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Abstract

In this paper, we develop moment-based tests for parametric discrete distributions. Moment-

based test techniques are attractive as they provide easy-to-implement test statistics. We

propose a general transformation that makes the moments of interest insensitive to the pa-

rameter estimation uncertainty. This transformation is valid for some extended families of

non-differentiable moments that are of great interest in the case of discrete distributions.

Considering the power function under local alternatives, we compare this strategy with the
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one in which parameter uncertainty is corrected. The special example of backtesting of value-

at-risk (VaR) forecasts is treated in detail, and we provide simple moments that have good

size and power properties in Monte Carlo experiments. Additional examples considered are

discrete counting processes and the geometric distribution. We finally apply our method to

backtesting of VaR forecasts derived from a T-GARCH(1,1) model estimated using foreign

exchange-rate data.

Keywords: moment-based tests; parameter uncertainty; discrete distributions;

value-at-risk; backtesting.

JEL codes: C12, C18.



1 INTRODUCTION 3

1 Introduction

Moment-based tests for testing distributions or particular features of distributions (tail prop-

erties, kurtosis) are particularly attractive because of the simplicity of their implementation.

These tests are universal because they can consider univariate or multivariate parametric dis-

tributions, discrete or continuous distributions, and independent or serially correlated data

in the same setting. Moment-based tests have therefore been extensively used in recent con-

tributions related to financial econometrics (Amengual and Sentana, 2011; Amengual et al.,

2013; Bai and Ng, 2005; Bontemps and Meddahi, 2005, 2012; Candelon et al., 2011; Chen,

2012; Duan, 2004; Dufour et al., 2003; Fiorentini et al., 2004; Mencia and Sentana, 2012).

In this paper we develop and apply moment-based tests for discrete distributions in an i.i.d.

or a serial correlation setting. Particular examples of interest are value-at-risk (VaR) models,

discrete counting processes, and discrete choice models. Our framework can be used for both

conditional and marginal distributions. We derive a general class of moment conditions that

are satisfied under the null hypothesis, and we pick particular moments in this class. There

are various guidelines for choosing moments in this class. It is possible to focus on tractability,

optimality (against a given alternative), or testing of test-specific features, as in structural

modeling. Finally, whatever the reason for the choice, we have a set of moments and the

resulting test statistic has an asymptotic chi-square distribution under some usual regularity

conditions that ensure the validity of the Central Limit Theorem.

We allow for the presence of estimation uncertainty generated by parameter estimation for

residuals or the distribution of interest. For example, in a Poisson counting process, the rate

depends on explanatory variables and parameters that are estimated within the sample; in
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VaR models, the VaR is not observed but estimated through a (continuous) model of financial

returns.

Parameter estimation uncertainty has an impact on the asymptotic distribution of tests

and has to be taken into account to obtain accurate size properties. We adopt the approach of

Bontemps and Meddahi (2012) and Wooldridge (1990), among others, which involves trans-

forming moments into ones that are orthogonal to the score function. According to the

generalized information matrix equality, such moments are robust to parameter estimation

uncertainty; in other words, the test statistic does not depend on whether the parameters are

estimated or known. Working with robust moments is very attractive for time series data

or/and when derivation of the asymptotic distribution of the estimator in closed form is dif-

ficult. In particular, in a time series context, using robust moments can drastically simplify

the calculations.

Here we generalize the Bontemps–Meddahi (BM) transformation by considering alterna-

tives to the orthogonal projection. We can indeed project our moment along an estimating

equation other than the BM score function; we call this an oblique projection. We use the fact

that this orthogonalization is still valid for non-differentiable moments of a particular type.

This type includes the VaR example and Pearson type-tests that compare empirical and the-

oretical frequencies of cells. It appears that the generalized information matrix equality can

indeed be used for this class of non-differentiable moments. Although the result has been

known for some time, there has been no systematic use of this equality in the literature on

moment-based tests.

Consideration of non-orthogonal projections can be very attractive as it might lead to

quantities that are easily estimated within the data. A key aspect for the small-sample
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properties of the tests proposed is to have closed forms and to avoid within-sample estimations.

The choice of the direction is therefore guided by the problem of deriving closed forms. We

illustrate this issue by investigating backtests of VaR measures derived from an underlying

T-GARCH process for returns.

We also study the power implications of this orthogonalization strategy. First, there is

no loss in working with robust moments. Second, there is no optimal choice of the direction

without precise knowledge of the alternative. A particular choice of direction can always

be dominated by (or dominate) another choice for specific choices of the alternative. The

tractability of the test procedure is ultimately the major guideline for the choice of this

direction.

We also prove an appealing and important aspect of working with robust moments in the

context of out-of-sample tests. It is known that the central limit theorem for out-of-sample

cases does not have the usual expression and depends on the estimation scheme (West, 1996;

McCracken, 2000). This is not the case for robust moments, for which the expression appears

to be the same and independent of the estimation scheme. This means that the “usual” formula

can be applied for any out-of-sample test statistic, which is a noteworthy simplification.

We apply the results to some classical examples of interest. We first study in detail

backtests of VaR models. In particular, we derive easily computed procedures that can test

the accuracy of VaR forecasts in a GARCH model. These tests are valid regardless of the true

conditional mean and variance used to generate the GARCH. We focus in particular on two

popular models, the normal GARCH and the T-GARCH models. A Monte Carlo simulation is

run to show the performance of the proposed tests. The results suggest that the tests perform

well in the set-ups traditionally considered in the literature.
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We consider three additional examples. First, we derive tests for Poisson counting models

based on the family of Charlier polynomials, which has the nice feature that any polynomial

of order higher than two is robust to the parameter uncertainty. Second, we test the geometric

distribution in an i.i.d. context. This distribution has been used to model the duration be-

tween two consecutive hits in backtesting of VaR models (Christoffersen and Pelletier, 2004;

Candelon et al., 2011). In particular, we evaluate the impact of testing its continuous ap-

proximation, the exponential family, on the power properties. Simulations suggest that when

the data exhibit serial correlation, the power deteriorates, and therefore tests for the true dis-

crete distribution should be used. Finally, we present a slight modification of the well-known

Pearson chi-square test that can be used to take parameter uncertainty into account. The

difference between the observed and theoretical frequency of the cells considered should be

translated by a quantity proportional to the score function. When the parameters are esti-

mated by maximum likelihood estimation (MLE), this modification vanishes, and we recover

the usual formula for the Pearson chi-square test.

The remainder of the paper is organized as follows. Section 2 develops the general frame-

work, including the general orthogonalization method, and presents examples that are of

particular interest. In Section 3 we construct the class of moments that could be used for

testing purposes. We also present particular orthonormal families of polynomials that can be

used to test some standard discrete distributions. Section 4 focuses on backtesting VaR mod-

els. A few tests are proposed and studied in a Monte Carlo experiment presented in Section

5. Section 6 considers additional examples such as Poisson counting processes and discrete

duration models. Finally, Section 7 considers an empirical application that tests VaR forecasts

derived from a T-GARCH(1,1) model for daily exchange-rate data. Section 8 concludes the
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paper. The proofs, details of the calculations, and additional analysis are provided in the

Appendix.

2 General results

2.1 Set-up and examples

Let Y be a univariate discrete random variable whose support S is countable. Without loss of

generality, we assume that S can be set to {0, 1, 2, . . . , N}, where N is either finite or infinite.1

Let Pθ be a parametric family of distributions for Y indexed by θ ∈ Θ ⊂ Rr. We assume that

Θ is compact. The true distribution of Y is Pθ0 , where the true value θ0 belongs to the interior

of Θ. E denotes the expectation with respect to Pθ, and V is the variance. pi(θ) denotes the

probability of observing Y = i. E0, V0, and pi(θ
0) are the same quantities when we consider

the true distribution, Pθ0 . The symbol > denotes the transpose operator. We also adopt the

following notation hereafter in this section. For two functions h1(y, θ) and h2(y, θ), we denote

by E0

[
h1h

>
2

]
the matrix E0

[
h1(y, θ0)h>2 (y, θ0)

]
.

Our framework is adapted to the conditioning case in which X are explanatory variables

that may or may not contain past values of Y in the time series case. In this case, Pθ would

become Pθ,x and we would test the conditional distribution of Y | X = x. Here we focus on

the marginal case.

Consider a sample of T observations (y1, . . . , yT ) that are independent or serially correlated

and for which stationarity is assumed. Our goal is to test the null hypothesis that the p.d.f.

of yt is in Pθ with or without specifying the value of θ. Either θ is left undefined and will be

1It is indeed possible to map a countable support with a subset of N.
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estimated using y1, . . . yT , or θ is set equal to some prespecified value. To do this, we pick

particular moments m(·) whose expectation is equal to zero under the null hypothesis. Our

procedure consists of testing whether the empirical average of these moments is close to zero.

We need regularity conditions to ensure the validity of the Central Limit Theorem and the

regularity of the estimator used for θ0 and the function m(·). These regularity assumptions

are introduced because we need them later.

We now provide examples that are of interest in applied economics. Some of them are

considered in the Monte Carlo experiment.

Example 1 VaR models (VaR)

VaR forecasts are used by financial institutions as a measure of risk exposure. Backtesting

procedures are needed to assess the reliability of the models used by these institutions to

compute their VaR forecasts.

Let rt be the daily log return of some given portfolio or equity, and let VaRα
t be the 1-

day-ahead VaR forecast (computed at time t− 1) for a given level of risk α (value known by

the econometrician, generally 5% or 1%). Most of the leading tests are based on the sequence

of hits It, It = 1{rt ≤ −VaRα
t }. Under perfect accuracy, It is i.i.d. Bernoulli distributed

with parameter α. Christoffersen (1998) considered an LR test in a Markov framework.

Christoffersen and Pelletier (2004) and Candelon et al. (2011) considered tests based on the

distribution of the duration between two consecutive hits.

Example 2 Counting processes

Counting processes are used in a wide range of fields (Cameron and Trivedi, 2010). The

Poisson distribution is the analog of the normal distribution in the discrete case. This is one
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leading model in i.i.d. count data. In this model, pi(θ) = e−θ θ
i

i!
, but in general there are

explanatory variables X and θ ≡ β>X. This model can be extended to a serially correlated

one. The particular case of the Poisson INAR(1) model is considered in Section 6.2.

Example 3 Discrete choice models

Discrete choice models describe choices made among a finite set of alternatives. They have

played an important role in many subfields: participation in the labor force, urban transport

mode choice, and analysis of demand for differentiated product are particular examples among

many others. Here, pi(θ, x) = P (Y = i|X = x) = F (ai+1 − β>x; ν) − F (ai − β>x; ν), where

a0, a1, . . . , aK are some threshold values (with the convention a0 = −∞, aK = ∞), K is the

number of choices faced by the decision maker, β is a vector of parameters, and F (.; ν) is the

cumulative distribution function for the error term. Hamilton and Jorda (2002), for example,

considered an ordered probit to model the size of the change in the federal funds rate.

A few moment-based tests have been proposed in the literature, including the probit model

(Skeels and Vella, 1999), bivariate ordered probit (Butler and Chatterjee, 1997), and ordered

probit (Mora and Moro-Egido, 2008).

Example 4 Pearson χ2-type tests

Let C1, . . . , CK be K cells that cover the support of Y . The well-known Pearson χ2 goodness-

of-fit test is based on the set of moments mi(y, θ) = 1y∈Ci−qi(θ), where qi(·) is the probability

that Y belongs to Ci. Boero et al. (2004) studied this test and the sensitivity of its power to

the definition of the cells.
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2.2 Test statistic

We start with the case in which the true value θ0 for the parameter θ is known.

Let m(·) be a k-dimensional moment2 whose expectation under the null hypothesis is equal

to 0. Discussion on how to derive and choose the set of moments is postponed to Section 3.

Under the null hypothesis that the true distribution of yt is Pθ0 ,

E0m(y, θ0) = 0.

Assumption (CLT): Central Limit Theorem. We assume that the long-run covari-

ance matrix of m(·), Σ, is finite and positive definite and that the Central Limit Theorem

applies. Lower-level assumptions that ensure (CLT) for m(·) can be found in Corollary 5.3 of

Hall and Heyde (1980).

Under (CLT), a test statistic ξm can be constructed from any consistent estimator Σ̂ of Σ:

ξm =

(
1√
T

T∑
t=1

m(yt, θ
0)

)>
Σ̂−1

(
1√
T

T∑
t=1

m(yt, θ
0)

)
. (1)

Under the null hypothesis, this statistic follows an asymptotic chi-square distribution with k

degrees of freedom.

It should be noted that picking a finite set of moments does not lead to an omnibus

test. Most of the leading tests in the literature are also not omnibus. In a VaR context, the

Christoffersen backtesting procedure cannot detect alternatives for which the hits have nonzero

autocorrelation of order two or higher. In a continuous context, tests based on skewness and

kurtosis measures cannot detect deviation from moments greater than five. However, all

these tests are frequently used because they are intuitive, easy to implement, and sufficiently

2The k components of m are assumed to be free, that is, the variance of m(·) under the null hypothesis is

of full rank.
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powerful for the standard alternatives of interest. One of the advantages of using moments is

to be able to adapt to the case we consider. This means that we can change the moments of

interest depending on the alternative of interest.

2.3 Parameter estimation uncertainty

We consider the case in which there are parameters estimated in the procedure. With abuse of

the notation, θ now includes all the parameters estimated from the data, and excludes those

that are known. sθ(·) is the score function of the model. In the VaR model (Example 1), the

hits follow a Bernoulli distribution with parameter α, which is known, and θ is therefore the

estimated parameters of the underlying model for the returns. The hit sequence {It}Tt=1 is a

function of θ and is a non-differentiable function of the observed returns and the estimated

VaR forecasts, It(θ) = 1{rt ≤ −VaRα
t (θ)}. In the discrete choice models (Example 3), θ

includes the parameter of the error term distribution ν, the thresholds ai, and the parameter

β.

2.3.1 Asymptotic expansion

We now impose some regularity assumptions that are necessary to write our first-order ex-

pansion.

Assumption (R): Regular estimator. We assume that θ̂, an estimator of θ0 based on

y1, . . . , yT , satisfies the following expansion:

√
T (θ̂ − θ0) =

1√
T

T∑
t=1

w(yt, θ
0) + oP (1),

where w(·) is some estimating equation that satisfies the regularity conditions (CLT) and

therefore ensures the asymptotic normality of θ̂. w(·), the influence function, can come from



2 GENERAL RESULTS 12

an ML estimation or a GMM estimation.

Assumption (GIM): generalized information matrix equality. The generalized

information matrix equality

(
∂E0 [m(yt, θ)]

∂θ>

)
θ=θ0

+ E0

[
ms>θ

]
= 0. (2)

is satisfied.

Conditions for the generalized information equality can be found in Tauchen (1985) (e.g.,

Assumption 2 and 4). It requires, in particular, the continuous differentiability of E0 [m(y, θ)]

with respect to θ in some open neighborhood of θ0. Any differentiable moment of the form

m(y, θ) = 1{y ∈ [l(θ), u(θ)]} − p(θ), (3)

where l, u, and p are differentiable functions of θ, satisfies (GIM).

Proposition 1 Let m(·, θ0) be a moment with zero expectation under Pθ0 and satisfying As-

sumption (CLT), where θ̂ a square-root-consistent estimator of θ0 that satisfies Assumption

(R). Under (GIM), the sequence m(y1, θ̂), . . . ,m(yT , θ̂) satisfies the following expansion:

√
T

1

T

T∑
t=1

m(yt, θ̂) =
√
T

1

T

T∑
t=1

m(yt, θ
0)− E0

[
ms>θ

]√
T (θ̂ − θ0) + oP (1). (4)

The proof comes from a combination of the usual Taylor expansion around θ0

√
T

1

T

T∑
t=1

m(yt, θ̂) =
√
T

1

T

T∑
t=1

m(yt, θ
0) +

∂E [m(yt, θ)]

∂θ>

∣∣∣∣
θ=θ0

√
T (θ̂ − θ0) + oP (1) (5)

combined with the generalized information matrix equality (2).

