2006.
The semi-elasticity of connection has increased by 17 percent, as consumers can more
easily compare and asses the relative merit of direct and connecting flights using online
tools. Additionally, the cost advantages of connecting flights have disappeared with
more efficient smaller aircraft coming in use and higher fuel prices that make multiple
take-offs and landings too costly. This has likely brought about the recent trend in de-
hubbing by legacy carriers, for example Delta de-hubbing at Memphis and Southwest
at Atlanta (Berry and Jia (2010)).

Overall, the current economic conditions of the US domestic market seems to have put a
rather strong competitive pressure on legacy airlines, through increased price sensitivity,
homogenisation of the service, and low demand for connecting flights. These trends are
important in the recent strategic environment of the airline industry and they motivate
our assumptions and data selection. Our model emphasises price competition between
carriers offering homogeneous service, and we focus on direct markets.

The next section presents the structural model we propose, and how it will use the
DB1B data in a new way to estimate the effect of airline alliances on both the mean and
standard deviation of prices. Next, in Section 3 we introduce the data and covariates
used in the estimation. Lastly, Section 4 discusses the estimation results and robustness
checks.
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2 Bidding for travellers

We now provide an overview of the model, briefly describe the derivation of the maxi-
mum likelihood estimator, and then discuss how we use the DB1B data set to estimate
the distribution of reservation costs and the effect of airline alliances.

Overview

As we already discussed in the introduction, an important consideration about working
with the DB1B data set is that flight level and advance purchase information are not
observed. For this reason, most work aggregates (by averaging) the observed fares at
the product or market level. This kind of approach may be potentially problematic,
and it ignores the issue of price variability in airline markets. In addition, working
with average product or market prices weighs each market equally in the estimation of
a given effect, but the correct weight might be at the ticket sale level to account for
different levels of demand.13

We propose a different framework that we believe is appropriate in the current economic
environment faced by airlines. The recent trends in the industry, specifically service
homogenisation and high price elasticity, motivate our assumption that firms compete
by setting prices. For example, consider two airlines that offer a flight from New York
to Chicago leaving on Monday morning, returning Wednesday afternoon; the consumer
interested in these particular flight characteristics will buy the cheapest ticket on offer.14

Assumption 1. The observed transaction price (ticket fare) is the winning price in a
reverse English auction between airlines.

This assumption is based on the following argument. Given the particular travel char-
acteristics he is interested in, the consumer chooses the cheapest ticket on offer. The

13To the best of our knowledge, the only study which uses the DB1B data at the flight level is
Armantier and Richard (2008)’s discrete choice model. A potential problem in working with the data
at the flight level may come from not acknowledging the difference in the set of altrnatives (and prices)
faced by each consumer. Armantier and Richard (2008) warn against using the average product fare
as a proxy for the unobserved alternative prices because that would create measurement error. Their
proposed solution to this problem is innovative yet rather challenging as it requires an auxiliary data
set and a significant number of modelling assumptions.

14We let aside entry and exit issues, which are studies by Berry (1992). However, we control for
the potential bias that we could face by including market fixed effects.
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competitive pressure on the price causes airlines to undercut each other’s price until it
is no longer profitable to do so. This set-up describes Bertrand competition but also
the reverse English auction, as the two games are strategically and outcome equivalent
(Vives (2002)).15 The dominant strategy in this kind of game for each airline is to
lower their price up to the point where it reaches their reservation cost, below which
the airline would not be willing to make the sale. Take, for example, two airlines with
reservation costs which are two random draws from a probability distribution. The
equilibrium strategy implies that the airlines will undercut each other’s prices until the
one with the lower reservation cost (the player with the competitive advantage) slightly
undercuts the price of its rival. The airline with the higher cost is not willing to lower
its price further. Hence, the airline with the lower reservation cost wins the game and
makes the sale at a price equal to the higher reservation cost.

Our model is in line with the widely spread yield management method of bid price
control. Y ield or revenue management is a variable pricing strategy that allows airlines
to increase revenues in an environment with fixed capacity with an expiration date
(the take-off of a plane) and uncertain demand. In practice, there are a number of
techniques that the airline can use to achieve this, some of which involve the estimation
of a marginal cost of each seat on a plane. One such method is bid price control,
where this marginal cost is used as a bid - an optimum cut-off required to accept a
booking. These bids correspond to reservation costs in our model, below which airlines
are unwilling to sell tickets. Bid prices are dynamically adjusted over time to reflect
the changing reservation costs under dynamic demand.16

In our framework, the reservation cost for a ticket sale is determined by the operating
cost of providing the service, but also by its opportunity cost. The operating cost can
be explained by the distance, and the economies of scale and scope, which are constant
for all flights in a given market. Operating costs on a market need not be constant
- multiple flights scheduled on the same market may have different operational costs
depending on the departure time or day of the week. For example, flights at more busy
hours may be more costly both in terms of the airline’s own aircraft and personnel
allocation and in terms of the airport-related costs. The reservation cost is also based
on the ticket’s opportunity cost, which is the value an airline places on selling the ticket
now relative to selling is closer to the departure date with uncertainty but for a higher

15A reverse auction is when the auctioneer is a buyer and and the participants are sellers who
compete by offering the prices (their bids) at which they are willing to provide the service. An open
auction of this kind, known as an English auction, is when competitors can observe each other’s bids
and react to them, as is the case when firms compete Bertrant-style. Note that in a sealed-bid auction
the players cannot revise their bids after observing the bids of their competitors, even if they would
like to. The English auction is strategically and outcome equivalent to the famous Vickrey auction (a
second-price sealed-bid auction) in the case when players’ valuations are independent (private).

