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Abstract

We study insurance markets in which privately informed consumers can purchase
coverage from several insurers. Under adverse selection, multiple contracting severely
restricts feasible trades. Indeed, only one budget-balanced allocation is implementable
by an entry-proof tariff, and each layer of coverage must be fairly priced given the
consumer types who purchase it. This allocation is the unique equilibrium outcome of a
game in which cross-subsidies between contracts are prohibited. Equilibrium contracts
exhibit quantity discounts and negative correlation between risk and coverage. Public
intervention should target insurers’ strategic behavior, while consumers can be left free
to choose their preferred amount of coverage.
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valuable feedback. We also thank seminar audiences at Arizona State University, European University
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1 Introduction

Multiple contracting, whereby individuals consumers purchase several policies from different

insurers to cover the same risk, is a widespread phenomenon in insurance markets. A case

in point is the US life-insurance market, in which around 25 percent of consumers hold more

than one term policy.1 A similar phenomenon arises in annuity markets: as an example,

the six million annuities in payment in the UK in 2013 were owned by about five millions

individuals.2 Most health-insurance markets also exhibit multiple contracting, in forms that

depend on the relative importance of the public and private insurance sectors. First, private

health insurance can be used as a source of basic coverage for individuals who do not, or

choose not to, obtain public health insurance. In this case, which prevails in Germany,

Netherlands, and Switzerland, at least half of the insured households typically hold more

than one private policy.3 Second, private insurance can be used to cover healthcare needs

that are only partially covered by public funds. This role is prominent in Australia, Denmark,

and, in particular, France, where about 92 percent of the population complement the public

mandatory coverage with some private insurance.4 In the US, the Medicare supplementary

market performs a similar role, with 10 million out of the 42 million individuals covered

by Medicare also subscribing to Medigap plans issued by private insurers. The healthcare

services of retirees who supplement Medicare beneficiaries with employer-sponsored retiree

health insurance represent an additional source of multiple contracting.5

Since the early works of Arrow (1963), Akerlof (1970), Pauly (1974), and Rothschild

and Stiglitz (1976), there has been a presumption that these insurance markets may be

exposed to adverse selection. More recently, a large body of empirical work has attempted

at providing a quantitative assessment of the extent to which this is the case, along two main

lines. First, the very existence of adverse selection has been investigated, leading to mixed

results.6 Second, several measures of the potential welfare costs of adverse selection have

1A term life policy provides coverage for a limited period of time, which makes it a pure insurance
product. Information about the buyers of such policies is provided by He (2009) on the basis of the Health
and Retirement Study (HRS) panel.

2See the 2014 UK Insurance Key Facts document issued by the Association of British Insurers, available
at https://www.abi.org.uk/∼/media/Files/Documents/Publications/Public/2014/Key%20Facts/ABI%20K
ey%20Facts%202014.pdf.

3See Paccagnella, Rebba, and Weber (2013).
4See Thomson, Osborne, Squires, and Jun (2013).
5About half of the US retirees currently receive income from employment-based pension schemes, see

Poterba (2014).
6Cawley and Phillipson (1999) and Cardon and Hendel (2001) find no evidence of adverse selection in the

US life- and health-insurance markets. Finkelstein and Poterba (2002, 2004) find some evidence of adverse
selection using claims data from the UK annuity market. Hendren (2013) finds strong evidence of adverse
selection in the US life-insurance market when considering all potential customers, including rejected ones.
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been proposed.7 Yet a common feature of these empirical studies is the limited attention

devoted to the organization of markets and the nature of competition between insurers. This

is particularly true for multiple contracting, despite its being, as argued above, a key feature

of the markets under scrutiny. Indeed, standard tests for adverse selection, such as the

positive-correlation property—individuals facing a higher probability of a loss should receive

higher coverage—and the convex-pricing property—the unit price of coverage should increase

in the total amount of coverage purchased—are derived with reference to the Rothschild and

Stiglitz (1976) model, in which each individual can purchase insurance from at most one

insurer.8 Accordingly, the standard empirical strategy relies on insurers’ ability to induce

different individuals to self-select into different contracts.

This strategy may, however, lead to a fundamental misspecification problem. When an

individual engages in multiple contracting, each insurer has a limited basis for inferring her

total amount of coverage. This makes it more difficult for insurers to screen individuals

according to how much coverage they purchase, as this information is not directly available

to them. In addition, the impossibility of fully controlling individual transactions may

constitute an important source of welfare losses under adverse selection. These difficulties

point to the need for a new theoretical framework, both for testing for the presence of adverse

selection in markets where multiple contracting is prevalent and for assessing the combined

welfare impact of adverse selection and multiple contracting.