We are obviously not the first to characterize the asymptotic expansion (4), but there is

no systematic use of this alternative expression to treat the parameter uncertainty issue. It
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has been used in the BM approach for continuous moments but is also valid for the (non-

differentiable) class of moments written above.

When θ is estimated, we know that plugging the estimator θ̂ into Equation (1) generally

modifies the asymptotic distribution of the test. If we ignore the estimation impact, the size

of the test is no longer controlled. We can indeed derive from Equation (4) that the long-

run variance of m(yt, θ̂) is the long-run variance of m(yt, θ
0) − E0

[
ms>θ

]
w(yt, θ

0). A notable

exception is when θ̂ is the MLE. In this case, the long-run variance is dominated by the long-

run variance of m(yt, θ
0).3 Consequently, a test based on (1) uses a higher variance and leads

to a conservative test.

More importantly, it is clear from (4) that there are two strategies to deal with the impact

of parameter uncertainty. The first consists of correcting for the impact by deriving the joint

asymptotic distribution of the two terms on the right-hand side of (4) (Newey, 1985; Mora and

Moro-Egido, 2008; Escanciano and Olmo, 2010). This is possible but can be very cumbersome

in the time series case and/or for estimators for which the influence function w(·) is not very

easy to derive (such as two-steps estimators). The second strategy involves working with

moments m(·) that are orthogonal to the true score function (here we call such moments

robust moments). In this case, parameter uncertainty has no impact (at the first-order level)

on the asymptotic distribution of
√
T 1
T

∑T
t=1 m(yt, θ̂) and we can proceed as if θ were known.4

To do this we transform any moment m(·) into a moment that is orthogonal to the score

3When θ̂ is the MLE, w(yt, θ
0) = V0 [sθ]

−1
sθ(yt, θ

0). Consequently, V0
[
m(yt, θ

0)− E0

[
ms>θ

]
w(yt, θ

0)
]

=

V0
[
m(yt, θ

0)
]
− E0

[
ms>θ

]
V0 [sθ]

−1 E0

[
ms>θ

]>
<< V0

[
m(yt, θ

0)
]
.

4For robust moments, we can use either θ0 or θ̂ and the test statistic ξm in (1) follows the same asymptotic

distribution. It is worth noting that, for example, the Jarque–Bera test is not valid when the mean and

variance of the normal distribution to be tested are known.
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function sθ(·). This transformation strategy has been followed in earlier work by Wooldridge

(1990) and Chen (2012) and by Bontemps and Meddahi (2012) in a continuous context. We

now explore this path in more depth in the next section.

2.3.2 Orthogonalization method

A robust moment is orthogonal to the score function, so all transformations used in the litera-

ture implicitly have in common the transformation of a moment into one that is orthogonal to

the score function (Wooldridge, 1990; Chen, 2012; Bontemps and Meddahi, 2012). However,

the solutions that have been proposed are different. Wooldridge (1990) considered moment-

based tests for conditional distributions. In his framework, the matrix involved is the full

expectation with respect to the joint distribution of Y and X. He proposed a transformation

of the instruments h(X) to have orthogonality with respect to the joint distribution of Y and

X, and does not refer to the score function. Bontemps and Meddahi (2012) proposed an or-

thogonal projection of the moment onto the orthogonal of the conditional score. Chen (2012)

considered parameter uncertainty in a generalized GARCH model and used the fact that a

moment orthogonal to y and y2 is robust. In a continuous context, which differs from ours,

the Khmaladze transformation used by Bai (2003) and Khmaladze and Koul (2004) are simi-

lar strategies, as reviewed by Li (2009). Finally, in an earlier study, Bontemps and Meddahi

(2005) noted that Hermite polynomials of order greater than three are robust to parameter

uncertainty in a general location scale model. Mencia and Sentana (2012) derived an LM test

of normality in a multivariate GARCH context. They also obtained a linear combination of

Hermite polynomials that are robust to parameter uncertainty. Amengual and Sentana (2011)

described a score test for multivariate normality that is also robust to parameter uncertainty.
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However, working with the real score function might be very difficult or cumbersome in

some specific cases, which is why we propose a generic extension of the BM transformation

that does not involve the score function. We first consider an estimating equation g(·) that

identifies the parameter θ and satisfies Assumption (CLT). We assume that g(·) is of the same

dimension as θ, like the identifying restrictions of a GMM procedure. It is worth highlighting

that the estimating function used to estimate θ in the sample can be any estimating equation,

such as g(·) itself, the score function, or any other estimating equation. The next proposition

proposes a transformation for building a robust moment.

Proposition 2 Let g(·) be some estimating equation that satisfies (CLT) with the same di-

mension as θ that identifies θ0 and provides a regular square-root-consistent estimator of θ0

(in other words, θ̂ follows Assumption (R)). The moment

m̃g(y, θ) = m(y, θ)−
(
∂E [m(yt, θ)]

∂θ>

)
θ=θ0

(
∂E [g(yt, θ)]

∂θ>

)−1

θ=θ0
g(y, θ) (6)

is a moment robust to parameter estimation uncertainty.

Observe that following the generalized information matrix equality,
(
∂E[m(yt,θ)]

∂θ>

)
θ=θ0

=

−E0[m.s>θ ], and similarly for g(·). Consequently, E0[m̃g.s
>
θ ] = 0 and application of (4) ensures

the result.

The two matrices involved in Equation (6) can be computed under the null hypothesis or

estimated within the sample. In the latter case, Amengual et al. (2013) interpreted the trans-

formation as an IV regression. Bontemps and Meddahi (2012) considered the score function

as the estimating equation leading to an orthogonal projection of m(·) on the orthogonal space

of the score function (moment denoted by m⊥). Proposition 2 extends their transformation
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to non-orthogonal projections, which is attractive when it is not practical to deal with the

true score.

In terms of the power properties of the test, there are no arguments in favor or against use

of an oblique rather than an orthogonal projection (see the discussion in Appendix A.3). The

choice of g(·) is guided, for example, by the requirement of having closed-form expressions

for the test statistics. We consider this oblique projection in Section 4 in the context of

backtesting of VaR forecasts derived from a T-GARCH model.

2.3.3 A simplified procedure: projection on the orthogonal of an auxiliary score

Despite the fact that Proposition 2 provides a strategy for building a robust moment when

use of the score is impractical, its attractiveness depends on the choice of g(·). It may happen

that the model is so complex that a closed form for (6) is not possible. We now go further by

proposing a simplified procedure to build robust moments.

Consider a simple model M̃ (the auxiliary model) defined by the parametric family of

distribution P̃ (yt; β) and let s̃β(·) be the score for this auxiliary model. Assume that our

true model can be linked to this auxiliary model by β = h(Xt−1, θ), where h(Xt−1, ·) is a

differentiable function and Xt−1 is a collection of variables such that, conditional on Xt−1, the

distribution of yt is in P̃ (yt; β).

If a moment m(yt; β
0) is orthogonal to the true score for the auxiliary model, it is or-

thogonal to the score for the true model. The score for the true model is indeed a linear

vcombination of the components of the score in the auxiliary model.5 Let g̃(·) be some differ-

5sθ(yt; θ) =
∑dim θ
j=1 s̃βj

(yt;β)
∂hj

∂θ (Xt−1, θ). If m(yt;β
0) is orthogonal to the auxiliary score,

m(yt;h(Xt−1, θ
0)) is orthogonal to the true score by the law of iterated expectations.
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entiable estimating equation that identifies the parameters of the auxiliary model and let Ẽ

be the expectation for the auxiliary model. The moment

m̃g̃(y, β) = m(y, β)− Ẽ[ms̃>β ]Ẽ[g̃s̃>β ]−1g̃(y, β) (7)

is a moment robust to the parameter estimation uncertainty in the true model.

Observe that we can also use the generalized information matrix equality in (7) to derive

alternative expressions for the matrices involved in 7.6

This approach is particularly appealing because in some cases, building a moment orthog-

onal to the score for the auxiliary model is much easier than building one for the true model.

Interestingly, such a moment remains robust regardless of the functional form h(·). We can

therefore derive a class of robust moments once for all cases.

Example 1 In a VaR model, it is relatively easy to derive moments that are robust in the

auxiliary model rt = µ + σεt, where µ and σ are constant. These moments are also robust

regardless of the specification of µ and σ, in particular in the class of conditional location-scale

models:

rt = µ(Jt−1, θ
0) + σ(Jt−1, θ

0)εt,

where Jt−1 is the information set at time t − 1 and θ0 is a vector of parameters to be

estimated. This is particularly important for practitioners because robust moments that do

not depend on the exact conditional form of the conditional means and variances can be

derived (see Section 4 for more details). For example, in the normal GARCH model, the score

6For example, Ẽ[g̃s̃>β ] = −Ẽ[ ∂g̃∂β ].
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for the auxiliary model is, up to a scale parameter, the vector whose components are εt and

ε2
t − 1. If we project our moment onto the orthogonal of the space spanned by these two

functions, that is, we apply (7), we obtain a moment robust to the parameter uncertainty for

any type of normal GARCH model. This particular case was considered by Chen (2012).

Example 2 Another interesting example is the Poisson counting process. In Section 6.2,

we showed that any Charlier polynomial of order greater than two is robust to the parameter

estimation uncertainty. If we assume that the parameter of the Poisson process is linked to

some exogenous variables X, h(X, θ), where θ is a parameter vector to be estimated, the same

Charlier polynomials are still robust when θ is estimated within the data.

Illustration using the T-GARCH model Assume that we would like to test whether a

parametric T-GARCH (1,1) model without conditional mean is a good model for computing

VaR forecasts for a given series of financial returns. The returns rt are assumed to follow the

model

rt = σt(θ)εt,

where εt is an i.i.d. sequence from the standardized Student distribution with ν degrees

of freedom. As θ is estimated within the data, we consider a robust moment by projecting

onto the orthogonal of the true score function. However, if we have to consider the true

score, the covariances do not have closed forms and involve infinite sums. We can therefore

apply our last result using a model with constant variance rt = σεt as the auxiliary model.

Orthogonality to the score in this auxiliary model ensures orthogonality to the score of the

true T-GARCH model (regardless of the parametric specification of σt(θ)). We have two
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parameters to estimate, σ2 and ν. We can use as the estimating equation g̃(·) the second and

fourth moments in this auxiliary model,

g̃(rt, θ) =

 r2
t − σ2

(r4
t − 3σ4)(ν − 4)− 6σ4

 . (8)

The correction in Equation (7) now involves the covariance between g̃(·) and the score

function in the auxiliary model with constant variance. It does not depend on the parametric

specification of the conditional variance of the T-GARCH model and involves quantities that

are only simple functions of the data. For example, after projection the hit sequence It − α

becomes

ẽt = It − α +
qναfν(q

ν
α)

2
(ε2
t − 1) +

∂Fν
∂ν

(qνα)

(
(ν − 4)2

6
(ε4
t −Kε)− (ν − 2)(ν − 4)(ε2

t − 1)

)
,

where Kε = 3 + 6
ν−4

is the kurtosis of εt, q
ν
α is the α quantile of the standardized Student

distribution with ν degrees of freedom, and fν(·) (Fν(·)) is its p.d.f (c.d.f.). Further details

are given in Equation (26). Additional calculations are provided in Section 4.2. Simulations

in Section 5 highlight the attractive properties of this procedure in terms of both size and

power.

2.4 Working with robust moments

It is important to characterize the attractiveness of working with robust moments. First, when

a non-robust moment is used, the asymptotic distribution of the test statistic depends on the

quality of the estimates. This is not the case for a robust moment as long as θ̂ is a square-

root-consistent estimator. Consequently, the test statistic depends only on the choice of the
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moment, and the critical values of the test statistic can therefore be tabulated using either

the asymptotic distributional approximation or simulation techniques (bootstrap techniques

can therefore be used to improve the small-sample properties).

Second, a robust moment is robust whether the data are i.i.d. or serially correlated. The

alternative of correcting the statistic7 can require many calculations to compute the covariance

between the first and second terms in (4), which are avoided here. It is therefore much more

convenient to work with a robust moment in a time series case.

In the Appendix, we compare the power properties between robust moments and correction

for parameter uncertainty using Equation (4). It is evident that correcting is equivalent, in

a i.i.d. context, to transforming the moment when using for g(·) in (6) the equation used

to estimate θ. These two strategies are therefore equivalent. The key issue is the choice of

g(·). The second part of our result shows that no particular choice of g(·) dominates the other

choices. In other words, there is always some local alternative for which a given estimating

equation is better than the others. To conclude, in the absence of optimality, the estimating

equation g(·) that appears the more tractable should be selected.

Out-of-sample properties We now prove that working with robust moments is also par-

ticularly attractive in a forecasting context. It is known from earlier work (West, 1996; West

and McCraken, 1998; McCracken, 2000) that the statistical properties of out-of-sample mo-

ments depend on the estimation scheme, that is, whether a recursive, rolling, or fixed scheme

is used.

Proposition 3 Let R < T and P = T − R, and let θ̂t (t > R) be a sequence of square-

7Correcting means that we compute the joint distribution of the two terms in (4).
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root-consistent GMM-type estimators of θ0 using the data yt−R, . . . , yt−1 (rolling estimator),

y1, . . . , yt−1 (recursive estimator), or y1, . . . , yR (fixed estimator). We assume that θ̂t satisfies

the expansion (R) for the corresponding values of the time index. We assume that R and P

tend to∞ as T tends to∞ and that m(·) satisfies the regularity conditions (CLT) and (GIM).

If m(·) is a robust moment,

1√
P

T∑
t=R+1

m(yt, θ̂t) =
1√
P

T∑
t=R+1

m(yt, θ
0) + oP (1). (9)

The proof is a direct consequence of the fact that the second term in the asymptotic

expansion vanishes because of the orthogonality of m to the score function. See, for example,

Theorem 4.1 of West (1996), in which the matrix F is the null matrix in this case. The

intuition is the same as for the in-sample properties. A robust moment is orthogonal to the

score and therefore uncorrelated to local deviations of θ̂ around θ0.

Therefore, when the moments are robust, the asymptotic variance of out-of-sample mo-

ments is essentially the standard long-run variance. We do not have to correct for the estima-

tion scheme. Simulations in Section 5 demonstrated the attractiveness of working with robust

moments. They behave better and their size and power properties are similar to those in the

in-sample case.

3 Choice of the moments

One appealing property of moment-based tests is the possibility of choosing the appropriate

moment. There are many potential guidelines for choosing the moments of interests. We

can be interested in tractability and ease of implementation in some cases, and in power

against specific alternatives in others. This section provides a guideline about the choice of
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the moment that is used to test our discrete distributions.

3.1 Adhoc choices

Adhoc choices of moments are always possible. For well-known distributions, one generally

knows the first few moments (mean, variance, skewness, and kurtosis) as functions of the

parameters. For discrete distributions, one can also simply count the number of realizations

of a particular value and compare the expected number of counts with the actual ones (this

is the rationale of the standard Pearson chi-squared test).

For the Poisson distribution, we know that it has the property of equidispersion, i.e.

the mean and the variance are equal. This gives us the opportunity to test H0 from the

first and second moments together. We could alternatively use the sequence of moments

mi(y, θ) = 1{Y = i} − pi(θ) for different i.

3.2 Orthogonal polynomials and Ord’s family of discrete distribu-

tions

The Ord’s family is a well-known extension of the famous Pearson’s family8 to the case of dis-

crete distributions. This family includes the Poisson, binomial, Pascal (or negative binomial),

and hypergeometric distributions, as particular examples.