16This practice has been analysed in the operations management literature by Talluri and Van
Ryzin (1998) and Adelman (2007), among others.
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price. For a given flight, the opportunity cost varies over time because it is related to
the remaining capacity on the flight and on competing flights at the current moment,
and the expectation of demand in future moments before take-off. The opportunity cost
also incorporates the ability of an airline to price discriminate over time. In the present
version of our empirical model it is not possible to estimate separately the opportunity
and operating costs because of data limitations, however it is important to make clear
the concept of the reservation cost and its underlying components.17,18

Given our assumption that airlines compete on price, we develop an empirical model
based on the observational equivalence between Bertrand competition and the reverse
English auction. This observational equivalence between the two models allows us to
apply an MLE method developed by Paarsch (1997) for estimating the parameters in
auction models. In particular, we find this method appealing because we can estimate
the parametric effect of available covariates on the mean and standard deviation of the
reservation costs and transaction prices (the observed fares). We treat our sample of
ticket sales as realisations of repeated auction games. In each round of this game, we
assume that the airlines offer a product with similar flight features and compete on
price, and the consumer chooses the cheapest ticket for the service. Each observation
in the data represents the result of a different game, where the reservation costs have
been re-drawn.

The model

In this section, we outline the equilibrium bidding strategy in the reverse English auction
in the symmetric independent private values paradigm. We begin by assuming that the
competition in this market can be modelled as a non-cooperative game. We identify the
players, characterize the information each player has, describe the strategies available
to the players, describe how each player is rewarded, and characterize the equilibrium.

17The proposed cost concepts are very close to the systematic and stochastic peak-load pricing
described in the seminal paper on airline ticket price dispersion by Borenstein and Rose (1994). The
authors distinguish between systematic peak-load pricing (the mean variation in the expected shadow
cost of capacity that is known at the scheduling of the flight) and stochastic peak-load pricing (which
is related to demand uncertainty and the pricing flexibility of a firm after capacity is set). The concept
of systematic peak − load pricing is close to our operating costs component which depends on flight
characteristics such as time and day of the week of take-off. Similarly, the concept of stochastic peak−
load pricing is not unlike our definition of opportunity cost that depends on current market conditions,
demand expectation and the competitive structure of the market. Borenstein and Rose (1994) note
the difficulty in identifying these two effects using the DB1B data.

18A complete model of the operating costs would be possible if we had information available on
the flight characteristics of each sale (day and hour of take-off of both inbound and outbound flights).
To identify the dynamic opportunity cost, we would need to know the time of sale of each ticket, the
remaining capacity of the carriers, and any information related to the anticipated level of demand.
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We consider auctions at which a single buyer wishes to purchase one ticket from two
sellers (a duopoly). Each player i is assumed to know his cost of providing the ticket ci
but not those of his opponents. The heterogeneity in costs is resulting from cost C being
a continuous random variable with probability density function fC(c) and cumulative
distribution FC(c). The costs of players are assumed to be independent draws from the
same distribution fC(c). Together, the above assumptions constitute an independent,
private costs auction game where the players are also symmetric.

Assumption 2. Reservation costs are private, independent and ex-ante symmetric.

The strategies available to the buyers are their bids as a function of the cost: pi = σ(ci).
Bidding at a reverse English auction was modelled by Milgrom and Weber (1982). We
describe the proceedings of the Bertrand game as follows: given that the consumer
wants to buy the cheapest ticket, the players will react to each other’s prices and try to
undercut the price of the competitor. The equilibrium strategy is to lower one’s price
up to pi = ci, and stop after. The winner is the player with the lowest reservation
cost, and he is paid the price is the cost of his opponent (the player with the highest
reservation cost).

Let us take a closer look at the symmetric private costs framework, and how it is mo-
tivated by some observations on airline markets and ticket sales. In the private values
framework, the ci of each player i is private information and it also has private rele-
vance, in the sense that if it is revealed it would not make other players re-evaluate
their cost estimates.19 The private values framework does allow for the inclusion of
common, deterministic reservation costs components. For example, characteristics re-
lated to the operating costs like the market distance are clearly known to the airlines
operating in the market and they affect them in the same way.20 Many opportunity cost
determinants are also common and deterministic, for example the time left before the
take-off date but also how much capacity remains on own and competitor planes. We
base this assumption on the observation that airlines have access to ample amounts of
historical and real time information concerning their own and their competitor’s sales
and operations, and they use very sophisticated techniques to asses this information.21

19This is different from a common cost framework, where the cost draw for each player carriers
information for the final, interdependent cost.

20Such costs, for example the cost of distance, are the same to all carriers to be consistent with the
symmetric framework.