We address these issues in a generalized version of the Rothschild and Stiglitz (1976)

economy, in which a risk-averse consumer trades insurance contracts simultaneously issued

by competing insurers. As in Rothschild and Stiglitz (1976), the consumer’s risk is her private

information; an insurance contract stipulates a coverage or, in the case of coinsurance, a

coverage rate, in exchange for a premium. Trade is threatened by adverse selection: insurers

prefer to trade smaller amounts of coverage with riskier consumer types, who, however, are

willing to purchase a larger amount of coverage. Unlike in Rothschild and Stiglitz (1976),

the consumer is free to purchase coverage from any number of insurers.

Central to our approach is to identify an appropriate notion of feasibility. To capture

the restrictions that informational and contracting frictions impose on feasible trades, we

characterize the set of allocations that can be achieved by a planner who observes neither

the consumer’s risk nor her trades with private insurers. Whereas the constraints induced

See Cohen and Siegelman (2010) and Chiappori and Salanié (2013) for extensive surveys.
7See Einav, Finkelstein, and Levin (2010) for a survey.
8This approach is explicitly followed in the empirical analyses of Cawley and Phillipson (1999) and

Finkelstein and Poterba (2004), among many others.
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by private information on insurance provision are by now well understood,9 little is known

about how the opportunity for consumers to secretly sign bilateral agreements with private

insurers further restricts the set of feasible allocations.

To model these additional constraints, we require feasible allocations to be not only

incentive-compatible, but also robust to further trading opportunities provided by private

insurers. That is, any price-quantity scheme, or tariff, posted by the planner must be entry-

proof. We show in Theorem 1 that a single budget-balanced allocation satisfies this robust

incentive-compatibility requirement. In that allocation, both low- and high-risk consumers

purchase the same basic amount of coverage, which the high-risk consumer complements by

purchasing some additional coverage. Each marginal amount of coverage, or layer, is fairly

priced given the consumer types who purchase it, which corresponds to a marginal version of

Akerlof (1970) pricing. This unique allocation, which was first described by Jaynes (1978),

Hellwig (1988), and Glosten (1994), cannot a fortiori be improved in the Pareto sense without

making entry profitable for a private insurer. Overall, the existence of private insurance

markets dramatically constrains the planner, making redistribution among different types of

consumers impossible.

It remains to understand to which extent private markets can perform their allocative role

in the absence of public intervention. In principle, multiple contracting affects the behavior

of private insurers along two main dimensions. On the one hand, each insurer can exploit the

offers of his competitors by proposing additional, possibly small, trades that are attractive to

the consumer. From a strategic viewpoint, this corresponds to enlarging the set of available

deviations with respect to the benchmark case in which exclusivity clauses are enforced

from the outset, as in Rothschild and Stiglitz (1976); this makes undercutting an easier task

for insurers. On the other hand, cream-skimming deviations may be blocked by additional

threats which take the form of ad-hoc, latent contracts in one’s competitors’ offers; such

contracts may be thought of as playing an anti-competitive role. Equilibrium must hence

strike a delicate balance between these two forces, the interplay of which determines the

effective supply of insurance under multiple contracting.

A natural benchmark for equilibrium analysis is the situation in which competition is

fully nonexclusive, that is, insurers post arbitrary menu offers which the consumer is free to

combine. In this scenario, however, the set of trading opportunities available “in the dark” is

very large, and markets fail to be an effective device to allocate resources. Despite being the

only equilibrium candidate, the Jaynes–Hellwig–Glosten (JHG) allocation described above

9See, for instance, Prescott and Townsend (1984) and Crocker and Snow (1985).
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can only be decentralized in the degenerate case in which only the riskiest consumer is willing

to trade at the prevailing price; market equilibria otherwise fail to exist. The logic underlying

this result, extensively analyzed in Attar, Mariotti, and Salanié (2014, 2015), is that, in a

given candidate equilibrium, any of the incumbent insurers can make a profit by selling

basic coverage only to the low-risk consumer, while making a small loss by trading with the

high-risk consumer some complementary coverage priced at slightly better terms than by his

competitors. This sophisticated deviation involves cross-subsidization between contracts and

crucially exploits the nonexclusive nature of competition. The deviating insurer minimizes

his losses by sharing with his competitors the cost of providing a high coverage to the high-

risk consumer (“lemon dropping”); this in turn enables him to profitably attract the low-risk

consumer (“cherry picking”).

This fully nonexclusive scenario, however, does not provide an accurate description of

competition in modern insurance markets: the size of regulatory interventions in OECD

countries is sufficiently large to affect the conduct of these markets, the relevant degree of

information sharing, and the set of services available to consumers.10 Instead of providing a

detailed assessment of the impact of different waves of insurance regulation, let us stress that

the joint issuance of loss-making contracts and of contracts designed to make profits on basic

insurance may be particularly costly in several instances. In private insurance markets, a

loss-making contract is often identified as onerous, which forces insurers to recognize the net

obligation associated with it as an accrued liability and offsetting expense in their financial

statements. If the losses of such a contract are not simultaneously offset by the gains on

some other assets, onerous contracts may be a source of operational restructuring charges.11

In health insurance, several European countries, notably Germany and Switzerland, rely on

a central fund to redistribute costs among insurers according to a risk-equalization scheme.12

These cost-sharing mechanisms, by pooling and redistributing costs among sellers of a basic

standardized coverage contract, prevent insurers from earning abnormal profits on basic

insurance.13 This, again, casts serious doubt on the feasibility of the deviation specific to

10In 2010, the US State Insurance Departments employed about 12,000 regulatory workers, collecting
around $19 billion in revenues from insurance sources.