A discrete distribution belongs to the Ord’s family if the ratio (we omit the dependence

of pi in θ) py+1−py
py

equals the ratio of two polynomials A(.) and B(.), where A(.) is affine and

B(.) is quadratic.

8See Table 1 of BM for orthonormal polynomials related to the Pearson family.
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∆py
py

=
py+1 − py

py
=
A(y)

B(y)
=

a0 + a1y

b0 + b1y + b2y2
, (10)

where ∆ is the forward difference operator: ∆py = py+1 − py.

We can build the associated orthonormal polynomial family Qj, j ∈ N, where each poly-

nomial is derived using an analogue of the Rodrigues’ formula on finite difference (see Weber

and Erdelyi, 1952 or Szegö, 1967):

Qj(y) = λj
1

py
∆j [py−jB(y)B(y − 1)...B(y − j + 1)] ,

where λj is a constant which ensures that the variance of Qj is equal to 1.

These orthonormal polynomials are particular moments that can be used for our testing

procedure. They are not necessarily the best in terms of power or robust to the parameter

estimation uncertainty problem (except for some special cases). However, one advantage is

that the variance is known, equal to one. In an i.i.d. context with known parameters, these

moments are asymptotically independent with unit variance. It follows that the test statistics

based on Qj are asymptotically χ2(1) and independent,

ξj =

(
1√
T

T∑
t=1

Qj(yt)

)2

d−→
T→∞

χ2(1),

ξ =
r∑
j=1

ξj
d−→

T→∞
χ2(r).

Another advantage is that the family of orthogonal polynomials is complete in L2 (see,

for example, Gallant, 1980, in a continuous case). Testing the distribution or testing the

full sequence of polynomials is therefore equivalent. Appendix C presents some particular

examples of Ord’s distributions and related polynomial families of interest. Candelon et
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al. (2011) used, for example, the Meixner polynomials to test the geometric distributional

assumption in a VaR framework.

3.3 A general class of moments

The two previous sections present some particular moments that can be used for testing

purposes. There are however some cases where such moments are not so easy to derive. We

derive here a general rule for constructing any moment for which the expectation under the

null is equal to zero. Let ψ be a function defined on S × Θ and such that the expectation

under Pθ is finite.

Assumption LB (Lower Bound) ψ(0, θ) = 0.

Assumption LB is just a normalization of the function ψ(·).

Proposition 4 Let m(y, θ) be the function defined by

m(y, θ) =

[
ψ(y + 1, θ)− ψ(y, θ) +

py+1(θ)− py(θ)
py(θ)

ψ(y + 1, θ)

]
. (11)

Under assumption LB,

E0m(y, θ0) = 0. (12)

The proof is given in Appendix A. It is worth noting that the moment built in Proposition

4 is the discrete analogue of the one used in BM (Equation (8), page 983). One could argue

that focusing on this class could restrict the range of the tests derived from these moment

conditions. It might be the case that the set of moments generated by Eq. (11) could be a

small subset in the set of any moments for which we know that the expectation under the

null is equal to zero. The next proposition shows in fact that any moment of interest can be

generated by the construction presented above.
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Proposition 5 Let m(y, θ) be a moment such that

E0m(y, θ0) = 0. (13)

Let ψ(y, θ) be a function defined on S by:

ψ(0, θ) = 0,

ψ(y, θ) =
1

py(θ)

y−1∑
k=0

m(k, θ)pk(θ) for y ≥ 1

(14)

Then, ψ satisfies LB and m(·) satisfies the equality in Eq. (11).

See Appendix A for the proof.

We illustrate the usefulness of Proposition 4 previous results by considering the geometric

distribution with parameter θ. In this case, py(θ) = (1 − θ)yθ and py+1(θ)−py(θ)

py(θ)
= −θ. When

ψ(y, θ) = y, we obtain the first Meixner polynomial, up to some scale factor, 1−θ−θy. When

ψ(y, θ) = y2, the moment derived from (11) is a linear combination of the first two Meixner

polynomials. The family of functions yk generates the first k terms of the Meixner family.

More generally, Proposition 4 generates a set of moments when one does not have any obvious

moment to use.

3.4 Optimal choice of the moments

Moment tests can be interpreted as optimal LM tests against some given models. Let m(·)

be a p-order moment used to test our discrete distributional assumption. Let h(ν) be a

function from Rp to Rp, where ν is a p-dimensional parameter. Assume that h(0p) = 0p and

that ∇h(0p) = Ip. Then, m(·) can be interpreted as the LM test of testing the distribution
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with probability density function f0(y) against the alternative distribution with pdf fa(y) =

f0(y)(1 + h(ν)>m(y)). One particular choice for h is the identity function h(ν) = ν. Chesher

and Smith (1997) also characterized the family of alternatives such that the moment tests can

be interpreted as LR tests in this augmented family.

We derive in Proposition 10 the power under local alternatives for a choice of a robust

moment m(·). Without parameter uncertainty, the noncentrality parameter a(g) becomes

a = (E1m(xt))
2

V0m
. The following inequalities (assuming working with i.i.d. data) provide an upper

bound for a (under standard regularity assumptions):

(E1m(xt))
2

V0m
=

(∫
m q1

q0
q0

)2∫
m2q0

=

(∫
m( q1

q0
− 1)q0

)2∫
m2q0

≤

(∫
( q1
q0
− 1)2q0

)2∫
( q1
q0
− 1)2q0

=

∫
(
q1

q0

− 1)2q0.

(15)

The last inequality comes from the usual Cauchy-Schwarz inequality. The moment m(·) which

reaches the upper bound, i.e. which maximizes the noncentrality parameter, is q1
q0
− 1. This

result9 provides a guideline for the practitioner to choose the moment. If one prefers to

manipulate standard moments, like the polynomials related to the Ord’s distributions, one

can use the polynomials that are the most correlated with this optimal moment.

9Bontemps et al. (2013) provide a complete discussion of point optimal moment-based tests under a more

general framework.
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4 Application to the backtesting of VaR models

The Basel Committee on Banking Supervision proposed in 1996 the use of Value-at-Risk

models as one possibility for risk management. There is a debate on what is a good measure

of risk and whether VaR is adequate (see for example Artzner et al., 1999). However, this is

the one that is the most commonly used by financial institutions.

Let rt be the return at date t for a given financial asset. The Value-at-Risk V aRα
t is the

negative10 of the α-quantile of the conditional distribution of rt given Jt−1, the information

set at date t− 1:

P (rt ≤ −V aRα
t |Jt−1) = α. (16)

The goal of backtesting techniques is to check the accuracy of the model used by a given

institution, observing in most of the cases only the VaR forecasts and the returns.

Let It be the Hit, i.e. the indicator of bad extreme event:

It =


1 if rt ≤ −V aRα

t

0 otherwise.

(17)

Under H0, i.e. the VaR parametric model used by the practitioner is the true model, It is

i.i.d. Bernoulli distributed with parameter α. It is therefore a discrete variable (though built

from a continuous model for the returns). Our methodology applies, and this section presents

feasible tests that are easy to derive and robust to the parameter uncertainty introduced by

the estimation of the model for the returns.

The parameter estimation uncertainty has rarely been taken into account in this literature.

10A VaR is positive.
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Escanciano and Olmo (2010) characterized the potential size distortion that could arise from

ignoring its impact (empirical rejection rates raise to 10% for a 95%-level test) and corrected

for it.

We apply our method that considers an auxiliary model. We first assume that the DGP

for the return is

rt = µ+ σεt, (18)

where εt ∼ i.i.d. D(0, 1). D(0, 1) is any continuous distribution of mean 0 and variance 1.

The next proposition builds some moments which are robust to the parameter uncertainty.

Proposition 6 Let s̃θ(εt) be the score function in the model (18), P = E
[
It.s̃

>
θ

]
, Vs = V(s̃θ)

and et = It−α−PV −1
s s̃θ(εt). Let Zt−1 be any squared-integrable random variable that belongs

to the information set at date t− 1. The orthogonalized moment

m⊥t (θ) = Zt−1et (19)

satisfies E0m
⊥
t (θ0) = 0 and is robust to the parameter uncertainty.

This is a direct application of the results derived in Section 2. A general expression for

the matrix P is given in Appendix A.4, see Equation (A.15). Following our earlier results on

moments robust in some auxiliary model, the moment in (19) is also robust in the model

rt = µt−1(θ) + σt−1(θ)εt. (20)

In the Monte Carlo section, we study different choices for the past instruments. Zt−1 = 1

corresponds to the unconditional test (i.e. we test that the frequency of hits is the expected one,

α); Zt−1 could also be past values or linear combinations of past values of et. We summarize

the last result in the following corollary.
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Corollary 7 In the model (20), the test statistic

ξ = T

(
1

T

T∑
t=1

Zt−1et

)> [
E0[Zt−1Z

>
t−1](α(1− α)− PV −1

s P>)
]−1

(
1

T

T∑
t=1

Zt−1et

)
(21)

is asymptotically distributed as a χ2(k), where k is the dimension of Zt−1, whether the param-

eters are estimated or known.

We now detail the expression of the robust moments for two particular GARCH processes,

the Normal GARCH and the T-GARCH. The details of the calculations are provided in

Appendix B.1 and B.2.

4.1 The Normal GARCH model

In the Normal GARCH model, et in Proposition 6 simplifies to

et = It − α + ϕ(nα)εt +
nαϕ(nα)

2

(
ε2
t − 1

)
, (22)

and its variance is equal to α(1 − α) − ϕ(nα)2 − n2
αϕ(nα)2

2
, where nα is the α-quantile of the

standard normal distribution and ϕ(·) its pdf.

Assume just here that we have a Normal GARCH model without drift, i.e. µ ≡ 0. The

projection onto the orthogonal space of the true score would have given the following quantity

e?t in replacement of et above:

e?t = It − α +
nαϕ(nα)

2
E
[
∂ lnσ2

t (θ)

∂θ>

]
V
[
∂ lnσ2

t (θ)

∂θ

]−1
∂ lnσ2

t (θ)

∂θ>
(
ε2
t − 1

)
. (23)

The variance of e?t is α(1 − α) − n2
αϕ(nα)2

2
E
[
∂ lnσ2

t (θ)

∂θ>

]
V
[
∂ lnσ2

t (θ)

∂θ

]−1

E
[
∂ lnσ2

t (θ)

∂θ>

]T
. These

quantities, however, involve infinite series which should be estimated within the data.11 Simu-

lations in the Monte Carlo section, Section 5, suggest that working with et instead of working

11See Appendix B.1.
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with e?t in these examples does not change the power properties but notably simplifies the test

procedure.

4.2 The T-GARCH model12

Assume for simplicity that the daily returns can be modeled by:13

rt = σt(θ)εt,

where εt is an i.i.d. sequence from the standardized Student distribution with ν degrees of

freedom. Fν(·), fν(·) and qνα denote the cdf, the pdf and the α-quantile of this distribution and

we assume that ν > 4. θ and ν can be consistently estimated by Gaussian QMLE combined

with the fourth moment of εt (see Bollerslev and Wooldridge, 1992) or by MLE. In BM, this

distributional assumption is not rejected for most of the daily exchange rate returns.

Contrary to the normal case we do not have closed forms for et as we have to consider

quantities that involve the score component related to the number of degrees of freedom, ν.

We can estimate these quantities within the data or by simulation. If one really wants an

explicit form without estimating any matrix, there are two simplifications that can help in

deriving explicit test statistics.

First, we can simplify the problem when one assumes that the estimated degrees of freedom

of the student distribution are forced to be an integer value (see the simulation exercise of

Escanciano and Olmo, 2010, page 41). The parameter estimation uncertainty related to the

12The calculations are provided in Appendix B.2.
13In Appendix B.2, we present the case with a conditional mean.
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estimation of ν vanishes. In this case, et in Proposition 6 is equal to

et = It − α− qναfν(qνα)
ν + 3

2ν

(
1− (ν + 1)ε2

t

ν − 2 + ε2
t

)
. (24)

A second strategy consists in orthogonalizing the moment from some estimating equation in

a constant scale model as discussed in Section 2.3. One estimating equation for θ = (σ2, ν)>

includes both the second and fourth moments of the returns rt:

g(rt, θ) =

 r2
t − σ2

(r4
t − 3σ4)(ν − 4)− 6σ4

 . (25)

Following the expression of the quantities involved in Equation (6), the orthogonalized

version of It − α is now

ẽt = It−α+
qναfν(q

ν
α)

2
(ε2
t −1)+

∂Fν
∂ν

(qνα)

(
(ν − 4)2

6
(ε4
t −Kε)− (ν − 2)(ν − 4)(ε2

t − 1)

)
, (26)

where Kε = 3 + 6
ν−4

is the kurtosis of εt.

5 Monte Carlo experiment related to the backtesting

of VaR models

In this section, we consider backtests of VaR models, defined in Section 4. The returns of a

fictive portfolio/asset are assumed to follow a GARCH (1,1) model with i.i.d. innovations:

rt =
√
σ2
t (θ)εt, σ

2
t (θ) = ω + γr2

t−1 + βσ2
t−1, (27)

with εt ∼ D(0, 1), ω = 0.2, γ = 0.1 and β = 0.8. The distribution D considered here is the

standard Normal distribution and the standardized Student distribution.
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We simulate T = 250, 500 or 750 observations which corresponds approximately to, re-

spectively, one, two or three years of trading days. All the results displayed are based on 1 000

replications and each table reports the rejection frequencies for a 5% level test.

5.1 The Normal GARCH model

We first consider the case where the innovation process is Gaussian. In Table 2 and Table 3,

we display the in-sample size and power of different competing tests. A VaR model is used for

forecasting, but checking the in-sample properties serves as a benchmark for the additional

tables. We consider two different VaR measures, with α being respectively equal to 1% and

5%. We now detail the tests presented in the tables. It is worth noting that we can implement

our test as such even if the number of actual hits is equal to zero. This particularly interesting

when one backtests VaR forecasts with low coverage rate, α.

We first display the unconditional test based on the counting of hits, ignoring the parameter

uncertainty, (It − α)0. It can be used as a benchmark. Three additional unconditional tests,

based on the empirical frequency of hits are also displayed. We either correct for the impact

of the parameter uncertainty,14 in It − α or we use robust versions. e?t is the robust moment

derived from the projection of It−α onto the orthogonal space of the true score function (see

Equation (23)), et is the projection of It − α onto the orthogonal space of the score function

when one assumes that the volatility is constant (see Equation (22)).

We consider also conditional tests, i.e. tests that detect departure from the independence.

These tests are based on the product of et with past values, i.e. etet−h for different values of

h. We also consider weighted moments me
k = etet−1 + k−1

k
etet−2 + ... + 1

k
etet−k, for different

14It is the unconditional test proposed by Escanciano and Olmo (2010).
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values of k. Additional simulations not provided here suggest that the choice of the weights

does not change the order of magnitude of the results. We consider weighted moments based

also on e?t .

Table 2 presents the in-sample size properties. As expected, the non-robust tests have very

bad small sample properties. The robust tests have much better performance though not so

good for one year of data and small risk values.15 The conditional tests behave similarly.

[insert Table 2 here]

In Table 3, we study the power properties by considering three alternatives.16 In the first

alternative, the hit series are built from a VaR measure derived from the Historical Simulation,

i.e. taking the empirical α-quantile within the data. Unsurprisingly, the unconditional tests

do not have any power as the frequency of hits equalizes its theoretical value by construction.

Conditional tests, etet−h, do have power, and combining different lags into a single moment

(i.e. the moment me
t,k) is the most powerful strategy.