21For example, Sabre Airline Solutions, a major airline software developer and consultancy, states
that their fare management tools have the following capabilities: ”Our pricing solution equips airlines
with the ability to manage fares in a competitive and timely manner. The systems powerful data query
tools help pricing analysts examine relative market data including competitors changes to make the
right decisions at the right time.” Source: http://www.sabreairlinesolutions.com/.
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Hence, at any given moment the reservation cost of an airline is determined by some
common and observed components and a random component, which is private.22

Given the equilibrium strategy of the game, the observed winning price P is a function
of the reservation cost C - it is the highest out of two realisations of the random variable
C. A ranked draw of a random variable is itself a random variable, known as an order
statistic.23 The distribution FP (p) can be derived from the underlying reservation cost
distribution FC(c) as follows:

FP (p) = Pr[P ≤ p] = Π2
i=1Pr[Ci ≤ p] = F 2

C(p).24 (1)

Then, we find the probability density fC(c) by taking its derivative:

fP (p) = 2FC(p)fC(p). (2)

The distribution of prices and underling costs are linked as above under the assumptions
of our model. In the next sub-section, we describe how we will use this relationship to
estimate the model using the method of maximum likelihood, and how we will obtain
the effect of a number of cost covariates on both the cost and the price distribution.

Specification

We specify a parametric model of the type FC(c) = FC(c; θ), where θ is the vector of
parameters to be estimated. In our baseline specification, we assume the distribution

22Flight level characteristics and time of purchase, which are not observed in our data set, represent
unobserved heterogeneity that cannot be identified from the distribution of the random component
(see Athey and Haile (2002)). However, there is no reason to believe they are correlated with the
presence of an alliance on a market, our covariate of interest, and their omission should not bias our
estimates.

23Order statistics and their distribution are important components of auction models, where the
winner is chosen based on a ranking of the bids and the bids are monotonic functions of the underlying
random costs or valuations. For more information and derivations, see Paarsch and Hong (2006) and
particularly Appendices 1 and 2.

24Consider two independent and identically distributed random variables, C1 and C2 with proba-
bility cumulative distribution FC(c) and probability density fC(c). Let P be the largest of the two:
P = max(C1, C2). P has a cumulative distribution FP (p) = Pr(P ≤ p). The probability that the
random variable P is less than some p requires the event (C1 ≤ p) ∩ (C2 ≤ p). When each Ci is
independent, (Ci ≤ p) are also independent events and their joint probability is the multiplication of
the individual probabilities. Thus, we are able to construct FP (p) = Pr[C1 ≤ p]Pr[C2 ≤ p] = F 2

C(p).
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of the costs C is log-normal, or the logged costs ln(C) are distributed as N(µ, σ), with
θ = (µ, σ).25 The maximum likelihood estimation method allows us to estimate the
parameters of the distribution θ by maximising the joint probability of the sample with
respect to the parameters. The likelihood of observing a sample of prices of size T is
the joint probability of the individual price observations, fP (p). We assume the sample
is coming from a set of independent auction events, the joint probability is simply the
multiplied individual probabilities.

L = ΠT
t=1fP (pt; θ) = ΠT

t=12FC(pt; θ)fC(pt; θ). (3)

The log-likelihood is used in the maximisation to transform the multiplicative relation-
ships into additive ones and thus make maximisation easier:

l = Nln(2) +
T∑
t=1

ln

(
Φ

(
ln pt − µ

σ

))
+

T∑
t=1

ln

(
1

σpt
φ

(
ln pt − µ

σ

))
. (4)

The set of auctions in the data are not identical - different markets have different
distance and population demographics, for example, that would naturally affect the
reservation costs distribution. To account for these deterministic differences in the esti-
mation procedure, we specify the parameters of the reservation cost FC(c, θ) distribution
as linear functions of covariates:

µ = αW and σ = βW, (5)

where α and β are the coefficient vectors for the covariates W . They represent the
marginal effects of covariates on the mean and standard deviation, respectively. It
is important to note that the structural model will estimate the parameters θ of the
underlying reservation cost distribution FC(c, θ), but we are also interested how these
parameters affect the distribution of transaction prices actually paid by consumers.
Let us denote the parameters of the price distribution γ = (m, s) and the parametrised

25In an alternative specification, we assume the reservation costs to be distributed according to
the Beta distribution. The Beta is defined on a compact set and bounded, which is appealing for
modelling reservation costs as they should be positive. Additionally, the Beta can accommodate
skewness and allows the dependent variable to be heteroskedastic in the sense that the dispersion may
vary for different costs of the mean. The results obtained using the Beta are similar to those from the
estimation with the Normal, and are available upon request.
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distribution FP (p, γ). Then, using theoretical derivations from the field of statistics26,
we can express the parameters of the price distribution γ in terms of the parameters
of the reservation cost distribution θ. The mean of the price m is a combination of the
the mean µ and standard deviation σ of the reservation cost distribution. The price
standard deviation s is simply the scaled σ of the reservation cost. The marginal effects
of the covariates W on m and s can then be simply calculated using the marginal effects
α and β of the reservation cost distribution.

m = µ+
σ√
π

=
(
α +

β√
π

)
W = aW. (6)

s = σ

√
π − 1

π
= β

√
π − 1

π
W = bW. (7)

Note that since
√

π−1
π
< 1, the marginal effect of the covariates W on s (the b) is lower

than that on σ (the β). The distribution of prices becomes more compact, because the
prices are reservation costs that are selected away from small values. What happens to
the mean depends on the sings and relative magnitude of α and β. If they have the same
sign, then the marginal effect on the mean a is augmented. If they have different signs,
the overall effect depends on their relative magnitude and significance. For example, it
is possible that both α and β are significant but of opposite sign and a is insignificant.