11At the beginning of the 21st century, no International Financial Reporting Standard (IFRS) for insurance
contracts existed. Since then, the International Accounting Standards Board (IASB) has introduced several
measures to provide a unified treatment of the principles that an entity should apply to report information
to users of its financial statements about the nature, amount, timing, and uncertainty of cash flows from
insurance contracts (IASB (2013)). In particular, since 2011, insurers have to perform an onerous-contract
test when facts and circumstances indicate that the contract might be onerous, with the unavoidable cost
required to fulfill the agreement being higher than its economic benefit.

12See Thomson and Mossialos (2009, page 84). Besides Germany and Switzerland, other countries using
such schemes include Australia, Ireland, Netherlands, and Slovenia.

13In Switzerland, the basic coverage contract is defined at the national level; then insurers compete over
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the fully nonexclusive scenario.

In light of these remarks, it is important to derive predictions for competitive insurance

markets in which insurers cannot engage into cross-subsidization between different contracts.

A parsimonious way to achieve this goal is to consider a game in which insurers can only

make simple take-it-or-leave-it offers, so that regulation prevents from the outset firms from

destabilizing the market through dumping practices. This restriction does not undermine

the power of competition under multiple contracting. Indeed, we show in Theorem 2 that

the JHG allocation remains the only candidate equilibrium allocation even in this single-

contract game: multiple contracting allows firms to Bertrand-compete over take-it-or-leave-it

contracts on each layer of coverage, in a way that would not be feasible under exclusivity. We

moreover identify necessary conditions for equilibrium existence. First, high-risk consumers

must not be willing to purchase twice the basic coverage. This reflects the idea that no private

insurer is indispensable in a market equilibrium. Second, the amount of complementary

coverage purchased by a high-risk consumer should not exceed that of the basic coverage.

This prevents private insurers from profitably conducting additional trades with high-risk

consumers on top of any available amount of basic coverage. Last, we provide in Theorem

3 a condition on consumers’ preferences that ensure that these necessary conditions are also

sufficient to guarantee the existence of an equilibrium. Together with Theorem 1, Theorems

2 and 3 provide weak versions of the First and Second Welfare Theorems for our economy:

every equilibrium implements the only budget-balanced allocation that is robustly incentive-

compatible, and this allocation can be implemented in a market equilibrium under additional

conditions on consumer preferences.

Overall, our equilibrium analysis suggests new avenues for empirical research on adverse

selection. When a market equilibrium exists, consumers end up trading with several insurers,

as observed in practice. Empirical exercises may therefore be performed by considering

consumer surveys or, alternatively, by looking at insurer-level data. These two approaches

are treated as equivalent in recent empirical work, reflecting the fact that, under exclusive

contracting, any consumer’s demand for coverage must be met by a single contract. But

this equivalence collapses as soon as consumers trade several contracts: while the positive-

prices to provide the corresponding amount of coverage. Yet, an additional rule specifies that costs are pooled
and redistributed among insurers. In Germany, the basic coverage contract is also defined at the national
level and is offered by 134 not-for-profit, nongovernmental “sickness funds.” Insurees contribute a fixed
fraction of their wealth; these contributions are then centrally pooled and redistributed to sickness funds
according to a rather precise risk-adjusted capitation formula. More generally, risk equalization involves
transfer payments between health insurers so as to spread some of the claims cost of the high-risk, older, and
less healthy members among all the private health insurers in the market, in proportion to their respective
market shares.
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correlation and the convex-pricing properties hold at the consumer level, the contracts offered

by insurers exhibit a negative correlation between risk and coverage, and display quantity

discounts. In this respect, our results challenge the negative conclusions reached by Cawley

and Philipson (1999) and Cardon and Hendel (2001) when testing for adverse selection: by

putting at the center stage of our analysis the actual organization of insurance markets, we

can reconcile the predictions of the theory with the broad features of the data on insurance

markets in which multiple contracting is a prominent feature.

Yet, our analysis also shows that market equilibria fail to exist in many circumstances.

That is, private insurers’ strategic behavior may have a destabilizing effect even when cross-

subsidization between contracts is not feasible. As multiple contracting raises a fundamental

obstacle against redistribution, a failure in the market allocative mechanism calls for some

nonstandard normative implications: although the state has no redistributive role, it may

play an active role in the allocation process.

We discuss several instances of such interventions in the context of health insurance.