The second alternative consists of simulating a T-GARCH model with the same conditional

volatility but with innovation terms εt that are distributed following a standardized Student

distribution with 4 degrees of freedom. When the VaR measure is computed, Gaussianity

is (wrongly) assumed. Power essentially comes from the unconditional tests as the expected

frequency of hits is lower than the empirical ones. The rejection rates are very close to each

other.

In the third alternative, we simulate an EGARCH model17 with T(4) innovations, esti-

mating the standard normal GARCH(1,1) model to derive the VaR expression. Both the

15See also Escanciano and Olmo (2010), who highlighted this in their simulation exercise.
16We only report the results for α = 5%, the results being qualitatively the same for α = 1%.

17σ2
t = exp(0.0001 + 0.9 lnσ2

t−1 + 0.3(|εt−1| −
√

2/π)− 0.8εt−1).
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distributional assumption and the volatility model are wrong. Therefore, both conditional

and unconditional tests have power. Like before, the tests related to the correlation between

et and et−h have better power properties.

[insert Table 3 here]

In both tables, there is no big differences between test procedures based on et or similar

ones based on e?t . Correcting the Hit sequence for the parameter uncertainty is not better

and, in the third alternative, is surprisingly much worse than working with a robust moment

Finally, combining in a single moment different weighted past robust et increases the power

substantially.

In Table 4 and 5, we study the out-of-sample properties. The one-day ahead VaR forecasts

are computed with a rolling estimator (Table 4) or using a fixed scheme (Table 5) assuming

normality for the innovation term. In both cases, we use R = 500 values to estimate the

parameter.18. We test our moments on P = 125 or 250 observations. As highlighted before,

robust moment tests do not need any additional correction even for studying out-of-sample

performance. We use the same moments and the same DGP’s as in the last two tables. We

compare the perfomances of the robust tests based on et with the ones of the tests based on the

correction for the parameter uncertainty (the correction depends on the estimation scheme,

see West and Mc Cracken, 2000, for details). We have the same qualitative results as before,

except a slight overrejection for the size properties. The power properties are also better for

tests based on robust moments (conditional or unconditional). Like for the in-sample case,

the power of the tests in the T-GARCH alternative is very low when one decides to use the

18Additional simulations with R = 250 not provided here yield similar conclusions
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strategy which consists in correcting for the parameter uncertainty.

[insert Table 4 and Table 5 here]

5.2 The T-GARCH model

We now consider the T-GARCH model and we use the same volatility model than for the

Normal GARCH model (27). Here the innovation distribution is the standardized Student

with 8 degrees of freedom.

In Table 6 and 7, we report the size properties (in-sample and out-of-sample) and the

power properties when we compute the VaR forecast by historical simulation using the first

R values (fixed scheme). The same tests as before are presented. We add the ones based

on ẽt in Equation (26), which is a robust version of It − α after having orthogonalized it

using the estimating equation g(·) in Eq. (25). The performances are quite comparable to the

ones obtained in the Normal GARCH case. Working with ẽt does not change the order of

magnitude of the results.

[insert Table 6 and 7 here]

6 Additional examples

6.1 Pearson chi-squared test19

Assume that y1, . . . , yT are independently distributed. Let C1, . . . , CK be K cells covering the

support of the distribution of Y with K − 1 > r, the dimension of the parameter θ. These

19The details are provided in Appendix A.5.
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cells are the unions of potential outcomes of the variable Y , where the definition of any cell

does not depend on the parameter itself. qi(θ) is the probability that Y belongs to Ci, i.e.

qi(θ) =
∑
j∈Ci

pj(θ). For example, in the Poisson case, one could consider the five sets {Y = 0},

{Y = 1}, {Y = 2}, {Y = 3}, and {Y ≥ 4}. In this case, q4(θ) =
+∞∑
k=4

pk(θ). We assume that all

qi’s are strictly positive (which avoids empty cells in population). In this section, q0
i ≡ qi(θ

0)

and q̂i =
1

T

T∑
t=1

1{yt ∈ Ci}. We also assume that the parameter θ is estimated using these K

cells. The score function is equal to

s(y, θ) =
K∑
i=1

1{y ∈ Ci}
∂ log qi(θ)

∂θ
.

A Pearson type test is based on the vector of moments m(y, θ) = [m1(y, θ), . . . ,mK(y, θ)]>

with mi(y, θ) = 1{y ∈ Ci} − qi(θ), i ∈ {1, . . . , K}. Its variance under the null is the matrix

Σ = D − QQ> of rank K − 1, where D = diag(q0
1, ..., q

0
K) and Q is the K × 1 vector of

probabilities [q0
1, . . . , q

0
K ]
>

. Using the fact that a generalized inverse of Σ, Σ−, is D−1 − ee>

K

where e is the K × 1 vector of 1’s, Equation (1) yields the well known Pearson chi-squared

statistic,

ξP = T

(
K∑
i=1

(q̂i − q0
i )

2

q0
i

)
d−→

T→∞
χ2(K − 1). (28)

When θ0 is estimated by a square root T consistent estimator θ̂, we can apply our method-

ology and project the moment m(·) onto the orthogonal space of the score function.

Proposition 8 Let θ̂ be an estimator of θ0. Let sθ be the empirical score function (a vector

in Rr) at the estimated parameter, sθ = 1
T

T∑
t=1

s(yt, θ̂). Let U be the K × r matrix of partial
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derivatives of qi(θ), U =
[
∂q(θ)
∂θ>

]
θ=θ0

. Let Λ be the K × r matrix of row vectors λi,

Λ =


λ1

...

λK

 = U
[
U>D−1U

]−1
.

Then

ξ?P = T

(
K∑
i=1

(q̂i − q0
i − λisθ)2

q0
i

)
d−→

T→∞
χ2(K − 1− r). (29)

Like in the VaR example, the moment mi(y, θ) = 1{y ∈ Ci} − qi(θ) is modified to be

robust against parameter uncertainty. The particular structure of the variance of the score

gives us the previous results. We do not have particular simplifications for the calculations of

the λi’s. Note, however, that they are derived from the primitives of the distribution.

The rank reduction in the chi-squared asymptotic distribution from Eq. (28) to Eq. (29)

comes from the fact that r constraints are added when one estimates θ. The sum of the partial

derivatives of the qi’s with respect to any component of θ is equal to zero (and the true value).

It is finally worth noting that the empirical score, sθ, is equal to zero when θ̂ is the MLE.

Therefore the expression for ξ?P in (29) simplifies to the one in (28), i.e. the usual expression

for the Pearson test but with a different asymptotic distribution.

6.2 Poisson counting processes

The Poisson process can be viewed as the analogue of the Gaussian distribution for a discrete

variable. For a Poisson distribution with parameter θ, py = e−θ θ
y

y!
. Following Section 3.2,

the orthonormal family associated with the Poisson distribution is the family of Charlier
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polynomials Cθ
j (y), j = 1, 2, etc. They are defined by the recurrence formula

Cθ
j+1(y) =

θ + j − y√
θ(j + 1)

Cθ
j (y)−

√
j

j + 1
Cθ
j−1(y)

for j ≥ 0, with Cθ
0(y) = 1 and Cθ

−1(y) = 0.

The score function sθ(y) is proportional to the first Charlier polynomial:

sθ(y) =
∂ ln py
∂θ

= −1 +
y

θ
= −C

θ
1(y)√
θ
.

Any Charlier polynomial of degree greater than or equal to 2 is consequently robust to the

parameter estimation uncertainty when one estimates the parameter θ. The same result holds

when there are explanatory variables x and when the specification for the parameter θ is

θ = f(X, β) where f(·) is a parametric function and β a parameter to be estimated.

The i.i.d. Poisson process can be extended to a dependent process in the family of integer

valued autoregressive processes (INAR) introduced by Al-Osh and Alzaid (1987) to model

correlated time series with integer values. The INAR (1) process is defined as

yt = α ◦ yt−1 + εt, (30)

where (εt) is a sequence of i.i.d. non-negative and integer valued random variables and ◦ is

the thinning operator. α ◦ y is defined as

y∑
i=1

ui with ui
i.i.d.∼ B(α). The probability that ui is

equal to 1 is α whereas the probability that ui is equal to 0 is 1−α, α ∈ [0, 1). Equation (30)

constructs yt from the sum of two components: the survivorship component of yt−1 (where α

is the probability of surviving) and the arrival component εt. When α = 0, we have the i.i.d

counting model.

Different marginal distributions of yt can be generated depending on the distributional

assumption made for εt (see Al-Osh and Alzaid, 1987 and McKenzie, 1986, for more details).
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When εt ∼ Po(µ), the model is the Poisson INAR(1) process. It is the analog of the AR(1)

process with Gaussian innovations. In this case, the marginal distribution of yt is also a

Poisson distribution with parameter θ = µ
1−α (see McKenzie, 1988).

The Charlier Polynomials can be used and are still robust to the parameter uncertainty.

Now the serial correlation among the yt’s makes the variance matrix different from the identity.

In the special case of the INAR(1) process with Poisson innovation, we can prove the following

property.

Proposition 9 If yt ∼ INAR(1) with parameter α and Po(µ) innovation process:

Cov

(
1√
T

T∑
t=1

C
µ

1−α
j (yt),

1√
T

T∑
t=1

C
µ

1−α
k (yt)

)
=

1 + αj

1− αj
δjk

where δjk is the Kronecker symbol.

The proof is given in the appendix. It comes from the fact that if yt is Poisson INAR(1)

then Zt = C
µ

1−α
j (yt) is also AR(1). The test statistics based on the Charlier polynomials are

still asymptotically independent in this case, so

ξ =

p∑
k=2

(
1− αk

1 + αk
ξ2
k

)
∼ χ2(p− 1)

with ξk = 1√
T

T∑
t=1

C
µ

1−α
k (yt).

In a more general case where the yt’s are marginally Poisson but exhibit serial correlation,

the individual test statistics ξk are no longer independent. The variance matrix of a joint test

of different components nevertheless can be estimated using a HAC procedure.
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6.3 Monte Carlo experiment for the Poisson counting processes

We now present some Monte Carlo simulations for the Poisson distributional test. Four sample

sizes are considered: 100, 200, 500 and 1000. As in Section 5, all the results displayed are

based on 1 000 replications and each table reports the rejection frequencies for a 5% level test.

We consider individual moments based on a single Charlier polynomial Ck and also weighted

moments based on the first Charlier polynomials. Cw
2,j is the weighted moment combining C2

up to Cj using Bartlett weights like in Section 5. As a benchmark, we also display the results

of the Pearson chi-squared test. We split our sample in K = 5 cells {Y = 0},{Y = 1},{Y =

2},{Y = 3},{Y ≥ 4}.

We first study the size properties of our tests where the DGP is a Poisson distribution

with parameter µ = 2.20 The results are displayed in Table 8. The finite sample properties of

these tests are clearly good for the first polynomials. The rejection rates are very close to 5%

even for very small sample sizes (100 observations). The size is similar whether µ is known or

estimated though there exist some differences for very small sample sizes.

[insert Table 8 here]

In Table 9, we study the power properties by simulating several alternatives. We focus

on two distributions with two parameters, which have the Poisson as limit distribution. All

the distributions have the same expectation, here 2, like for the size results. We estimate the

parameter assuming (wrongly) that the distribution is a Poisson. This estimator is in fact the

QMLE and it is known that it consistently estimates the expectation of the true distribution.

20The theoretical probabilities of belonging to the cells {Y = 0},{Y = 1},{Y = 2},{Y = 3}, and {Y ≥ 4}

are respectively equal to 13.5%, 27.1%, 27.1%, 18.0%, 13.8%.
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We simulate a binomial B(k, 2
k
) for three values of k (10, 15, and 20). When k tends to

infinity, the binomial distribution tends to the Poisson distribution. We do the same thing for

the Pascal distribution with parameters (2, δ) for three values of δ: 10, 15, 20. As δ increases,

the Pascal distribution also gets closer to the Poisson distribution. We present the same tests

as in Table 8.

Unsurprisingly the power of the tests decreases when k and δ increase. For small samples

(n = 100) it is more and more difficult to detect departure from the null as we go closer to

the Poisson distribution. The performance is very good for the other sample sizes and for

most of the moments used, especially for the second Charlier polynomial, which detects the

over-dispersion in the data.

[insert Table 9 here]

6.4 Testing the geometric distribution versus its continuous coun-

terpart

The geometric distribution is a particular case of the Pascal distribution and is of interest for

discrete duration models. The continuous approximation of the geometric distribution is the

exponential distribution, whose hazard rate is also constant. In a VaR backtesting framework,

the duration between two consecutive hits is geometrically distributed. Christoffersen et al.

(2008) tested its continuous approximation, whereas Candelon et al. (2011) tested the original

discrete distribution. Both correct their test by exact methods à la Dufour as the number of

observed durations is very low.

In this section, we test the geometric distribution and evaluate the loss of power when
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one tests the exponential distribution. We assume that we observe full durations and do not

consider the case of truncated durations. Our experience is therefore slightly different than in

the references cited above but can serve as a useful benchmark.

Assume that time has been discretized and that at each period an event occurs with

probability α, independently of the past. The duration y between two consecutive events is

therefore a geometric distribution with parameter α and P (y = k) = α(1 − α)k−1 for k ≥ 1.

Following Table 1, we can derive the sequence of polynomials that are specific moments and

are also orthogonal under the null.21 These polynomials are the Meixner polynomials, which

satisfy the following recurrence formula:22

Mj,α(y) =
(1− α)(2j − 1) + α(j − y)

j
√

1− α
Mj−1,α(y)− j − 1

j
Mj−2,α(y),

with the convention M0,α(y) = 1 and M−1,α(y) = 0. Furthermore, any polynomial of degree

greater than or equal to two is robust as the score function is the first Meixner polynomial.

Consider now the exponential distribution with parameter α. We know that the poly-

nomials associated with the exponential distribution are the Laguerre polynomials, Lj,α(y),

defined by

Lj,α(y) =
αy − (2j − 1)

j
Lj−1,α(y)− j − 1

j
Lj−2,α(y),

with the convention L0,α = 1 and L−1,α = 0. The first terms of the two families, M1,α(y)

and L1,α(y), are both of expectation zero under the null but the variance of the former is 1

whereas the variance of the latter is 1
1−α . For higher order, the expectation of Lj,α(y) is not

equal to zero when y is discrete, geometrically distributed. The expectation is however o(α).

21Here again, this is a complete family in L2. It is sufficient to focus on these moments.
22There are some differences with respect to the formulas in Table 2 because here the support of the

distribution does not contain 0.
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For small α (typically 1% or 5%), we do not expect too much difference in the rejection rates.

We now present the Monte Carlo experiment. We first run ns = 1000 simulations of var-

ious sample sizes (T = 50, 100, and 500) of i.i.d. random variables yt that are geometrically

distributed with parameter α. We consider the case α = 5%.23 Table 10 and Table 11 present

the results. The moments displayed are the first Meixner polynomials and weighted combina-

tions of these polynomials (from order two), weighted similarly to the Charlier polynomials

in Table 8. We also display the results related to the Laguerre polynomials.

The size properties are presented in the first block of columns of Table 10. The size

properties related to the Meixner polynomials are good, as are the ones related to the Laguerre

polynomials though there is some under-rejection that is more severe for higher orders. For

the power properties, we consider two scenarios. In the first one (second and third block

of columns of Table 10), the data are generated with other values for α (we consider 4%

and 6%), but we test the i.i.d. geometric distribution with parameter α = 5% instead. This

DGP mimics a case where the hits in a VaR context are i.i.d. but computed with the wrong

distribution of the innovation term of the underlying GARCH model. The most powerful

moment is unsurprisingly the first polynomial. This moment measures the distance between

the average duration and the expected one. M1,0.05(y) and L1,0.05(y) are very close to each

other and lead to similar rejection rates.