Next, we define a market as a directional (origin to destination) city pair as in Ito and
Lee (2007). Markets are heterogeneous in terms of characteristics W , which can be
defined at the market, origin or destination level. Let the market be indexed by jk,
where j represents the city of origin and k represents the destination city. Let Xjk be
covariates relevant to the market, Yj relevant to the origin and Zk to the destination.
Then the mean µjk on a market jk and standard deviation σjk can be written the
following way:

µjk = αAAlliancejk + αXXjk + αY Yj + αZZk (8)

σjk = βAAlliancejk + βXXjk + βY Yj + βZZk (9)

26Our source is Nadarajah and Kotz (2008), although the exact forms of the different moments
of the distribution of order statistics have been known for a while and are available in many good
reference books such as David and Nagaraja (1970).
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The alliance effect is at the market level - the market can either be an alliance market
(Alliancejk = 1), or a non-alliance market (Alliancejk = 0). Our analysis focuses
on direct markets and direct products (non-stop flights offered on these markets). The
literature on alliances has approached the estimation of their effect in two different ways.
Ito and Lee (2007) and Urdanoz and Sampaio (2012) look at the price of different types
of alliance products on the same market. Gayle (2008) and Bamberger, Carlton and
Neumann (2004), on the other hand, look at the effect of an alliance product being
offered in a given market. Our methodology similarly estimates how the presence of an
alliance agreement between the carriers in a market affects the prices in that market, but
we compare markets cross-sectionally rather than before and after the agreement. We
prefer comparing cross-sectionally because the before-after comparison is only possible
around the date of the alliance agreement, and this means we should focus on an earlier
period that may no longer be relevant given the new market conditions.

An important assumption in our approach is that markets where an alliance is present
must be comparable to those without. In other words, there is no selection on markets
based on unobservables such that, for example, the strategic choice of allied carriers is
to enter in markets where price discrimination is more profitable and this would cause
the alliance coefficient to be biased. To avoid this type of problem, Brueckner (2003)
uses a model with entry. Another more direct approach that is used by Brueckner
and Whalen (2000) and Ito and Lee (2007) is to introduce fixed effects, which we will
consider in our sensitivity analysis.

3 Data and variables

The standard airline industry data base DB1B is published by the US Department of
Transportation and represents a 10 percent sample of all tickets sold within the US
domestic market. We use data for the third quarter (Q3) of 2008 and we work with
all direct service duopoly markets. Direct ticket sales are a significant portion of all
sales - they represent 36 percent of all ticket sales in 2008. Duopoly markets, in turn,
represent 33 percent of competitive (non-monopoly) sales.

We focus on the analysis of direct products for the following reason. We model compe-
tition between carriers offering identical products to the consumer. Connecting flights
have characteristics (connecting airport, time of layover, etc) which differentiate them
in a number of dimensions and accounting for that is not feasible in our framework.
Still, we believe direct markets are representative and increasingly relevant as demon-
strated by the high demand sensitivity to connecting flights and provision of direct
service in the recent years.
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Furthermore, our analysis concerns only duopoly markets where major legacy carriers
operate. To be consistent with the symmetry assumption, we do not consider LCCs and
markets where they operate. Indeed LCC’s have rather different cost structures than
the legacy carriers in addition to the fact that they do not enter alliances.27 Operating
in 2008 time period are American (AA), Alaska (AS), Continental (CO), Delta (DL),
Midwest (YX), Northwest (NW), United (UA), and US Air (US). Sales in markets
where these eight compete against each other represent 30 percent of all duopoly sales
for Q3 2008. The representation of each airline in the sample is found in Table 1 below.
Additional information on the cleaning of the data set is presented in Appendix A.

Table 1: Ticket sales in selected direct duopoly markets.

Carrier Freq. Percent

American Airlines (AA) 13,669 31.16
Alaska (AS) 4,001 9.12
Continental (CO) 1,366 3.11
Delta (DL) 3,948 9.00
Northwest (NW) 5,576 12.71
United (UA) 7,685 17.52
US Air (US) 7,166 16.33
Midwest (YX) 458 1.04

Total 43,869 100

Alliance presence

The original and main objective of an alliance is to sell tickets on another carrier’s
network, the so-called code-sharing which allows a given carrier to expand the range
of its services. The level of cooperation between alliance carriers can go further than
simple code-sharing by the sharing of frequent flyer programs, coordinating schedules,
and sharing of airport facilities (lounges, operating and maintenance facilities, even
staff). In our definition of an alliance, we follow Ito and Lee(2007): ”carriers are
alliance partners if passengers on one of the alliance carriers can earn elite-qualifying
frequent flyer miles on flights marketed or operated by the other alliance partner and
vice versa”. The complete list of alliances, and the number of markets where they
operate in 2008, is provided in Table 2.