We first argue that multiple contracting is compatible with mandatory systems in which the

state provides basic insurance. However, to the extent that enforcing such programs may end

up being particularly expensive, we next show how the simple threat of the state standing

ready to complement private insurance is sufficient to implement the JHG allocation in a

market equilibrium. That is, basic coverage can be provided taking into account both the

incentives of private insurers and the consumers’ freedom to choose among them.

More generally, our results suggest novel insights for the design of public interventions

in financial markets plagued by adverse selection. A prominent example is the interbank

market: we argue that, under the threat of multiple contracting, an optimal lending program

may need to pool all types of each borrower. This challenges the recently advocated view

that such programs should target the least profitable borrowers, so as to unfreeze the market

faced by private banks.

Contributions to the Literature Starting with the early contributions of Hammond

(1979, 1987), Allen (1985), and Jacklin (1987), several authors have attempted at identifying

the constraints on risk sharing that arise when agents are free to engage in side trades in

financial markets. Such trades are typically formalized by letting privately informed agents

free to exchange commodities in Walrasian markets, so that they can complement their

trades with the planner by trading at linear prices. This exacerbates the tension between

incentive compatibility and optimal insurance. In private-value environments, von Thadden

(1999), Cole and Kocherlakota (2001), Golosov and Tsyvinski (2007), and Farhi, Golosov and
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Tsyvinski (2009) show how, given the threat of hidden borrowing and saving, optimality may

involve agents receiving no additional insurance beyond self-insurance. The same allocation

can also be supported in an equilibrium of a strategic game featuring competition among

private insurers (Ales and Maziero (2016)). This approach, however, is hard to reconcile

with adverse selection, as the identity of one’s trading partner then matters over and above

the terms of trade that are settled on.

The present paper extends these analyses by considering a common-value environment in

which a privately informed consumer can purchase coverage from competing private insurers.

The unique robustly incentive-compatible allocation features cross-subsidization between

different consumer types, so that additional trading opportunities are effectively exploited

despite adverse selection and multiple contracting. In particular, this allocation does not

coincide with the one arising in a competitive market in which the consumer can only self-

insure through savings.

Despite the practical relevance of financial markets in which consumers’ aggregate trades

cannot be fully monitored, few attempts have been made to incorporate multiple contracting

in a theoretical analysis of decentralized markets under adverse selection. Indeed, adverse-

selection extensions of the Walrasian paradigm (Prescott and Townsend (1984), Dubey and

Geanakoplos (2002), Bisin and Gottardi (2006)) and of the competitive-search approach

(Gale (1996), Guerrieri, Shimer and Wright (2010)) postulate exclusive contracting from the

outset. An alternative route has been suggested by Bisin and Gottardi (1999), who study

private information economies in which, due to nonexclusivity, prices are restricted to be

linear with respect to aggregate trades.14 Yet, under adverse selection, linear pricing turns

out not to be robust to sellers’ strategic manipulations whenever multiple contracting is taken

into account. Indeed, Attar, Mariotti and Salanié (2015) show that, in such circumstances,

it is always profitable for at least one seller to reduce the riskiness of his portfolio by reducing

the maximal amount of coverage that he stands ready to sell at a given price.

Modeling nonexclusive competition under adverse selection has been at the center stage

of several reformulations of the competitive-screening literature initiated by Rothschild and

Stiglitz (1976), Miyazaki (1977), Spence (1977), and Wilson (1977). Attar, Mariotti and

Salanié (2011, 2014) show that nonexclusivity worsens the impact of adverse selection. Pure-

strategy equilibria may fail to exist, and when they exist they necessarily feature the market

breakdown emphasized by Akerlof (1970). Besides, although individuals can enter several

trading agreements, equilibrium need not feature multiple contracting. Biais, Martimort,

14Bisin and Gottardi (2003) argue that a “minimal” degree of nonlinearity, in the form of a bid-ask spread,
may be needed to guarantee equilibrium existence.
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and Rochet (2000, 2013) and Back and Baruch (2012) analyze the strategic interaction

between liquidity suppliers who post price-quantity schedules to match the market order

of a privately informed trader. When there are finitely many market makers, each of them

earns a strictly positive profit; the JHG allocation only obtains in the limit when the number

of market makers goes to infinity. As each type of the trader symmetrically splits his market

order between all market makers, the equilibrium does not require the trade of qualitatively

different contracts, unlike our basic and complementary coverage contracts.

We contribute to this strategic approach by building a competitive-screening game in

which the JHG allocation is the only allocation that can be sustained in a pure-strategy

equilibrium, and individual trades feature multiple contracting. To implement this outcome,

we do not rely on alternative extensive forms which allow sellers to condition their behaviors

on their competitors’ offers, as in Hellwig (1988), or let the buyer solicit additional proposals

from an infinite sequence of sellers’ cohorts, as in Beaudry and Poitevin (1995). Rather, we

only require sellers to be prevented from exploiting cross-subsidization between contracts, in

line with existing regulation of several insurance markets.