[insert Table 10 here]

In the second scenario (Table 11), the DGP is a geometric distribution with serial cor-

relation. It corresponds to a VaR exercise where the conditional variance for the return is

23The case with α = 1%, not presented here, yields similar conclusions.
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misspecified. We first generate a Gaussian AR(1) process ut with parameter ρ respectively

equal to 0.4, 0.6, or 0.8, for which ut is marginally distributed as a standard normal variable.

We then define our process,

yt = H

(
ln(1− Φ(ut))

ln(1− α)

)
,

whereH(·) is the ceiling function, i.e. H(x) is the integer value such thatH(x)−1 < x ≤ H(x).

yt is geometrically distributed and serially correlated. The level of serial correlation is a

monotone function of ρ.

When ρ increases, the rejection rates also increase as the durations are more correlated.

When ρ is not too large, like in the first two sets of columns of the table, there is a big gain in

using the Meixner polynomials. If we consider the weighted polynomials there is a substantial

improvement of power. For ρ = 0.6 and T = 50, we obtain a 31.7% rejection frequency against

17.5% for the Laguerre polynomials. For large values of ρ, the gain is small as both families

lead to high rejection rates. In many cases not considering the discrete nature of the process

can reduce the power substantially for local deviations from the null.

[insert Table 11 here]

7 Empirical Application

We illustrate our approach on one empirical application related to VaR forecasts. We consider

the exchange rate data that have been considered previously in Kim, Shephard and Chib (1998)

and also in Bontemps and Meddahi (2005, 2012). These data are observations of weekday close

exchange rates24 from 1/10/81 to 28/6/85. Bontemps and Meddahi (2005) strongly rejected

24These rates are the U.K. Pound, French Franc, Swiss Franc, and Japanese Yen, all versus the U.S. Dollar.
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the normality assumption for a GARCH(1,1), whereas BM did not reject the T-GARCH(1,1)

model for all the series but the SF-US$ one.

Estimation of the T-GARCH (1,1) model by MLE provides parameter estimates that allow

us to compute the one day ahead α-VaR forecast for any value of α. We now test the accuracy

of the VaR forecasts in sample for the four series for the values α = 0.5% and α = 1% using

the moments used in Section 4.2. The estimated parameters and the p-values of the tests are

presented in Table 12.

The T-GARCH model is globally rejected for all the series but the FF-US$ rate for α =

0.5%. In most of the cases, the rejection is driven by the conditional tests. In other words

there are too many consecutive hits. The dynamic of the model should be modified though

the T distribution seems not being rejected.

Observe that, in many cases, correcting the moments (It− α)(It−p− α) for the parameter

uncertainty does not detect the departure from the null.

In Table 13, we do the same exercise but out-of-sample, using a rolling estimator based on

a T-GARCH(1,1) model estimated on the last 500 observations. With 945 observations, we

then test our model from the 445 out-of-sample one day ahead VaR forecasts. The results are

however qualitatively the same as in the previous table.

[insert Table 12 and Table 13 here]

8 Conclusion

We introduced moment-based tests for parametric discrete distributions. Our goal was to

present techniques that are easy to implement without losing power for detecting departures
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from the null hypothesis. Moment techniques are indeed quite easy to adapt to the time series

case and can take parameter estimation uncertainty into account.

We worked with robust moments. When working with estimated parameters, this avoids

calculation of any correction term that otherwise needs additional estimations, and conse-

quently greatly simplifies the test procedure. The transformation proposed to yield robust

moments encompasses the orthogonalization method of Bontemps and Meddahi (2012), al-

though it still yields a moment that is orthogonal to the score. Results for Monte Carlo

experiments suggest that the tests derived have good size and power properties for both in-

sample and out-of-sample cases. We also applied the method to a large variety of cases.

Backtesting of VaR models, Poisson counting processes, and the geometric distribution are

presented here, but the techniques developed could be applied to interval forecast evaluation

and parametric discrete choices models, among other discrete models.

We also worked with a finite number of moments. There are many examples for which we

do not need to have omnibus tests but power against specific alternatives. However, there are

some particular distributions for which it is sufficient to test a countable series of polynomials

for consistency. For these cases, derivation of an omnibus test is feasible at a small additional

cost. Dealing with an infinite number of moments is therefore a natural extension of this

agenda.

Distributional assumptions are necessary in applied econometrics to compute forecasts and

to make results tractable in structural economic models so that quantities can be estimated

in small data sets. However, the assumptions to validate the results derived should be tested

if possible, as they may be biased if there is misspecification. The tests derived using our

method are attractive because of their powerful and simplicity.



8 CONCLUSION 47

REFERENCES

Al-Osh, M.A. and A.A. Alzaid (1987), ”First order integer-valued autoregressive
(INAR(1)) processes”, Journal of Time Series Analysis, 8, 261-75.

Amengual D. and E. Sentana (2011), ”Inference in Multivariate Dynamic Models
with Elliptical Innovations”, mimeo CEMFI.

Amengual D., Fiorentini G. and E. Sentana (2013), ”Sequential estimation of
shape parameters in multivariate dynamic models”, Journal of Econometrics,
177, 233-249.

Artzner, P., F. Delbaen, J.-M. Eber and D. Heath (1999), ”Coherent Measures of
Risk”, Mathematical Finance, 9, 203-228.

Bai, J. (2003), ”Testing Parametric Conditional Distributions of Dynamic Mod-
els”, Review of Economics and Statistics, 85, 531-549.

Berkowitz, J., Peter F. Christoffersen and Denis Pelletier (2011), ”Evaluating
Value-at-Risk Models with Desk-Level Data”, Management Science.

Boero, G. and Smith, J. and K. F. Wallis (2004), ”Sensitivity of the Chi-Squared
Goodness-of-Fit Test to the Partitioning of Data”, mimeo, University of War-
wick.

Bollerslev, T. and J.F. Wooldridge (1992), ”Quasi Maximum Likelihood Estima-
tion and Inference in Dynamic Models with Time Varying Covariances”, Econo-
metric Reviews, 11, 143-172.

Bontemps, C. and N. Meddahi (2005), ”Testing Normality: A GMM Approach”,
Journal of Econometrics, 124, 149-186.

Bontemps, C. and N. Meddahi (2012), ”Testing Distributional assumptions: A
GMM Approach”, Journal of Applied Econometrics, 27, 978-1012.

Bontemps, C., Dufour J.-M. and N. Meddahi (2013), ”Optimal moment-based
tests”, mimeo Toulouse School of Economics.

Butler J. S. and P. Chatterjee (1997), ”Tests of the Specification of Univariate
and Bivariate Ordered Probit”, The Review of Economics and Statistics, 79,
343-347.

Cameron, A.C. and P.K. Trivedi (1998), Regression Analysis of Count Data, New
York, Cambridge University Press.

Candelon B., Colletaz G., Hurlin C. et Tokpavi S. (2011), ”Backtesting Value-at-
Risk: a GMM duration-based test”, Journal of Financial Econometrics, 1-30.

Chen, Y.-T. (2012), ”A Simple Approach to Standardized-Residuals-based Higher-
Moment Tests”, Journal of Empirical Finance, 19, 427-453.



8 CONCLUSION 48

Chesher, A. and R. J. Smith (1997), ”Likelihood Ratio Specification Tests”, Econo-
metrica, 65, 627-646.

Christoffersen, P. F. (1998), ”Evaluating Interval Forecasts”, International Eco-
nomic Review, 39, 841-862.

Christoffersen, P. F. and D. Pelletier (2004), ”Backtesting Value-at-Risk: A Duration-
Based Approach”, Journal of Financial Econometrics, 2, 84-108.

Duan, J.C. (2004), ”A Specification Test for Time Series Models by a Normality
Transformation”, working paper, University of Toronto.

Dufour, J.-M., L. Khalaf and M.-C. Beaulieu (2003), ”Exact Skewness-Kurtosis
Tests for Multivariate Normality and Goodness-of-Fit in Multivariate Regres-
sions with Application to Asset Pricing Models”, Oxford Bulletin of Economics
and Statistics, 65(s1), 891-906.

Escanciano, J.C. and J. Olmo (2010), ”Estimation Risk Effects on Backtesting For
Parametric Value-at-Risk Models”, Journal of Business and Economic Statis-
tics, 28, 36-51.

Fiorentini, G., E. Sentana and G. Calzolari (2004), ”On the validity of the Jarque-
Bera normality test in conditionally heteroskedastic dynamic regression mod-
els”, Economics Letters, 83 307-312.

Gallant, A.R. (1980), ”Explicit Estimators of Parametric Functions in Nonlinear
Regressions”, Journal of the American Statistical Association, 75, 182-193.

Hall, A. (2005), ”Generalized Method of Moments”, Advanced Texts in Econo-
metrics Series, Oxford University Press.

Hamilton J.D. and O. Jorda (2002), ”A Model of the Federal Funds Rate Target”,
Journal of Political Economy, 110, 1135-1167.

Hansen, L.P. (1982), ”Large Sample Properties of Generalized Method of Moments
Estimators”, Econometrica, 50, 1029-1054.

Khmaladze, E.V. and H. L. Koul (1984), ”Martingale transforms goodness-of-fit
tests in regression models”, Annals of Statistics, 32, 995-1034.

Kim, S., N. Shephard and S. Chib (1998), ”Stochastic Volatility: Likelihood Infer-
ence and Comparison with ARCH Models”, Review of Economic Studies, 65,
361-393.

Li, B. (2009), ”Asymptotically Distribution-Free Goodness-of-Fit Testing: A Uni-
fying View”, Econometric Reviews, 28, 632-657.

McCracken, M. W. (2000), ”Robust out-of-sample inference”, Journal of Econo-
metrics, 99, 195-223.

McKenzie, E. (1986), ”Autoregressive moving-average processes with negative bi-
nomial and geometric marginal distributions”, Adv. Appl. prob., 18, 679-705.



8 CONCLUSION 49

Mencia J. and E. Sentana (2012), ”Distributional tests in multivariate dynamic
models with normal and Student t innovations”, The Review of Economics and
Statistics, 94, 133-152.

Mora, J. and A. Moro-Egido (2008), ”On specification testing of ordered discrete
choice models”, Journal of Econometrics, 143, 191-205.

Newey, W.K. (1985), ”Generalized Method of Moments Specification Testing”,
Journal of Econometrics, 29, 229-256.

Newey, W.K. and K.D. West (1987), ”A Simple, Positive Semi-Definite, Het-
eroskedasticity and Autocorrelation Consistent Covariance Matrix”, Econo-
metrica, 55, 703-708.

Ord, J.K. (1972), Families of Frequency Distributions, Vol 30, Griffin’s Statistical
Monographs and Courses, Hafner Publishing Company, New York.

Skeels, C. L. and F. Vella (1999), ”A Monte Carlo investigation of the sampling
behavior of conditional moment tests in Tobit and Probit models”, Journal of
Econometrics,, 92, 275-294.
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Appendices

A Proof of the propositions

A.1 Proof of Proposition 4.

We first prove the proposition in the case where N is infinite.

E[∆ψ(y, θ)] =
+∞∑
i=0

(ψ(i+ 1, θ)− ψ(i, θ)) pi(θ) (A.1)

Reordering the second term of the last expression yields

E[∆ψ(y, θ)] =
+∞∑
i=0

ψ(i+ 1, θ)pi(θ)−
+∞∑
i=0

ψ(i, θ)pi(θ) (A.2)

=
+∞∑
i=0

ψ(i+ 1, θ)pi(θ)−
+∞∑
i=1

ψ(i, θ)pi(θ) under LB. (A.3)

=
+∞∑
i=0

ψ(i+ 1, θ)pi(θ)−
+∞∑
i=0

ψ(i+ 1, θ)pi+1(θ) (A.4)

= −
+∞∑
i=0

ψ(i+ 1, θ) (pi+1(θ)− pi(θ)) (A.5)

= −E
(
ψ(y + 1, θ)

∆p(y, θ)

p(y, θ)

)
(A.6)

When N is finite, the proof is similar as pi(θ) is equal to zero when i ≥ (N + 1).

A.2 Proof of Proposition 5.

Let m(y, θ) a moment such that
E0m(y, θ0) = 0. (A.7)

Let ψ(y, θ), a function, defined on S by:

ψ(0, θ) = 0,

ψ(y, θ) =
1

py(θ)

y−1∑
k=0

m(k, θ)pk(θ) for y ≥ 1

(A.8)
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Then,

∆ψ(y, θ) + ψ(y + 1, θ)
∆py(θ)

py(θ)
= ψ(y + 1, θ)− ψ(y, θ) + ψ(y + 1, xy, θ)

(
py+1(θ)

py(θ)
− 1

)
= ψ(y + 1, θ)

py+1(θ)

py(θ)
− ψ(y, θ)

=
1

py(θ)

y∑
k=0

m(k, θ)pk(θ)−
1

py(θ)

y−1∑
k=0

m(k, θ)pk(θ)

(using the definition in A.8)

= m(y, θ).

Observe that the last equality holds without the expectation.

A.3 Comparison of the two strategies

Let g1(·) be the GMM estimating equation which is used to estimate θ within the data. We
assume that θ is estimated consistently by g1 under both the null and the alternative. Let
m(y, θ) a moment used to test q0, the p.d.f. under the null, and g2(·) an estimating equation
which is used to construct the robust version m̃g2 in (6), i.e. the direction of the projection.

m⊥(y, θ) = m(y, θ) − E0

[
m.s>θ

]
V0 [sθ]

−1 sθ(yt) is the orthogonal projection of m(·) onto
the orthogonal of the score function, i.e. m̃sθ .

Similarly, g⊥2 (y, θ) = g(y, θ)−E0

[
g.s>θ

]
V0 [sθ]

−1 sθ(yt) is the orthogonal projection of g2(·)
onto the orthogonal of the score function.

Proposition 10 Let q1(y) = q0(y)
(

1 + h(y)/
√
T
)

, a local alternative (denoted H1), where

h(·) is orthogonal to the score function under the null. E1 denotes the expectation under H1.
(i) If one decides to correct for the parameter uncertainty, the test statistic in (1) becomes

ξg1m = T

(
1

T

T∑
t=1

m(yt, θ̂)

)2

V0(m̃g1)
. (A.9)

Under H1, its limiting distribution is a non central χ2 distribution with one degree of freedom

and noncentrality parameter a(g1) =
(E1[m̃g1 .h])2

V0[m̃g1 ]
.

(ii) If one decides to use the projection of m(·) along g2(·) onto the orthogonal of the score,
the test statistic ξ⊥m̃g2 is equal to

ξ⊥m̃g2 = T

(
1

T

T∑
t=1

m̃g2(yt, θ̂)

)2

V0(m̃g2)
. (A.10)
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Its asymptotic distribution under H1 is a non central χ2 distribution with one degree of freedom
and noncentrality parameter a(g2).

(iii) Comparing the power properties under H1 of the two strategies is comparing the non-
centrality parameters a(g1) and a(g2). If g1 = g2, they have similar properties. The optimal
estimating equation g(·) is proportional to m − λh, where λ is a scalar. Without knowing h,
it is often impossible to rank a(g1) and a(g2).

The proof is given below. Proposition 10 characterizes the local power properties of the
two strategies. Observe that the noncentrality parameter a(g) under both scenario is also
known as the slope of the test i.e. the limit of ξ/T when T → +∞. Maximizing the power
under the sequence of local alternative is maximizing this slope.

Proposition 10 also shows that working with robust moments or correcting are two strate-
gies that can be considered as equivalent. They have the same power properties when they
consider the same estimating equation g(·). For two different choices of g(·) there is no obvious
ranking between a(g1) and a(g2). In (iv) we characterize a case where it is optimal to consider
the true score as the estimating equation, i.e. working with the orthogonal projection onto
the orthogonal score as robust moment. However for any other case such a ranking is not
straightforward and the question should be tackled case by case to draw conclusions.