27Regional-legacy carrier agreements are not considered to be alliances but rather an integrated
service. As is standard in the literature, we re-code tickets sold by regional carriers as the legacy
partner. More details on this can be found in Appendix A.
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Table 2: Domestic alliances in 2008

Markets Tickets

Alaska & American 2 1,177
Alaska & Continental 4 489
Alaska & Delta 2 154
Continental & Delta 3 358
Continental & Northwest 4 1,088
Delta & Northwest 8 1,125
Northwest & Midwest 2 346
United & US Airways 26 3,392

All alliance 51 8,129
No alliance 177 35,740

Total 228 43,869

Our Alliance covariate is an indicator variable, which is equal to 1 in markets where
both carriers are in an alliance (e. g., markets where CO and NW both operate). The
covariate is 0 when the carriers operating on a market are not in an alliance together (e.
g., markets where CO and US operate). In this sense, we are not concerned with the
exact type of cooperation products or level of coordination that takes place in alliance
markets. The alliance variable can affect both the mean and the standard deviation of
the reservation cost, and therefore prices.

Ex ante, it is not obvious how the alliance presence will affect the level and variability of
the reservation cost on a market. On the one hand, alliances are allowed to share certain
operating costs such as personnel and airport facilities, which could reduce operating
costs and make them more stable (lower their variability). On the other hand, the ability
to sell tickets on a competitor’s flights can make price discrimination more profitable,
hence it will alter the opportunity cost of a ticket and how this opportunity cost varies
over time before take-off. The alliance covariate thus measures an overall effect of the
alliance on the reservation cost’s mean and variance.

Covariates

Covariates W are the characteristics of the market, the origin and the destination that
shift the distribution mean and standard deviation deterministically. The covariates
are available in the DB1B or calculated using information contained in the data set.
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To control for demographic characteristics, we added information on the population
and income at the origin and destination of the markets obtained from the US Census
Bureau.

Distance is a market-level covariate, measured in number of miles between the origin
and destination cities. The distance between two cities relates to the level of operating
costs, as longer distances require more fuel to reach. The effect on the standard devia-
tion of the reservation cost, however, is undefined ex-ante. Consider the substitutabil-
ity between air and land travel transport modes, which is quite high for short-distance
trips. Demand for last-minute trips, however, might be quite inelastic - business trav-
ellers might find flights more convenient than driving when there is little time to plan
ahead. A steeper price path might be optimal because early ticket sales are highly
substitutable with land travel (and need to be prices low) while later ticket sales are
rather inelastic. This kind of effect would show up in the data as a negative effect of
distance on price variance.

The Market volume variable was constructed as a measure of traffic or scale on the
market: it is the number of ticket sales observed in that market. A higher volume is
correlated with higher number of flights and/or larger plane size, which would allow the
airlines to have lower average costs. Alternatively, each additional flight is a substitute
for the other flights the airline offers, and a larger number of flights may lead to smaller
difference between their prices, hence lower standard deviation.28

We construct the variables measuring the scale of operations - Origin volume and
Destination volume - as the total number of ticket sales at the origin and destina-
tion of the market. We also control for the location of the origin and destination in
the transport network, or how central is the market. To quantify this centrality we use
Origin connections and Destination connections. Origin connections counts the num-
ber of cities directly accessible from the origin, while destination connections counts the
number of cities from which one can fly to the destination. The centrality in a network
affects operating costs through the alternative use of resources (planes, personnel) and
through the opportunity cost changing with the stochastic demand in adjacent markets.

Our demographic measures - Population and Income - are measured at the origin and
destination cities. The effect of income is related to the opportunity cost of providing
the service. Higher income cities have both richer leisure travellers who do not need
to plan too much in advance and more business travellers who book tickets in the last
days before departure. The airline has a higher opportunity cost of a ticket sale, and
possibly a steeper price path is more profitable. Population, on the other hand, is
another measure of scale similar to market volume and it would be associated with

28We prefer to use volume and connections because ”scale” and ”scope” applies to operating costs,
and here we could also have opportunity cost as contributing to the reservation cost.
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lower reservation costs as larger-scale operations are more efficient.

Summary statistics

Below we present the summary statistics for the sub-samples for which Alliance = 1
and Alliance = 0. The units of the variables are as follows. Price (airfare) and income
are measured in US dollars, distance is in miles, population is in number of people,
volumes are in number of tickets, and connections are number of origin/destination
cities. We notice that prices are higher for the alliance sub-sample, but so is distance
which naturally increases costs. Price has a higher standard deviation in the alliance
subsample.

Table 3: Summary statisics

Alliance=0 Alliance=1

Obs: 35,740 Obs: 8,129
Variable Mean Std. Mean Std.