The paper is organized as follows. Section 2 describes the model. Section 3 shows that

the JHG allocation is the only budget-balanced allocation that is robust to side trades with

private insurers. Section 4 provides an implemention of the JHG allocation in a competitive

economy and discusses the testable implications of equilibrium. Section 5 draws the lessons of

our analysis for public intervention in insurance and financial markets. Section 6 concludes.

Proofs not given in the text can be found in the online Appendices A and B.

2 The Economy

In this section, we describe an adverse-selection insurance economy in which a risk-averse

buyer can purchase coverage from several risk-neutral sellers. We allow for a large class of

convex preferences for the buyer, only assumed to be ordered by a single-crossing property.

As a result, our framework is quite general and can be used to model other financial markets.

2.1 The Buyer

The buyer is privately informed of her preferences. She may be of two types, i = 1, 2, with

positive probabilities m1 and m2 such that m1+m2 = 1. Type i’s preferences over aggregate

coverage-premium pairs (Q, T ) ∈ R+ × R are represented by a utility function Ui. We

assume that Ui is twice continuously differentiable, with ∂Ui/∂T < 0, and that Ui is strictly
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quasiconcave.15 Hence type i’s marginal rate of substitution of coverage for premium,

τi ≡ − ∂Ui/∂Q

∂Ui/∂T
, (1)

is everywhere well defined and strictly decreasing along her indifference curves. The following

single-crossing (SC) assumption is key to our results.

Assumption SC For each (Q, T ) ∈ R+ × R, τ2(Q, T ) > τ1(Q, T ).

Geometrically, in the (Q, T ) plane, an indifference curve for type 2 crosses an indifference

curve for type 1 only once, from below. As a result, type 2 is more eager to increase her

purchase of coverage than type 1 is.

2.2 The Sellers

There are n ≥ 3 identical risk-neutral sellers. If a seller provides type i with coverage q for

a premium t, he earns an expected profit t − viq, where the cost vi of serving type i is her

risk. The following common-value (CV) assumption is maintained throughout the analysis.

Assumption CV v2 > v1.

Thus type 2 represents a greater risk for sellers than type 1 does. Along with Assumption

SC, Assumption CV generates adverse selection: type 2 is more willing to trade at the margin

than type 1 is, but she faces sellers who are less willing to trade with her than with type 1.

We let v ≡ m1v1 +m2v2 be the average risk of the buyer, so that v2 > v > v1.

2.3 Contracts and Trades

The first step of our analysis does not require that we describe in detail the precise structure

of the sellers’ offers; this will be done in Section 4. Rather, following Rothschild and Stiglitz

(1976), we represent supply by a set of contracts simultaneously made available to the buyer,

and which she is free to combine at will.

Contracts are bilateral: each seller monitors the amount of coverage the buyer purchases

from him, but not the amounts of coverage the buyer purchases from his competitors. As

a result, a contract between the buyer and a seller is just a coverage-premium pair (q, t) ∈
R+ ×R. The no-trade contract is (0, 0) and a contract (q, t) with positive coverage has unit

price t/q.

15One can dispense with the differentiability requirement, but this generalization comes at the price of
more cumbersome statements and proofs.
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After privately learning her type, the buyer chooses from the set of available contracts.

In this respect, the only difference with Rothschild and Stiglitz (1976) is that she can choose

to trade multiple contracts with different sellers. Thus, letting K be the set of sellers with

whom a given type of the buyer chooses to trade, and (qk, tk) be the contract she trades with

seller k ∈ K, her aggregate trade is (Q, T ) ≡ (
∑

k∈K qk,
∑

k∈K tk).

2.4 Examples

2.4.1 The Rothschild–Stiglitz Economy

Our first example is the Rothschild and Stiglitz (1976) economy, only modified to allow

for multiple contracting. The buyer has initial wealth W0 and faces the risk of a loss L

with a probability vi ∈ (0, 1) that defines her type. Type i’s preferences over aggregate

coverage-premium pairs have an expected-utility representation

Ui(Q, T ) ≡ viu(W0 − L+Q− T ) + (1− vi)u(W0 − T ), (2)

where u is a twice continuously differentiable, strictly increasing, and strictly concave von

Neumann–Morgenstern utility function. Assumption CV states that type 2 has a higher

probability of incurring a loss than type 1. This implies that her willingness to substitute

coverage for premium is everywhere higher than type 1’s, which is Assumption SC.

2.4.2 Coinsurance

Our next example allows for multiple loss levels, while focusing on coinsurance contracts.