Proof of (i) and (ii):
• If we choose to work with m(·) and to correct for the parameter uncertainty, we have the

following asymptotic result:

√
T

1

T

T∑
t=1

m(yt, θ̂) =
√
T

1

T

T∑
t=1

m(yt, θ
0)− E0

[
m.s>θ

]√
T (θ̂ − θ0) + oP (1),

=
√
T

1

T

T∑
t=1

(
m(yt, θ

0)− E0

[
m.s>θ

]
E0

[
g1.s

>
θ

]−1
g1(yt, θ

0)
)

+ oP (1),

=
√
T

1

T

T∑
t=1

m̃g1(yt, θ
0) + oP (1),

(A.11)

where m̃g1(·) is defined in (6). The expression of ξg1m in (A.9) follows.
The variances of any moment under H0 and under H1 are equal to each other at the first

order:

V1(m̃g1(yt, θ
0)) = V0(m̃g1(yt, θ

0)) + oP (1). (A.12)
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Moreover, the expectation of m̃g1 under the alternative can be simplified:

E1(m̃g1) =

∫
m̃g1(y, θ

0)(q0(y) + h(y)q0(y)/
√
T )dy

=
1√
T

∫
m̃g1(y, θ

0)h(y)q0(y)dy

=
1√
T

∫
(m⊥(y, θ0)− E0

[
m.s>θ

]
E0

[
g1.s

>
θ

]−1
g1
⊥(y, θ0))h(y)q0(y)dy

=
1√
T
E0

[(
m⊥ − E0

[
m.s>θ

]
E0

[
g1.s

>
θ

]−1
g1
⊥
)
.h
]
,

(A.13)

where m⊥(y, θ0) = m(y, θ0)−E0

[
m.s>θ

]
V0 [sθ]

−1 sθ(yt), i.e. the orthogonal projection of m(·)
onto the orthogonal of the score function and where g1

⊥(y, θ0) = g1(y, θ0)−E0

[
g1.s

>
θ

]
V0 [sθ]

−1 sθ(yt)
is defined similarly.

Consequently,

ξg1m =

(√
T 1
T

∑T
t=1 m̃g1(yt, θ

0) + oP (1)
)2

V0(m̃g1)
,

=

(√
T
(

1
T

∑T
t=1 m̃g1(yt, θ

0)− E1(m̃g1)
)

+
√
TE1(m̃g1) + oP (1)

)2

V0(m̃g1)
,

=

√T
(

1
T

∑T
t=1 m̃g1(yt, θ

0)− E1(m̃g1)
)

√
V1(m̃g1)

+
E0

[(
m⊥ − E0

[
m.s>θ

]
E0

[
g1.s

>
θ

]−1
g1
⊥
)
.h
]

√
V0(m̃g1)

+ oP (1)

2

,

=

Z +
E0

[(
m⊥ − E0

[
m.s>θ

]
E0

[
g1.s

>
θ

]−1
g1
⊥
)
.h
]

√
V0(m̃g1)

2

+ oP (1),

where Z is a standard normal random variable.
• If now we choose to work with a robust version of m(·), m̃g2 , we do not have to correct.

A similar expansion leads to the result.

Proof of (iii): We can apply the Cauchy-Schwarz inequality (E1[m̃g1 .h])2 ≤ E1[m̃2
g1

]E1[h2],
we can bound a(g1) by E1[h2]. This upper bound is reached when m̃g1 = λh for a scalar λ.
The set of moments m such that m̃g1 = λh are moments which are proportional to λh + κg1

or equivalently when g1 is chosen to be proportional to m− λh.
In most of the cases there is no systematic ranking of a(g1) and a(g2) for any type of

estimating equation. In particular working with the orthogonal projection of the moment
onto the orthogonal of the score does not systematically gives a higher slope in a general
context.
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A.4 Proof of Proposition 6

Let Fν(·), fν(·), qνα be respectively the cdf, pdf and α-quantile of the distribution of the
innovation term, εt. In the constant location-scale model (18), the log pdf of the returns, rt,
is equal to

logϕ(rt, θ) = −1

2
log(σ2) + log fν

(
rt − µ
σ

)
.

The score function is consequently equal to

s̃θ(εt) =


− 1

σ

∂ log fν
∂εt

(εt)

− 1
2σ2

(
1 + εt

∂ log fν
∂εt

(εt)
)

∂ log fν
∂ν

(εt)

 . (A.14)

The projection of It − α = 1{rt ≤ −V aRα
t } − α = 1{εt ≤ qνα} − α on the orthogonal of

the score function is
et = It − α− E [(It − α)sθ(εt)]V

−1
s s̃θ(εt).

Standard calculations simplifies the covariance between the hit and the score function:

P = E
[
(It − α)s̃θ(εt)

>] =

[
− 1

σ
fν(q

ν
α),− 1

2σ2
qναfν(q

ν
α),

∂Fν
∂ν

(qνα)

]>
. (A.15)

For example, the first component of P , P1, is equal to

P1 = − 1

σ

∫ qνα

−∞

∂fν
∂ε

(ε) dε = − 1

σ
fν(q

ν
α).

The two other components are derived similarly
For any random variable Zt−1 in the information set at time t− 1, Zt−1et is orthogonal to

the score using the law of iterated expectations. Moreover

V(Zt−1et) = E
[
Zt−1Z

>
t−1E(e2

t |It−1)
]

= E
[
Zt−1Z

>
t−1

]
(α(1− α)− PV −1

s P>).

A.5 Pearson chi-squared test

Using the notations of Section 6.1, we can compute the variance Σ of the moment vector
m(y, θ) = [m1(y, θ), . . . ,mK(y, θ)]>, Σ = D − QQ>. Let e be the K × 1 vector of 1’s, a
generalized inverse of Σ, Σ−, is D−1 − ee>

K
. Note that e>Q = 1.

Let m̂0
T = 1

T

∑T
t=1m(yt, θ

0) = [q̂1 − q0
1, . . . , q̂K − q0

K ]
>
. Observe that e>(m̂0

T ) = 0. The test
statistic derived from this moment has a chi-squared distribution with rk(Σ) = K− 1 degrees
of freedom and can be simplified as
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ξP = T (m̂0
T )>Σ−(m̂0

T )

= T (m̂0
T )>D−1(m̂0

T )

= T

(
K∑
j=1

(q̂j − q0
j )

2

q0
j

)

Proof of Proposition 4. When θ is estimated, we need first to compute the covariance
between m(·) and the score function and the variance of the score. The score function is :

sθ(y) =
∂ log py(θ)

∂θ
.

The two following matrices are derived using standard calculations. Under the null,

P = E0

[
m.s>θ

]
=

(
∂qi
∂θj

)
i=1,...,K;j=1,...,r

= U,

Vs = E0

[
sθ.s

>
θ

]
= U>D−1U.

Let m⊥(y, θ) = m(y, θ)− PV −1
s sθ(y).

We know prove that the rang of the variance of m⊥ is equal to K − r − 1. Note first that
the sum of the components of any column of U is equal to zero. Note also that D−1Q = e.
Consequently, U>D−1Q = 0.

V0(m⊥) = D −QQ> − U
[
U>D−1U

]−1
U>

= D
(
IK −D−1/2QQ>D−1/2 −D−1/2U

[
U>D−1U

]−1
U>D−1/2

)
= D

(
I − C(C>C)−1C>

)
,

where C is the K × (r + 1) matrix created by the horizontal concatenation of the K × 1
matrix D−1/2Q and the K × r matrix D−1/2U . This matrix is of rank equal to r+ 1 and note
that the first column is orthogonal to the last r columns due to the orthogonality property
explained above. The variance matrix is the product of an invertible matrix and an orthogonal
projector of rank K − r − 1. Consequently

T

(
1

T

T∑
t=1

m⊥(yt, θ̂)

)>
D−1

(
1

T

T∑
t=1

m⊥(yt, θ̂)

)
d−→

T→∞
χ2(K − 1− r).
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A.6 Proof of Proposition 9

Let first consider the generating function of the orthonormalized Charlier polynomials Cθ
j (y),

j ∈ N:

+∞∑
j=0

Cθ
j (y)

wj√
j!θj

= ew
(

1− w

θ

)y
In the Poisson INAR(1) model, the marginal distribution of yt is a Poisson with parameter

θ = µ
1−α .

Using the previous expression with y ≡ yt and assuming that the sum can commute with
Et−1 (the conditional expectation at time t− 1), one obtains:

+∞∑
j=0

Et−1C
θ
j (yt)

wj√
j!θj

= ewEt−1

(
1− w

θ

)yt
. (A.16)

the conditional probability p(yt|yt−1) of yt conditional on yt−1 is equal to (Freeland and Mc-
Cabe, 2004)

p(yt|yt−1) =

min(yt,yt−1)∑
s=0

Cs
yt−1

αs(1− α)yt−1−s e
−µµyt−s

(yt − s)!
.

We use this last expression to calculate the second part of (A.16).

Et−1

(
1− w

θ

)yt
=

+∞∑
k=0

p(k|yt−1)

(
1− w(1− α)

µ

)k

=
+∞∑
k=0

min(k,yt−1)∑
s=0

Cs
yt−1

αs(1− α)yt−1−s e
−µµk−s

(k − s)!

(
1− w(1− α)

µ

)k
=

yt−1∑
s=0

+∞∑
k=s

Cs
yt−1

αs(1− α)yt−1−s e
−µµk−s

(k − s)!

(
1− w(1− α)

µ

)k
=

yt−1∑
s=0

Cs
yt−1

αs(1− α)yt−1−se−w(1−α)

(
1− w(1− α)

µ

)s
= e−w(1−α)

(
1− αw(1− α)

µ

)yt−1

We can now plug the last result into (A.16) to get
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+∞∑
j=0

Et−1C
µ

1−α
j (yt)

wj√
j!
(

µ
1−α

)j = ewα
(

1− αw(1− α)

µ

)yt−1

=
+∞∑
j=0

αjC
µ

1−α
j (yt−1)

wj√
j!
(

µ
1−α

)j
and so, making each term of wj equal, we obtain

Et−1C
µ

1−α
j (yt) = αjC

µ
1−α
j (yt−1).

C
µ

1−α
j (yt) is therefore an AR(1) process with parameter αj. The expression of the covariance

follows immediately.

B Calculations related to Section 4

B.1 The GARCH(1,1) with normal innovations

We consider here a GARCH(1,1) model with independent normal innovations.
Let Φ(·), ϕ(·), nα be respectively the cdf, the pdf and the α-quantile of the standard

normal distribution.
Following Proposition 6, the covariance P and the variance of the score in the constant

location-scale model Vs are equal to, in the particular case of a Normal GARCH model,

P =

[
−ϕ(nα)

σ
,−ϕ(nα)nα

2σ2

]
, and Vs = diag(

1

σ
,

1

2σ2
).

The robust moment is therefore based on the new robust term

et = It − α + ϕ(nα)εt +
nαϕ(nα)

2

(
ε2
t − 1

)
. (B.17)

If we consider now the model without drift:

rt =
√
σ2
t (θ)εt, σ

2
t (θ) = ω + γr2

t−1 + βσ2
t−1,

The score function, up to a scale factor, is equal to

sθ(rt) =
∂ lnσt(θ)

∂θ

((
rt

σt(θ)

)2

− 1

)
.



B CALCULATIONS RELATED TO SECTION 4 58

Therefore

Vs = V(sθ) = 2E
[
∂ lnσt(θ)

∂θ

∂ lnσt(θ)

∂θ>

]
and the covariance between the hit function, It and the score function is

P = E
(
1{rt ≤ σt(θ)nα}s>θ (rt)

)
= −qαϕ(qα)E

[
∂ lnσt(θ)

∂θ>

]
.

The projection, e?t of It − α onto the orthogonal space of the score function is

e?t = It − α +
qαϕ(qα)

2
E
[
∂ lnσt(θ)

∂θ>

]
E
[
∂ lnσt(θ)

∂θ

∂ lnσt(θ)

∂θ>

]−1

sθ(rt). (B.18)

The variance of e?t is equal to:(
α(1− α)− (qαϕ(qα))2

2
E
[
∂ lnσt(θ)

∂θ>

]
E
[
∂ lnσt(θ)

∂θ

∂ lnσt(θ)

∂θ>

]−1

E
[
∂ lnσt(θ)

∂θ>

]>)
.

The last matrices can be estimated in the sample using the following results:

∂ lnσt(θ)

∂ω
=

1

2σ2(θ)

1

1− β
,

∂ lnσt(θ)

∂γ
=

1

2σ2(θ)

+∞∑
k=1

βk−1r2
t−k,

∂ lnσt(θ)

∂β
=

1

2σ2(θ)

+∞∑
k=1

βk−1σ2
t−k.

B.2 The T-GARCH(1,1) model

We now consider the general T-GARCH model

rt = µt−1(θ) + σt−1(θ)εt,

where µt−1(·) and σ2
t−1(·) are the conditional mean and variance of rt given the past and where

εt is a i.i.id sequence from a standardized Student distribution with ν degrees of freedom.
Fν(·), fν(·), qνα are respectively the cdf, the pdf and the α-quantile of the standardized
Student distribution.

The pdf is equal to

fν(εt) =
Γ((ν + 1)/2)

Γ(ν/2)Γ(1/2)
√
ν − 2

1(
1 +

ε2t
ν−2

)(ν+1)/2
.
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Following Proposition 6, a robust version of It − α can be derived using a constant location
scale-model for the returns, rt = µ + σεt. The values of P is given in Equation (A.15). The
score function in the auxiliary model is equal to

s̃θ(εt) =


− 1
σ
∂ log fν
∂εt

(εt)

− 1
2σ2

(
1 + εt

∂ log fν
∂εt

(εt)
)

∂ log fν
∂ν

(εt)

 =


ν+1
σ

εt
εt2+ν−2

− 1
2σ2

(
1− (ν+1)ε2t

εt2+ν−2

)
∂ log fν
∂ν

(εt)

 .

Variance of the score function We now give some details related to the calculation of
the variance of the score. The first component is uncorrelated to the two other components
by symmetry.

V(
εt

εt2 + ν − 2
) =

∫ +∞

−∞

ε2

(ε2 + ν − 2)2
fν(ε)dε

=
ν

ν − 2

∫ +∞

−∞

z2

(z2 + ν)2
hν(z)dz

=
ν

ν − 2

(
E(

1

z2 + ν
)− νE(

1

(z2 + ν)2
)

)
,

where z = ε
√

ν
ν−2

, follows a Student distribution with ν degrees of freedom and hν(·) is its
pdf (we use the same change of variables in this section, for the other calculations). These
expectations are standard (see Appendix C.1 of BM in particular) and

V(
εt

εt2 + ν − 2
) =

ν

ν − 2

1

(ν + 1)(ν + 3)
.

The variance of the second component is computed similarly.

V
(

1− (ν + 1)ε2
t

εt2 + ν − 2

)
=

∫ +∞

−∞

(−νε2 + ν − 2)2

(ε2 + ν − 2)2
fν(ε)dε

= ν2

∫ +∞

−∞

(z2 − 1)2

(z2 + ν)2
hν(z)dz

= ν2

(
1− 2(ν + 1)E(

1

z2 + ν
) + (ν + 1)2E(

1

(z2 + ν)2
)

)
=

2ν

ν + 3
.

We do not have particular closed forms for G = E
(
− 1

2σ2

(
1− (ν+1)ε2t

εt2+ν−2

)
∂ log fν
∂ν

(εt)
)

and

H = V
(
∂ log fν
∂ν

(εt)
)
. However, we can either estimate them within the data or by simulation

techniques.
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The variance matrix Vs is therefore equal to

Vs =


1
σ2

ν
ν−2

ν+1
ν+3

0 0

0 1
2σ4

ν
ν+3

G

0 G H

 .