Price 425 234 547 322
Distance 1,773 992 2,560 1486
Origin population 5,329,810 5,262,221 3,362,796 1,925,202
Destination population 6,121,631 4,360,113 4,239,602 3,629,085
Origin income 53,215 8,273 59,450 6,922
Destination income 52,019 4,938 51,671 6,821
Market volume 455 399 285 172
Origin volume 19,692 13,621 16050 9,116
Destination volume 16,929 11,783 14076 7,964
Origin connecions 74 36 67 27
Destination connections 70 34 64 26

Although the variables are presented here in levels, we consider their logarithmic values
as it is common in the airline literature (see, for example, Ito and Lee (2007)). Together
with the assumption of log-Normality of the reservation cost, this allows us to interpret
the effect of the coefficients on the mean µ (the α’s) and standard deviation σ (the β’s)
as elasticities. Hence, each estimated coefficient represents the percentage change in µ
or σ given one percent change in the relevant covariate. The alliance coefficient, on the
other hand, is a semi-elasticity and is interpreted slightly different: to get the percentage
chance of µ or σ when Alliance = 1, we multiply the estimated coefficient by 100. This
interpretation is also relevant for m and s, the mean and standard deviation of prices.
The effects of the covariates on m and s, a and b respectively, will be constructed using
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Equations (6) and (7).

As mentioned previously, there could be a potential selection bias on unobservables
- alliance partners entering into markets based on unobserved (to the econometrician)
factors. To evaluate the potential impact of this selection, we perform sensitivity tests of
our results by also running the regressions with fixed effects at the origin and destination
levels.

4 Empirical results

The MLE methodology for auction data by Paarsch (1997) allows us to use the ob-
served distribution of fares to infer the parametric effect of different covariates on the
underlying distribution of reservation costs, itself comprised of an operatic cost and an
opportunity cost. Through the distributional relationship between the reservation cost
and the transaction price, we are able to derive how these covariates affect the level
and standard deviation of the observed fares.

Parameter estimates

We have assumed a log-Normal distribution for reservation costs, with mean µ = αW
and standard deviation σ = βW . Our baseline model includes all discussed covariates as
mean and standard deviation shifters. Table 5 has the results of the main estimation.29

We present the estimated effects on the parameters of the the reservation value (our
MLE results), and the effects on the parameters of the price that are constructed using
Equations (6) and (7).

We start the discussion of the results by looking at our main covariate of interest,
the Alliance dummy. The results show a significant positive relationship between the
existence of alliance on a given market and both the mean and standard deviation of
the reservation cost. It is unlikely that the positive mean shift of 9.8 percent would be
related to higher operating costs for alliance members, when in fact alliance members are
able to share facilities and coordinate schedules in a way that should reduce operating
expenses. Rather, this positive coefficient could be due to the alliance improving the
ability of an airline to price discriminate by allowing the selling of the partner’s tickets.
Moreover, a higher standard deviation of 5.2 percent for alliance markets supports the

29As customary, different significance levels are denoted by an asterisk. We have the following: ***
for significance at 1 percent, ** for significance at 5 percent, and * for significance at 10 percent.
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hypothesis that alliance members can use the ability to sell each other’s tickets to
segment demand more effectively. As a result, we have prices that are 12.7 percent
higher and 4.3 percent more spread relative to non-alliance markets.

The estimated alliance coefficient is comparable to other results in the domestic airline
literature. For example, Armantier and Richard (2006) find an increase of 10.7 percent
for ticket fares in markets through which CO and NW code-share using a before-after
approach and data for 1998-2001. Gayle (2008) also finds a positive effect of an alliance
operating in a given market using a similar before-after approach for the DL/CO/NW
alliance and data for 2002-2003, but of only 1.8 percent. In contrast, Bamberger,
Carleton and Neumann (2004) find that the CO/HP and NW/Alaska alliances formed
in the mid-90’s are associated with 7.5 and 3.9 lower fares, respectively, in connecting
markets. One major difference between our results and previous analysis is that we
work with all eight alliances operating in 2008.

The effect of Distance on reservation costs is positive (0.193 percent), which is not
surprising since distance is associated with higher operating costs. A larger distance
between the origin and destination cities is associated with a lower price variation
(-0.047 percent). This is possibly due to the substitution of shorter distance trips
with land transportation. For example, on shorter distances, the airlines may offer a
combination of low priced tickets which would be competitive with respect to travelling
by car, and high priced last-minute tickets for urgent business travels. Naturally, this
causes higher variation of prices for flights of shorter distance. The overall effect of
distance on the price mean is lower (0.166 percent) compared to that on the reservation
value, because the effects on µ and σ go in the opposite direction.

Moving on to the demographic variables, Population has a significant negative effect
on the mean reservation value (-0.057 percent for population at the origin and -0.036
percent at the destination) but does not affect the standard deviation. A higher pop-
ulation may lead to lower costs through higher demand and potentially more efficient
levels of operation. Given that the effect of population on the standard deviation is not
significant, the effect of population on µ and m almost identical.