Thus a contract (q, t) specifies that a fraction q of the loss is covered for a premium t, and

multiple contracts can be additively aggregated in a natural way. The buyer has initial

wealth W0 and faces the risk of a loss L distributed according to a density fi that defines her

type. Type i’s preferences over aggregate coverage-premium pairs have an expected-utility

representation

Ui(Q, T ) ≡
∫

u(W0 − (1−Q)L− T )fi(L) dL, (3)

where u is a twice continuously differentiable, strictly increasing, and strictly concave von

Neumann–Morgenstern utility function. Assumption SC is satisfied if f2 dominates f1 in

the monotone-likelihood-ratio order, that is, if type 2 is relatively more likely to incur large

losses than type 1 is. This, in turn, implies that she is more costly to serve than type 1 is,

v2 =
∫
Lf2(L) dL >

∫
Lf1(L) dL = v1, which is Assumption CV.
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2.4.3 Financial Markets

Our last example is a market-microstructure model inspired by Biais, Martimort, and Rochet

(2000, 2013) and Back and Baruch (2013). The buyer is an insider who can purchase shares

of a risky asset from sellers acting as market makers. The buyer maximizes expected utility

with constant absolute risk aversion α and faces residual Gaussian noise with variance σ2.

Type i’s preferences over aggregate share-money pairs are thus represented by

Ui(Q, T ) ≡ θiQ− ασ2

2
Q2 − T, (4)

where type i’s marginal valuation θi reflects her informational and risk-sharing motivations

to trade the asset. Assumption SC requires θ2 > θ1. The market makers are risk-neutral

and the cost vi of selling a share of the asset to type i is its expected value conditional on

the insider’s being of type i. Assumption CV requires that this expected value be higher for

type 2 than for type 1.

2.4.4 On the Assumptions of the Model

Our focus on general preferences allows us to avoid relying on particular properties of,

for instance, the expected-utility model. In fact, we can handle non-expected utilities in

our framework, provided these preferences are: (i) consequentialist, in the sense that the

agent only cares about the distribution of final outcomes, and: (ii) sufficiently regular, such

as, for instance, the Fréchet-differentiable preferences introduced by Machina (1982). As

shown by the coinsurance example, we can also handle multiple loss levels, as long as the

additive aggregation of insurance contracts is consistent; as a counter-example, contracts

with deductibles do not aggregate in this way. Overall, what really matters is that insurance

coverage can be summarized by a one-dimensional additive index, and that preferences satisfy

a single-crossing property along that dimension.

3 Robust Incentive Compatibility

In this section, we introduce the notion of incentive compatibility that is relevant for our

multiple-contracting setting and we show that a unique budget-balanced allocation satisfies

this property.

3.1 Definition

In the benchmark situation where a planner can design an incentive-compatible trading

mechanism while perfectly monitoring trades (Myerson (1979, 1982), Harris and Townsend
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(1981)), the Taxation Principle tells us that he can with no loss of generality offer a tariff

specifying a transfer T P (Q) to be paid as a function of the aggregate coverage Q demanded

by the buyer (Hammond (1979), Guesnerie (1981), Rochet (1985)).16

Definition 1 The tariff T P implements the allocation ((Q1, T1), (Q2, T2)) if, for each i,

Qi ∈ argmax{Ui(Q, T P (Q)) : Q ≥ 0},

Ti = T P (Qi).

Incentive compatibility is the relevant notion of feasibility when the planner can perfectly

monitor trades. As such, it is key to the characterization of the second-best efficiency frontier

obtained by Prescott and Townsend (1984) and Crocker and Snow (1985a) in the Rothschild–

Stiglitz economy, which provides a benchmark for assessing insurance-market outcomes when

each seller is able to enforce exclusivity.

In our multiple-contracting setting, however, no outside party can monitor the trades

between the buyer and any seller. To incorporate the additional constraints that this imposes

on the planner, we require that the tariff T P be robust to entry: that is, no seller can

profitably offer additional contracts that the buyer can trade along with some amount of

coverage offered by the planner. To precisely model this, observe that the Taxation Principle

again implies that, once the planner has offered his tariff, the best an entrant can do is also

to offer a tariff TE. This motivates the following definition.

Definition 2 The tariff T P is entry-proof if, for any tariff TE offered by an entrant, there

exists for each i a solution (qPi , q
E
i ) to type i’s problem

max{Ui(q
P + qE, T P (qP ) + TE(qE)) : qP ≥ 0 and qE ≥ 0} (5)

such that the expected profit of the entrant is at most zero,

m1[T
E(qE1 )− v1q

E
1 ] +m2[T

E(qE2 )− v2q
E
2 ] ≤ 0. (6)

That is, the tariff offered by the planner is entry-proof if, no matter the tariff subsequently

offered by an entrant, there is an optimal way for the buyer to combine these offers that

prevents the entrant from making a profit. Notice that we confer the entrant a lot of

power by allowing him to offer an arbitrary tariff. This contrasts with models of optimal

allocation under private information in the presence of hidden trades, in which it is typically

16For any tariff T , we set T (0) ≡ 0 to deal with participation in a simple way, and we set T (Q) ≡ ∞ if
the tariff does not allow the buyer to trade the coverage Q.
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assumed that such trades take place on Walrasian markets (Hammond (1979, 1987), Cole and

Kocherlakota (2001), Golosov and Tsyvinski (2007), Farhi, Golosov, and Tsyvinski (2009)).