Oblique projection for building a robust moment An alternative is to project It − α
along an estimating equation. In this case we can use the first two moments for µ and σ2 and
the fourth moment to estimate ν. The estimating equation can be

g(rt, θ) =


rt − µ

(rt − µ)2 − σ2

((rt − µ)4 − 3σ4)(ν − 4)− 6σ4

 . (B.19)

Using the results of Section 2.3, we can use a new robust version, ẽt of It − α

ẽt = It − α− E[m.s̃>θ ]E[g.s̃>θ ]−1g(rt, θ) (B.20)

The first matrix in (B.20) is exactly the matrix P derived in Eq. (A.15) and does not
depend on the choice of g(·). The second matrix replaces the matrix V −1

s and is equal to:

M = E
[
g.s̃>θ

]−1
=


1 0 0

0 1 0

0 6σ2(ν − 2) −6σ4

ν−4



−1

=


1 0 0

0 1 0

0 (ν−4)(ν−2)
σ2

−(ν−4)
6σ4


Let us give some details about the calculations. We denote by g1(·), g2(·), g3(·) the three

components of g. g1(·) is uncorrelated with the second and third components, s̃θ,2(·) and
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s̃θ,3(·) of the score function. The covariance with the first component of the score is derived
using the same method as for the variance of the score.

E [g1.s̃θ,1] =

∫ +∞

−∞

(ν + 1)ε2

ε2 + ν − 2
fν(ε)dε =

∫ +∞

−∞

(ν + 1)z2

z2 + ν
hν(z)dz = 1.

For the second component, g2(·), it is also, by symmetry, uncorrelated to the first compo-
nent of the score. the covariance with the second component is equal to

E [g2.s̃θ,2] = −1

2

∫ +∞

−∞

(
1− (ν + 1)ε2

ε2 + ν − 2

)
(ε2 − 1)fν(ε)dε

= −1

2
E
(
−ν(ε2 − 1) + (ν − 2)(ν + 1)

ε2 − 1

ε2 + ν − 2

)
= −(ν − 2)(ν + 1)

2
E
(

ε2 − 1

ε2 + ν − 2

)
= −(ν − 2)(ν + 1)

2
E
(

1− (ν − 1)
1

ε2 + ν − 2

)
= 1.

Similarly,

E [g2.s̃θ,3] = −1

2
E
(

log(1 +
ε2

ν − 2
)(ε2 − 1)

)
+

ν + 1

2(ν − 2)
E
(

ε2(ε2 − 1)

ε2 + (ν − 2)

)
= −ν − 2

2ν
E
(

log(1 +
z2

ν
)(z2 − ν

ν − 2
)

)
+
ν + 1

2ν
E

(
z2(z2 − ν

ν−2
)

z2 + ν

)
.

The second term is equal to 1
ν−2

using E(z2) = ν
ν−2

and E( 1
z2+ν

) = 1
ν+1

. The first can
be computed using the continuous analog of (11) (see BM) for the Student distribution with
ψ(z) = z(z2 + ν) log(1 + z2

ν
). This equation yields

E
(

log(1 +
z2

ν
)(z2 − ν

ν − 2
)

)
=

2

ν − 2
E(z2) =

2ν

(ν − 2)2
.

Consequently: E [g2.s̃θ,3] = 0.
For the covariance of g3(·) with the score components, the details are provided below (the

same type of calculations are used):
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E [g3.s̃θ,2] = −σ
2

2
E
((
−νε2 + ν − 2

ε2 + ν − 2

)(
(ε4 − 3)(ν − 4)− 6

))
= −σ

2ν

2
E
((
−z2 + 1

z2 + ν

)(
(ν − 2)2

ν2
(ν − 4)z4 − 3(ν − 2)

))
= −σ

2ν(ν + 1)

2
E
(

1

z2 + ν

(
(ν − 2)2

ν2
(ν − 4)z4 − 3(ν − 2)

))
= 6σ2(ν − 2).

E [g3.s̃θ,3] = −σ
4

2
E
(

log(1 +
ε2

ν − 2
)
(
(ν − 4)ε4 − 3(ν − 2)

))
+

(ν + 1)σ4

2(ν − 2)
E
(

ε2

ε2 + (ν − 2)

(
(ν − 4)ε4 − 3(ν − 2)

))
The first can be computed using the continuous analog of (11) (see BM) for the Student

distribution with ψ(z) = z3(z2 + ν) log(1 + z2

ν
). This equation yields

E
(

log(1 +
z2

ν
)(−(ν − 4)z4 + 3νz2)

)
=

−6ν2

(ν − 2)(ν − 4)
.

Consequently

E
(

log(1 +
ε2

ν − 2
)
(
(ν − 4)ε4 − 3(ν − 2)

))
=

12(ν − 3)

ν − 4
.

The second term follows:

E
(

ε2

ε2 + (ν − 2)

(
(ν − 4)ε4 − 3(ν − 2)

))
= E

z2

z2 + ν

(
(ν − 2)2(ν − 4)

ν2
z4 − 3(ν − 2)

)
= −νE 1

z2 + ν

(
(ν − 2)2(ν − 4)

ν2
z4 − 3(ν − 2)

)
= −νE 1

z2 + ν

(
(ν − 2)2(ν − 4)

ν2
z2(z2 + ν)− (ν − 2)2(ν − 4)

ν
(z2 + ν) + (ν − 2)2(ν − 4)− 3(ν − 2)

)
=

12(ν − 2)

ν + 1
.

Therefore

E [g3.s̃θ,3] =
−6σ4

ν − 4
.

The orthogonalization of It − α along the estimating equation, g(·), yields

ẽt = It−α+fν(q
ν
α)εt+

qναfν(q
ν
α)

2
(ε2
t−1)+

∂Fν
∂ν

(qνα)

(
(ν − 4)2

6
(ε4
t −Kε)− (ν − 2)(ν − 4)(ε2

t − 1)

)
,

(B.21)
where Kε = 3 + 6

ν−4
is the kurtosis of εt.
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C Examples of Ord’s distributions

We provide here particular examples of discrete distributions. The definition of the orthonor-
mal polynomial family is provided in Table 1.

The Poisson distribution When Y ∼ Po(µ), the probability distribution function of Y
is:

py = e−µ
µy

y!

The orthonormal family associated to the Poisson distribution is the family of Charlier
polynomials Cj(y, µ). As

∂ ln py
∂µ

= −1 +
y

µ
= −C1(y, µ)

√
µ

,

Charlier polynomials of degree greater or equal to 2 are robust to the parameter estimation
uncertainty when one estimates the parameter µ.

The Pascal distribution The Pascal distribution is also known as the negative binomial
distribution. It extends the Poisson distribution to some cases where the variance could be
greater than the mean of the distribution (the overdispersion that Poisson counting processes
fail to fit). The negative binomial distribution is also known as a Poisson-Gamma mixture.

When Y ∼ Pa(µ, δ),

py =

(
µ

µ+ δ

)y (
δ

µ+ δ

)δ
Γ(y + δ)

Γ(δ)Γ(y + 1)

When δ → +∞, the Pascal distribution tends to the Poisson distribution. The orthonormal
polynomials associated to this distribution are the Meixner polynomials Mj(y, µ, δ).

When δ = 1, the Pascal distribution is the geometric distribution (α = 1
µ+1

). Candelon et
al. (2011) test this discrete distribution in a context of backtesting.

The binomial distribution The probability distribution function of the Binomial distri-
bution is:

py =
(
N
y

)
py(1− p)N−y

where p ≤ 1
In this case, the orthogonal polynomials Kj(y,N, p) are the Krawtchouk polynomials.

They can be used for testing probit and logit models.
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Figures and Tables

Table 1: Ord’s family and orthonormal polynomials.

Name py A B Q1

Recursive relationship

Poisson e−µ µ
y

y!
−(y − µ+ 1) y + 1 µ−y√

µ

Qj+1(y) = µ+j−y√
µ(j+1)

Qj(y)−
√

j
j+1

Qj−1(y)

Pascal
(

µ
µ+δ

)y (
δ

µ+δ

)δ
Γ(y+δ)

Γ(δ)Γ(y+1)
µ
µ+δ

(y + δ)− (y + 1) y + 1 µδ−δy√
µδ(µ+δ)

Qj+1(y) = µ(2j+δ)+δ(j−y)√
µ(µ+δ)(j+δ)(j+1)

Qj(y)−
√

j(δ+j−1)
(j+1)(δ+j)

Qj−1(y)

Geometric (1− α)yα −α(y + 1) y + 1 1−α−αy√
1−α

Qj+1(y) = (1−α)(2j+1)+α(j−y)√
1−α(j+1)

Qj(y)− j
j+1

Qj−1(y)

Binomial
(
N
y

)
py(1− p)N−y −(y −Np+ q) q(y + 1) pN−y√

pqN

Qj+1(y) = p(N−j)+qj−y√
pq(N−j)(j+1)

Qj(y)−
√

j(N−j+1)
(j+1)(N−j)Qj−1(y)

py+1−py
py

= A(y)
B(y)

. Qj is the orthogonal polynomial of degree j, normalized.
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In sample properties

α = 0.01 α = 0.05

T 250 500 750 250 500 750

(It − α)0 1.90 1.80 3.60 0.90 2.00 2.10

et 2.00 7.70 3.60 4.00 5.50 5.70

e?t 2.00 7.70 3.60 3.60 5.00 5.70

It − α 1.90 8.50 3.60 3.40 4.10 5.70

etet−1 2.50 5.20 7.40 6.10 4.10 4.90

etet−2 2.60 5.10 6.80 4.60 5.40 4.80

etet−3 4.10 4.50 6.90 6.00 5.30 4.80

me
3 4.20 5.60 6.60 4.80 4.50 4.10

me
5 5.00 4.60 4.20 4.90 4.30 4.40

me
10 3.90 3.80 4.30 5.80 4.90 4.60

e?t e
?
t−1 2.20 5.30 7.60 6.20 4.60 5.40

e?t e
?
t−2 2.10 5.10 7.00 4.70 5.20 4.30

e?t e
?
t−3 3.70 4.40 7.20 6.40 5.10 5.10

me?

3 4.10 6.30 6.80 4.60 4.80 4.50

me?

5 4.80 5.40 4.10 5.20 4.20 4.50

me?

10 4.50 4.00 3.90 4.80 5.20 4.30

(It − α)(It−1 − α) 1.90 5.20 7.20 3.60 2.90 3.30

(It − α)(It−2 − α) 2.00 4.50 6.90 3.90 3.50 3.90

(It − α)(It−3 − α) 2.70 4.10 7.60 6.20 4.70 4.20

Note: for each sample size T , we report the rejection fre-

quencies for a 5% significance level test of the accuracy of

the one day-ahead VaR forecasts computed from the esti-

mation of a GARCH normal model. The different moments

are detailed in Section 5.

Table 2: Size of the Backtest - Normal GARCH model
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Alternatives

Hist. Simulation T-GARCH EGARCH

T 250 500 750 250 500 750 250 500 750

(It − α)0 0.00 0.00 0.00 2.90 8.80 13.70 6.00 12.10 19.30

et 0.00 0.00 0.00 9.30 15.20 23.60 10.00 20.00 29.10

e?t 0.00 0.00 0.00 8.90 14.10 22.70 12.20 22.20 28.90

It − α 0.00 0.00 0.00 7.30 13.30 22.30 9.90 23.50 28.80

etet−1 15.40 16.60 15.90 7.90 9.20 11.30 16.90 26.40 36.80

etet−2 13.00 12.30 14.80 11.00 11.60 14.10 12.40 17.70 21.20

etet−3 13.40 15.50 12.70 10.30 12.80 13.40 10.80 15.20 17.80

me
3 15.80 16.80 18.50 10.60 11.80 13.80 21.80 35.10 44.00

me
5 16.40 17.80 20.60 12.20 12.80 14.70 21.70 35.70 47.10

me
10 16.10 19.00 21.50 12.10 14.00 15.40 20.10 36.00 44.20

e?t e
?
t−1 17.80 16.80 17.70 5.60 6.90 7.60 16.30 25.40 35.70

e?t e
?
t−2 13.20 13.60 16.60 9.20 8.90 10.30 12.30 17.70 20.80

e?t e
?
t−3 14.60 17.20 14.50 8.60 9.70 9.00 10.50 15.40 17.70

me?

3 16.20 18.20 21.40 7.40 8.80 8.40 20.60 34.60 43.30

me?

5 16.70 19.40 23.70 9.00 11.10 10.30 20.60 35.50 46.70

me?

10 15.80 21.50 24.70 10.20 11.90 12.50 19.00 36.20 44.40

(It − α)(It−1 − α) 9.50 15.10 20.40 2.80 2.60 2.60 9.30 13.10 14.80

(It − α)(It−2 − α) 8.10 12.90 18.90 3.20 1.60 2.10 8.20 7.70 9.20

(It − α)(It−3 − α) 6.70 13.80 15.70 3.80 3.50 3.40 6.60 5.10 6.00

Note: for each sample size T , we report the rejection fre-

quencies for a 5% significance level test of the accuracy of

the one day-ahead VaR forecasts computed from the esti-

mation of a GARCH normal model. The different moments

are detailed in Section 5.

Table 3: In-sample power properties of the VaR Backtest - Normal GARCH model, α = 5%.
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Size Power

HS T-GARCH EGARCH

P = 125 P = 250 P = 125 P = 250 P = 125 P = 250 P = 125 P = 250

(It − α)0 32.00 14.70 61.10 51.60 28.90 18.20 35.20 18.00

et 5.40 4.10 23.50 31.10 16.50 20.20 7.00 6.70

e?t 5.10 4.20 25.40 32.80 15.50 20.80 7.30 6.80

It − α 4.90 3.90 30.00 36.00 3.80 5.70 4.60 5.60

etet−1 6.80 6.70 22.50 26.40 9.80 14.60 8.80 8.80

etet−2 6.70 5.20 21.20 25.20 12.10 14.60 7.50 7.90

etet−3 6.80 5.70 18.30 25.00 12.40 14.60 7.50 6.90

me
3 6.50 5.80 23.80 30.20 13.30 17.70 7.30 8.60

me
5 6.20 6.30 23.40 33.10 13.00 18.00 8.40 8.80

me
10 7.20 5.90 24.00 35.50 13.50 17.10 8.20 9.00

(It − α)(It−1 − α) 5.00 5.50 19.60 27.10 2.90 3.50 6.50 6.50

(It − α)(It−2 − α) 4.80 4.50 19.70 27.40 3.70 3.20 5.10 5.70

(It − α)(It−3 − α) 5.20 4.50 17.20 25.50 4.00 4.70 6.20 6.50

Table 4: Out-of-sample properties Rolling Scheme - Normal GARCH model - α = 5%, R = 500

observations.
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Size Power

HS T-GARCH EGARCH

P = 125 P = 250 P = 125 P = 250 P = 125 P = 250 P = 125 P = 250

(It − α)0 36.00 18.80 38.50 24.30 33.70 23.60 44.70 32.50

et 4.90 3.80 9.70 10.30 16.30 22.40 32.10 43.70

e?t 5.50 4.30 10.00 10.70 16.60 22.90 31.90 43.40

It − α 4.90 6.40 7.70 11.10 4.60 8.30 14.10 15.90

etet−1 6.30 6.10 7.20 7.50 10.40 12.40 27.30 37.20

etet−2 6.60 6.00 7.00 6.70 11.20 13.30 24.40 32.10

etet−3 8.70 7.60 8.50 8.70 12.50 15.80 19.90 27.10

me
3 6.90 6.90 8.10 7.50 13.10 16.60 29.60 41.40

me
5 7.20 7.10 7.90 8.10 14.20 17.90 32.30 43.00

me
10 7.20 6.30 8.80 9.10 14.60 19.50 32.70 43.30

(It − α)(It−1 − α) 5.00 5.10 6.00 6.10 3.20 4.30 18.50 25.10

(It − α)(It−2 − α) 4.80 5.00 6.40 6.00 4.10 3.60 13.40 19.10

(It − α)(It−3 − α) 6.00 5.70 7.00 6.90 4.00 4.70 12.90 16.20

Table 5: Out-of-sample properties Fixed Scheme - Normal GARCH model - α = 5%, R = 500

observations.
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Size Power HS

T 250 500 750 250 500 750

et 4.80 5.50 3.90 0.00 0.00 0.00

e?t 3.70 3.80 3.70 0.00 0.00 0.00

ẽt 5.00 4.60 4.80 0.00 0.00 0.00

It − α 3.40 3.40 3.70 0.00 0.00 0.00

etet−1 5.00 4.50 5.30 15.20 15.40 18.30

etet−2 6.10 5.00 5.30 13.10 12.90 17.50

etet−3 6.40 4.60 5.20 12.20 14.40 16.00

me
3 5.00 5.40 5.10 13.70 16.60 21.70

me
5 4.60 5.50 4.70 12.00 17.90 22.70

me
10 3.70 5.20 5.20 11.70 18.10 23.20

e?t e
?
t−1 4.90 4.70 4.70 15.00 16.60 19.10

e?t e
?
t−2 5.50 5.10 5.50 13.10 12.70 20.40

e?t e
?
t−3 5.90 4.90 4.70 13.40 14.90 17.00

me?