Origin and destination Income, on the other hand, have a significant and positive effect
on the mean reservation cost (0.145 and 0.292 percent, respectively) and the standard
deviation (0.207 and 0.072 percent, respectively). Higher income at the origin can be
associated with richer leisure travellers, that would increase the opportunity cost of a
ticket. Rich leisure travellers may also be able to afford to not plan their trips too
long in advance, causing the opportunity cost of sales to increase over time and raising
the observed dispersion. Higher income (both at the origin and the destination) is
associated with more business travel, that would also increase the opportunity cost of
a ticket. Business travel could make the opportunity cost more variable over the course
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of selling tickets as it is uncertain and usually concentrated in the last moment before
take-off. This causes capacity to be more filled in a more random manner, causing the
opportunity cost of a ticket to have more variation over time. The mean elasticity of
the price is higher than that of the reservation cost (0.261 for the origin and 0.331 for
the destination).

We have three different measures of V olume - at the market level, and the origin and at
the destination. All three lower the standard deviation of the reservation cost (by 0.018
percent, 0.027 percent, and 0.023 percent, respectively). A higher scale of operation is
usually associated with more optimised costs and more stable costs. An alternative and
complementary explanation for this effect could be that more flights on a market would
decrease ability to price discriminate because of the substitutability between them,
hence leading to lower variability in the opportunity cost of the sale. The negative
effect on σ translates to a negative effect on s. Additionally the destination volume
and market volume achieve a negative effect on price levels of 0.041 and 0.016 percent
respectively.

Lastly, origin and destination Connections measure the centrality of the origin or desti-
nation to the travel network. Both are associated with higher reservation cost (by 0.05
percent for the origin, and 0.07 percent for the destination), and higher standard devi-
ation (0.051 and 0.037 percent, respectively). A market with more central origin and
destination airports may mean that the cost to the airline to service that market must
be weighed against using its resources to service other adjacent markets, affecting the
operating costs. Alternatively, there may be dynamic demand spill-overs where more
connections increase the variability of the stochastic demand, and make the opportunity
cost more volatile.

Sensitivity analysis

To test the robustness of our results, we estimate the model with fixed effects at the
origin and destination levels. Naturally, the covariates specific to the origin and desti-
nation are collinear with the fixed effects and they are excluded from this estimation.
The covariates which remain are Distance, Marketvolume and Alliance. The results
of the fixed effects estimation, displayed in Table 6, demonstrate that the significance
of the alliance indicator remains when controlling for unobserved factors. An Alliance
is associated with a 11 percent increase in reservation cost mean, and a 4.8 increase
in reservation cost standard deviation, both effects being comparable to the magni-
tudes we have in the non-fixed effects regression. The corresponding semi-elasticities
to alliance presence for the price are 13.6 percent for the mean and 3.9 percent for the
standard deviation. The effect of Distance is also consistent with what was estimated
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Table 4: Estimation results with covariates

Reservation cost Price

µ σ m s

Coef./Std. Coef./Std. Coef./Std. Coef./Std.
Alliance 0.098*** 0.052*** 0.127*** 0.043***

(0.008) (0.006) (0.007) (0.005)
Distance 0.193*** -0.047*** 0.166*** -0.039***

(0.006) (0.005) (0.006) (0.004)
Origin population -0.057*** 0.004 -0.055*** 0.004

(0.004) (0.004) (0.004) (0.003)
Destination population -0.036*** -0.003 -0.037*** -0.003

(0.004) (0.003) (0.004) (0.003)
Origin income 0.145*** 0.207*** 0.261*** 0.171***

(0.023) (0.020) (0.023) (0.016)
Destination income 0.290*** 0.072** 0.331*** 0.06***

(0.030) (0.024) (0.028) (0.020)
Market volume -0.031*** -0.018*** -0.041*** -0.015***

(0.005) (0.004) (0.005) (0.004)
Origin volume 0.020* -0.027*** 0.005 -0.023***

(0.009) (0.008) (0.009) (0.006)
Destination volume -0.003 -0.023** -0.016* -0.019***

(0.009) (0.008) (0.009) (0.006)
Origin connections 0.050*** 0.051*** 0.078*** 0.042***

(0.010) (0.008) (0.010) (0.007)
Destination connections 0.070*** 0.037*** 0.091*** 0.03***

(0.010) (0.008) (0.010) (0.007)
Constant 0.373 -1.892*** -0.695* -1.562***

(0.431) (0.364) (0.415) (0.301)

Likelihood -109,780
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previously. The Marketvolume coefficient, on the other hand, changes sign and this
indicates that there is bias in the main regression that affects this particular variable.

Table 5: Estimation results with fixed effects

Reservation cost Price

µ σ m s

Coef./Std. Coef./Std. Coef./Std. Coef./Std.
Alliance 0.110*** 0.048*** 0.136*** 0.039***

(0.014) (0.012) (0.013) (0.010)
Distance 0.139*** -0.020* 0.127*** -0.016**

(0.010) (0.008) (0.009) (0.007)
Market volume 0.055*** -0.028*** 0.039*** -0.023***

(0.008) (0.007) (0.008) (0.006)
Constant 4.530*** 1.067*** 5.132*** 0.881***

(0.097) (0.083) (0.094) (0.068)