In the present context, this assumption would amount to restrict the entrant to offer a

linear tariff. Whereas this assumption is perhaps relatively innocuous in the private-value

environments that have been studied in the literature, it is much less natural in our adverse-

selection environment, if only because sellers have an incentive to restrict the maximum

amount of coverage they offer at any given price.

Our concept of robust incentive compatibility then naturally follows from Definitions 1–2.

Definition 3 An allocation is robustly incentive-compatible if there exists an entry-proof

tariff that implements it.

Remark The requirement that a robustly incentive-compatible allocation be implementable

by an entry-proof tariff is reminiscent of the definition by Kahn and Mookherjee (1998) or

Bisin and Guaitoli (2004) of third-best allocations in moral-hazard environments; in such

an allocation, the incentive contract offered by the planner must deter sellers from offering

additional contracts. This requirement is also reminiscent of Laffont and Martimort’s (1997)

collusion-proofness principle.

3.2 The JHG Allocation

We now describe an allocation, introduced by Jaynes (1978), Hellwig (1988), and Glosten

(1994), that plays a central role in our analysis. In this allocation, both type 1 and type

2 purchase the same basic coverage, which type 2 complements by purchasing additional

coverage. A marginal version of Akerlof (1970) pricing holds: each layer of coverage is fairly

priced given the types who purchase it, and the size of each layer is optimally chosen subject

to this constraint. This calls for a recursive definition. The first layer Q∗
1 is optimal for type

1 at the average premium rate v,

Q∗
1 ≡ argmax{U1(Q, vQ) : Q ≥ 0}, (7)

T ∗
1 ≡ vQ∗

1. (8)

Then the second layer Q∗
2 −Q∗

1 is optimal for type 2 at unit price v2, given that she already

purchases the first layer Q∗
1 at the average premium rate v,

Q∗
2 −Q∗

1 ≡ argmax{U2(Q
∗
1 +Q, T ∗

1 + v2Q) : Q ≥ 0}, (9)

T ∗
2 − T ∗

1 ≡ v2(Q
∗
2 −Q∗

1). (10)
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Because each layer of coverage is fairly priced given the types who purchase it, the JHG

allocation ((Q∗
1, T

∗
1 ), (Q

∗
2, T

∗
2 )) makes zero expected profit. However, if Q∗

1 > 0, the aggregate

coverages Q∗
1 and Q∗

2 of types 1 and 2 are not fairly priced: because the coverage Q∗
1 is sold

at the average premium rate v > v1, type 1 subsidizes type 2. Figure 1 depicts the JHG

allocation in the case where both layers Q∗
1 and Q∗

2 −Q∗
1 are positive.

-

6

Q

T

I∗
1

r

v

Q∗
1

T ∗
1

I∗
2

r

v2

Q∗
2

T ∗
2

Figure 1 The JHG allocation.

Remark Jaynes (1978) and Hellwig (1988) assume as we do that there are finitely many

buyer types, so that their definition coincides with the above one. This contrasts with Glosten

(1994), who assumes that demand is continuously distributed. Despite this difference, the

key feature shared by the allocations described by these authors is that the marginal price

of any amount of coverage is the upper-tail conditional expectation of the cost of serving

the types who buy at least that amount. It is interesting to compare this price structure to

that arising under monopoly. According to Wilson’s (1993) demand-profile interpretation,

the layers Qm
1 and Qm

2 − Qm
1 sold by a monopolist are priced in a profit-maximizing way,

given the types who purchase them. By contrast, in the JHG allocation, the layers Q∗
1 and

Q∗
2 −Q∗

1 are priced in a competitive way, given the types who purchase them.

In the Rothschild–Stiglitz economy, type 2 obtains full coverage in the JHG allocation,

Q∗
2 = L, while type 1 obtains less than full coverage, Q∗

1 < L. In the coinsurance example,
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we similarly have Q∗
2 = 1 and Q∗

1 < 1. In both cases, type 2’s optimal complementary layer

of coverage Q∗
2 −Q∗

1 is strictly positive at the fair premium rate. From (9), this implies that

her incentive-compatibility constraint is slack, U2(Q
∗
2, T

∗
2 ) > U2(Q

∗
1, T

∗
1 ).

It follows from this observation that, in these two key examples, the JHG allocation

does not belong to the second-best efficiency frontier. Indeed, because type 1 obtains less

than full coverage, she is willing to purchase additional coverage at the fair premium rate,

that is, τ1(Q
∗
1, T

∗
1 ) > v1. A planner with the ability to perfectly control trades can then

slightly perturb the JHG allocation by complementing type 1’s aggregate trade (Q∗
1, T

∗
1 )

with additional coverage at a premium rate between v1 and τ1(Q
∗
1, T

∗
1 ), thereby increasing

her utility. As long as the additional amount of coverage involved is small enough, this does

not cause type 2 to deviate from her aggregate trade (Q∗
2, T

∗
2 ), and the planner even achieves

a small positive expected budget surplus.