3 4.50 5.30 4.60 13.70 19.30 25.00

me?

5 3.80 5.30 4.20 14.40 19.60 26.00

me?

10 3.60 5.60 5.40 12.80 21.90 28.90

ẽtẽt−1 4.50 4.50 5.30 11.50 14.70 16.40

ẽtẽt−2 5.50 5.20 4.90 10.00 12.00 15.50

ẽtẽt−3 6.20 5.20 5.00 9.10 11.90 13.20

mẽ
3 3.70 4.20 4.60 9.60 14.60 19.20

mẽ
5 3.20 4.50 4.10 9.00 15.30 19.10

mẽ
10 3.30 3.90 4.70 9.00 16.80 20.00

(It − α)(It−1 − α) 5.10 3.50 3.90 8.30 13.80 22.10

(It − α)(It−2 − α) 4.90 3.30 3.80 8.80 10.80 21.40

(It − α)(It−3 − α) 5.50 4.30 5.30 6.10 13.30 17.10

Table 6: Size and Power of the Backtest - T-GARCH model - In sample - α = 5%
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Size Power HS

P = 125 P = 250 P = 125 P = 250

et 6.10 6.60 11.70 14.40

ẽt 6.10 6.30 11.20 13.00

It − α 4.00 4.10 8.00 9.60

etet−1 7.30 6.40 8.70 9.00

etet−2 5.60 5.40 7.30 7.40

etet−3 6.40 6.10 8.20 8.80

me
3 5.90 5.10 6.60 8.20

me
5 5.50 4.90 6.60 7.60

me
10 6.20 5.60 7.90 8.20

ẽtẽt−1 7.30 4.90 7.70 7.10

ẽtẽt−2 5.10 3.90 5.90 4.80

ẽtẽt−3 4.70 5.10 5.90 6.20

mẽ
3 5.80 4.20 5.80 5.80

mẽ
5 5.20 4.10 5.30 5.80

mẽ
10 4.70 4.50 5.60 6.10

(It − α)(It−1 − α) 5.30 5.00 6.70 7.10

(It − α)(It−2 − α) 3.70 4.10 5.20 5.60

(It − α)(It−3 − α) 4.70 5.20 6.20 6.40

Table 7: Out-of-sample properties - Fixed Scheme - T-GARCH model - α = 5%
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θ0 known θ0 estimated by MLE

T 100 200 500 1000

C1 4.94 4.56 4.96 5.24

C2 4.92 4.22 5.60 5.10

C3 5.20 4.86 4.64 5.06

C4 2.82 3.74 3.86 4.46

Cw
2,3 5.14 4.86 5.16 5.22

Cw
2,4 5.02 4.94 5.24 5.24

Cw
2,5 5.44 5.06 5.22 5.00

χ2
P 9.06 8.46 8.50 8.24

T 100 200 500 1000

C2 4.48 4.44 5.52 4.86

C3 4.74 4.66 4.46 5.00

C4 2.74 3.56 3.62 4.30

Cw
2,3 5.26 4.88 5.14 5.24

Cw
2,4 5.14 5.02 5.30 5.16

Cw
2,5 5.48 5.18 5.22 5.00

χ2
P 5.02 5.04 5.10 4.84

Note: The data are i.i.d. from a Po(2) distribution. The results are based on 10 000 replications.

Table 8: Size of the Poisson tests
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Binomial distribution B(k, 2
k
)

k=10 k=15 k=20

T 100 200 500 1000

C2 26.44 56.68 94.04 99.94

C3 1.04 1.56 2.06 4.72

C4 0.66 0.72 1.44 2.54

Cw
2,3 27.74 52.24 89.18 99.60

Cw
2,4 22.70 41.78 78.62 97.80

Cw
2,5 18.32 33.02 68.20 94.18

χ2
P 9.86 24.48 69.68 97.52

T 100 200 500 1000

C2 12.24 25.74 58.08 89.04

C3 1.70 1.62 1.56 2.22

C4 1.00 1.26 1.08 1.58

Cw
2,3 14.06 24.86 51.36 83.00

Cw
2,4 11.68 20.40 41.92 71.96

Cw
2,5 10.02 16.50 33.96 62.30

χ2
P 5.86 10.36 27.72 62.10

T 100 200 500 1000

C2 7.86 15.30 35.54 64.96

C3 2.34 2.02 1.88 1.80

C4 1.22 1.24 1.54 1.64

Cw
2,3 9.92 15.54 31.48 57.94

Cw
2,4 9.08 12.74 26.22 46.58

Cw
2,5 8.08 10.92 21.90 39.68

χ2
P 4.64 7.14 16.02 34.68

Pascal distribution Pa(2.δ)

δ=10 δ=15 δ=20

T 100 200 500 1000

C2 30.84 46.96 80.94 97.86

C3 13.36 15.32 19.02 23.30

C4 9.68 13.04 17.80 24.50

Cw
2,3 22.70 37.72 69.84 93.60

Cw
2,4 20.32 34.56 65.10 90.32

Cw
2,5 18.58 29.66 58.80 85.30

χ2
P 17.26 26.50 56.20 87.24

T 100 200 500 1000

C2 18.22 27.04 51.54 79.36

C3 9.60 11.32 12.02 15.28

C4 6.68 8.66 11.42 15.32

Cw
2,3 13.82 20.78 41.46 68.18

Cw
2,4 12.34 18.82 35.74 61.82

Cw
2,5 11.52 16.30 31.40 55.14

χ2
P 11.10 14.62 29.26 53.00

T 100 200 500 1000

C2 13.34 18.54 34.24 57.42

C3 8.22 8.84 9.70 11.86

C4 5.70 7.16 8.98 11.14

Cw
2,3 10.18 14.64 26.48 46.10

Cw
2,4 9.52 12.58 22.52 40.68

Cw
2,5 8.86 11.32 20.10 35.84

χ2
P 8.90 10.74 18.42 32.84

Table 9: Power of the Poisson tests
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Size Power with wrong α

α = 4% α = 6%

T 50 100 250

M1 0.00 0.00 0.00

M2 3.14 3.18 4.24

M3 1.52 2.18 3.32

M4 0.86 0.90 1.14

Mw
2,3 4.46 4.12 4.94

Mw
2,4 4.84 4.44 5.12

Mw
2,5 4.88 4.60 5.20

L1 0.00 0.00 0.00

L2 2.44 2.60 4.90

L3 1.30 2.18 3.72

L4 1.02 1.30 1.56

Lw2,3 2.22 2.48 2.60

Lw2,4 1.56 1.72 1.98

Lw2,5 1.14 1.22 1.56

T 50 100 250

M1 44.00 67.60 95.24

M2 16.80 20.70 27.86

M3 9.48 13.26 18.28

M4 6.94 8.42 10.54

Mw
2,3 13.82 15.92 20.28

Mw
2,4 10.46 12.02 15.68

Mw
2,5 8.96 10.16 13.18

L1 42.18 66.12 94.92

L2 14.52 17.06 20.34

L3 8.12 11.42 15.66

L4 6.84 8.56 11.48

Lw2,3 12.34 15.56 22.14

Lw2,4 8.94 11.90 16.94

Lw2,5 7.24 9.76 14.10

T 50 100 250

M1 18.46 39.26 81.68

M2 2.16 1.94 2.94

M3 0.58 0.54 0.56

M4 0.22 0.16 0.24

Mw
2,3 2.78 3.18 4.46

Mw
2,4 3.78 3.98 5.32

Mw
2,5 4.26 4.48 5.86

L1 16.82 37.00 80.34

L2 1.40 0.86 1.06

L3 0.46 0.44 0.88

L4 0.26 0.44 0.60

Lw2,3 1.10 0.76 0.78

Lw2,4 0.60 0.42 0.52

Lw2,5 0.36 0.28 0.38

Table 10: Size and Power of the geometric distributional test
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ρ = 0.4 ρ = 0.6 ρ = 0.8

T 50 100 250

M1 0.00 0.00 0.00

M2 8.48 11.58 19.96

M3 3.62 6.00 11.70

M4 1.68 2.00 4.16

Mw
2,3 11.10 15.18 25.54

Mw
2,4 12.20 17.04 28.92

Mw
2,5 13.00 17.46 30.42

L1 0.00 0.00 0.00

L2 6.36 8.70 12.80

L3 2.32 3.50 5.92

L4 1.32 1.14 2.06

Lw2,3 4.52 6.22 9.14

Lw2,4 2.84 4.58 7.14

Lw2,5 1.94 3.14 5.22

T 50 100 250

M1 0.00 0.00 0.00

M2 19.24 34.06 61.04

M3 12.70 23.40 46.04

M4 5.94 8.80 21.38

Mw
2,3 26.34 43.76 73.06

Mw
2,4 29.48 48.08 78.76

Mw
2,5 31.70 50.92 81.66

L1 0.00 0.00 0.00

L2 15.74 27.32 50.96

L3 8.98 15.82 32.70

L4 3.74 5.28 11.14

Lw2,3 9.08 15.48 29.36

Lw2,4 6.70 11.88 23.82

Lw2,5 5.26 9.16 18.58

T 50 100 250

M1 0.00 0.00 0.00

M2 41.58 66.52 93.64

M3 37.30 57.68 77.94

M4 20.64 34.04 63.52

Mw
2,3 53.74 77.22 97.42

Mw
2,4 59.90 82.38 98.68

Mw
2,5 62.84 84.80 98.96

L1 0.00 0.00 0.00

L2 37.18 62.04 91.82

L3 31.22 52.48 74.84

L4 15.62 26.38 53.00

Lw2,3 20.52 39.90 71.24

Lw2,4 16.62 35.92 68.96

Lw2,5 13.70 30.22 58.98

Table 11: Power of the geometric distributional test with non i.i.d. geometric variables
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UK-US$ FF-US$ SF-US$ Yen-US$

ω̂ 7.2e-07 1.5e-06 9.2e-08 2.9e-06

α̂ 0.07 0.08 0.04 0.09

β̂ 0.92 0.89 0.96 0.86

ν̂ 8.81 12.26 6.73 7.41

Note: MLE of the T-GARCH(1,1)

model for daily exchange rates.

α = 0.5% α = 1%

UK-US$ FF-US$ SF-US$ Yen-US$ UK-US$ FF-US$ SF-US$ Yen-US$

et 0.64 0.28 0.97 0.56 0.36 0.78 0.00 0.89

ẽt 0.66 0.07 0.54 0.83 0.43 0.52 0.37 0.69

It − α 0.73 0.40 0.90 0.54 0.37 0.87 0.01 0.85

etet−1 0.84 0.84 0.43 0.00 0.94 0.00 0.64 0.00

etet−2 0.31 0.70 0.99 0.34 0.00 0.91 0.76 0.30

etet−3 0.93 0.99 0.31 0.81 0.76 0.80 0.00 0.73

me
3 0.69 0.63 0.37 0.00 0.02 0.82 0.18 0.00

me
5 0.60 0.71 0.42 0.00 0.02 0.74 0.06 0.00

me
10 0.59 0.87 0.24 0.00 0.11 0.85 0.03 0.00

ẽtẽt−1 0.92 0.54 0.84 0.00 0.85 0.00 0.86 0.00

ẽtẽt−2 0.50 0.47 1.00 0.98 0.00 0.50 0.99 0.94

ẽtẽt−3 0.85 0.77 0.91 0.94 0.93 0.98 0.14 0.91

mẽ
3 0.74 0.39 0.89 0.00 0.04 0.51 0.60 0.00

mẽ
5 0.71 0.39 0.93 0.00 0.03 0.60 0.53 0.00

mẽ
10 0.72 0.43 1.00 0.00 0.10 0.60 0.47 0.01

(It − α)(It−1 − α) 0.91 0.97 0.82 0.81 0.63 0.00 0.36 0.75

(It − α)(It−2 − α) 0.91 0.97 0.86 0.80 0.63 0.83 0.39 0.74

(It − α)(It−3 − α) 0.91 0.97 0.86 0.81 0.62 0.83 0.00 0.75

Note: we test the accuracy of the one day ahead VaR forecast computed from a

T-GARCH(1,1) model for different level of risk α for the four daily exchanges rates.

The p-value of the test statistics are reported. The notations are defined in Section

5.

Table 12: Backtesting of VaR forecasts for the T-GARCH(1,1) model
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α = 0.5% α = 1%

UK-US$ FF-US$ SF-US$ Yen-US$ UK-US$ FF-US$ SF-US$ Yen-US$

et 0.95 0.65 0.04 0.68 0.91 0.95 0.27 0.25

ẽt 0.83 0.96 0.00 0.31 0.70 0.47 0.01 0.35

It − α 0.06 0.22 0.88 0.59 0.08 0.44 0.03 0.21

etet−1 0.44 0.87 0.09 0.99 0.45 0.89 0.02 0.90

etet−2 0.00 0.37 0.91 0.22 0.00 0.85 0.89 0.02

etet−3 0.37 0.99 0.43 0.51 0.45 0.60 0.36 0.62

me
3 0.00 0.72 0.13 0.41 0.00 0.90 0.03 0.21

me
5 0.00 0.68 0.12 0.36 0.00 0.70 0.10 0.12

me
10 0.00 0.43 0.38 0.25 0.00 0.11 0.59 0.66

ẽtẽt−1 0.84 0.86 0.89 0.77 0.71 0.95 0.27 0.96

ẽtẽt−2 0.00 0.70 0.94 0.40 0.00 0.97 0.86 0.22

ẽtẽt−3 0.93 0.86 0.66 0.45 0.83 0.80 0.64 0.78

mẽ
3 0.00 0.98 0.79 0.37 0.00 0.92 0.50 0.49

mẽ
5 0.00 0.95 0.70 0.26 0.00 0.85 0.79 0.38

mẽ
10 0.00 0.62 0.56 0.15 0.00 0.35 0.94 0.79

(It − α)(It−1 − α) 0.70 0.77 0.95 0.86 0.58 0.72 0.45 0.64

(It − α)(It−2 − α) 0.70 0.78 0.93 0.86 0.57 0.71 0.50 0.59

(It − α)(It−3 − α) 0.70 0.78 0.93 0.85 0.57 0.71 0.44 0.64

Note: we test the accuracy of the one day ahead VaR forecast computed for different

level of risk α for the four daily exchanges rates.

Table 13: Backtesting of VaR forecasts, out-of-sample