Likelihood -106,756

We tested the sensitivity of our results by also looking at data for other years, notably
for 2007 and 2009. A potential problem with 2009 is that many of the major alliances
(UA-US and CO-NW-DL) ended by the end of that year as Continental merged with
United in 2010 and Northwest merged with Delta also in 2010. It is not known how
these two events, known in advance, may have affected the carriers. The estimated
reservation cost coefficients for years 2007, 2008 and 2009 are available in Appendix B.
The year 2009, just before the mergers and possibly at the height of the economic crisis,
is somewhat inconsistent in the significance and signs of a number of coefficients, while
years 2007 and 2008 are mostly consistent. The Alliance effect on µ is significant and
of similar magnitude in all estimations: 10 percent in 2007, 9.8 in 2008, and 13.4 in
2009. The effect of alliance on σ is actually negative (-1.6 percent) in 2007, indicating
a lower variance on alliance markets. In 2008 and 2009, it is significant, positive and of
similar magnitude (5.2 and 4.1, respectively). The effect on the price mean ranges from
9.1 (for 2007) to 15.7 (for 2009), while the effect on price standard deviation - from -1.3
percent (2007) to 4.3 percent (2009). Overall, the sensitivity analyses with respect to
the chosen time period produce results that are consistent with what we have obtained
in the main regression.
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5 Conclusion

Our objective in this paper has been the following: to propose a new framework in
regard to how airlines set prices for their tickets, and to use it to estimate the effect
of domestic alliances in the US market. We are motivated by the increased competi-
tiveness of the airline industry that has resulted in higher price sensitivity and product
homogenisation, which are well documented by academics who study this industry. Our
model is thus based on price competition between the airlines, also known as Bertrand
competition. The observational equivalence between Bertrand competition and the re-
verse English auction allows us to employ an MLE method from the auction literature.
We fit our model on a subsample of flight-level price observations extracted from the
DB1B data set, and we estimate the effect of covariates on both the mean and the
variance of prices. Our result from the main regression indicates that the presence of
an alliance in the market is associated with prices higher by 12.7 percent, and with a
4.3 percent increase in the price standard deviation. We believe this result indicates an
improved ability to price discriminate when alliance partners.

For simplicity, our analysis assumed an auction environment of private values and sym-
metric players. A richer model should take into account of the difference in market
presence of each competitor - their relative position in the market, or the origin and
destination of the market - and how this affects the operating costs, and the incentives
and ability to price discriminate. Incorporating asymmetry in reservation cost distri-
bution is a direction that we would like to explore in the future, as from the auction
theory literature we know that asymmetric private values models are identified as long
as the transaction price and the identity of the winner are observed. Generalising the
private values framework by assuming either affiliated values or common values can be
problematic, especially if one is to use the DB1B data set. Indeed, identification and
testing in such more general environments is not straightforward and can be achieved
only by employing more detailed data (Athey and Haile (2002)).

Our work is not without limitations, and this provides scope for future work on mod-
elling competition in the airline industry. For example, we are not able to identify
whether the effect of the different covariates on the reservation cost distribution comes
from the operating cost, the opportunity cost or both. To do that, one would need
to construct a more complex structural model of competition that takes into account
dynamic pricing under demand uncertainty. As mentioned earlier, this type of models
are of high complexity, and have typically been analysed only in the monopoly case.
Moreover, estimation would require a more detailed data set than the DB1B with infor-
mation on flight characteristics and time of purchase, as well as on capacity levels and
sales at each point in time. We believe the framework we propose - an open competitive
environment where consumers make their choice based on the price and competitors
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differ in their private costs - would be an appropriate starting point for a more complex
model.
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Appendix

A: Data cleaning

Regional ”feeder” or ”commuter” carriers are recoded as their major carrier partner. See
Table 4 in Sampaio and Urdanoz (2012). Strong cooperation between such commuter
carriers and the major carriers started in the 1980’s and in some cases this has resulted
in vertical integration, for example American Eagle (AM) and American Airlines (AA).

Carriers with less than 15 passengers were deleted, since these probably reflect coding
errors. We also removed tickets with cost less than 50 USD and more than 3000
USD. The majority of these happen to be tickets at 0 USD, representing frequent flyer
purchases. We also focus on markets with more than 9 passengers per quarter, as that
is equivalent to one passenger per day given that the sample represents 10 percent of
ticket sales (Sampaio and Urdanoz (2012).

One other modification of the data set consists of grouping airports in the same metropoli-
tan area. The six groups of airports are: Dallas-Fort Worth International and Love Field
in Dallas, TX; Baltimore/ Washington International, Dulles, and National in Washing-
ton, DC; Midway and OHare in Chicago, IL; Kennedy, LaGuardia, and Newark in
New York, NY; Los Angeles, Burbank, and Long Beach in Los Angeles, CA; San Fran-
cisco, Oakland, and San Jose in San Francisco, CA. For example, Chicago Midway and
Chicago O’Hare International will represent the same market. Again, this is a standard
treatment in the literature that allows more properly to look at metropolitan areas with
multiple airports (Berry and Jia (2010, Sampaio and Urdanoz (2012)).

Lastly, following Evan and Kessides (1993, 1994), we count carriers as operating in
a given market if their sales represent at least 1 percent of observations in the data,
equivalently 1 percent of total sales.
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B: Additional results
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