This reasoning fails when the planner cannot perfectly control trades. Indeed, increasing

the coverage sold to type 1 beyond Q∗
1 at a unit price less than τ1(Q

∗
1, T

∗
1 ) now makes it

feasible for an entrant to attract type 2 with complementary coverage at a premium rate

slightly above the fair premium rate; the reason is that type 2 can now combine such coverage

with the coverage intended by the planner for type 1. Thus an entrant can exploit the trades

offered by the planner to make a profit, leading to a deficit for the planner. This reflects

that, under multiple contracting, the relevant analogue of a binding incentive-compatibility

constraint for type 2 is (9) or, equivalently,

U2(Q
∗
2, T

∗
2 ) = max{U2(Q

∗
1 +Q, T ∗

1 + v2Q) : Q ≥ 0},

which states that she is indifferent between trading (Q∗
2, T

∗
2 ) and trading (Q∗

1, T
∗
1 ) along with

contracts issued by an entrant at the fair premium rate v2.

3.3 Characterization

The above remarks suggest that the threat of entry severely limits the scope for improving on

the JHG allocation. Our first result confirms this intuition by showing that our robustness

criterion drastically reduces the set of feasible allocations.

Theorem 1 The JHG allocation is the unique budget-balanced allocation that is robustly

incentive-compatible.

Because the argument is simple and instructive, we give its main structure in the body

of the paper, leaving a few technical details for Appendix A.
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We first show uniqueness. A robustly incentive-compatible allocation ((Q1, T1), (Q2, T2))

must satisfy Q2 ≥ Q1 by Assumption SC and, additionally,

U1(Q1, T1) ≥ max{U1(Q, vQ) : Q ≥ 0}, (11)

because, otherwise, an entrant can offer a contract with a unit price slightly above v that

profitably attracts type 1 and that is profitable even if it also attracts type 2. Similarly,

((Q1, T1), (Q2, T2)) must also satisfy

U2(Q2, T2) ≥ max{U2(Q1 +Q, T1 + v2Q) : Q ≥ 0}, (12)

because, otherwise, an entrant can offer a contract with a unit price slightly above v2 that

profitably attracts type 2 along with the aggregate trade (Q1, T1) and that is even more

profitable if it also attracts type 1. These two inequalities imply

T1 ≤ vQ1 (13)

and

T2 ≤ T1 + v2(Q2 −Q1), (14)

so that the budget-balance constraint, which can be rewritten as

T1 − vQ1 +m2[T2 − T1 − v2(Q2 −Q1)] ≥ 0,

is satisfied if and only if all inequalities (11)–(14) are in fact equalities. Together with the

recursive definition (7)–(10), this implies that the robustly incentive-compatible allocation

((Q1, T1), (Q2, T2)) must coincide with the JHG allocation.

To show existence, we only need to exhibit a tariff for the planner that implements

the JHG allocation and that is entry-proof. For this purpose, consider the piecewise-linear

convex tariff

T P (q) ≡ 1{q≤Q∗
1}vq + 1{q>Q∗

1}[vQ
∗
1 + v2(q −Q∗

1)], (15)

which is the analogue in our two-type setting of the tariff constructed by Glosten (1994)

when demand is continuously distributed. According to (7)–(10), T P implements the JHG

allocation. Consider now what happens when an entrant offers a tariff TE. As shown in

Appendix A, the convexity of T P implies that there exist solutions (qP1 , q
E
1 ) and (qP2 , q

E
2 ) to

(5) for i = 1, 2 such that qE2 ≥ qE1 . Now, as T P allows type 1 to buy her optimal coverage

Q∗
1 at unit price v, one must have

TE(qE1 ) ≤ vqE1 . (16)
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Next, because qE2 ≥ qE1 , type 2 can purchase the same aggregate coverage qP2 + qE2 by trading

(qE1 , t
E
1 ) with the entrant and purchasing complementary coverage qP2 + qE2 − qE1 from the

planner, paying overall T P (qP2 + qE2 − qE1 ) + TE(qE1 ). As she pays T P (qP2 ) + TE(qE2 ) instead,

one must have

TE(qE2 )− TE(qE1 ) ≤ T P (qP2 + qE2 − qE1 )− T P (qP2 ). (17)

Because T P is convex with slope at most v2 and qE2 ≥ qE1 ,

T P (qP2 + qE2 − qE1 )− T P (qP2 ) ≤ v2(q
E
2 − qE1 ). (18)

Collecting (16) and (17)–(18) leads to

TE(qE1 )− vqE1 +m2[T
E(qE2 )− TE(qE1 )− v2(q

E
2 − qE1 )] ≤ 0,

so that the expected profit of the entrant is at most zero, as requested by (6). This concludes

the proof of Theorem 1.

Remark Note that the JHG allocation emerges as the unique candidate for a robustly

incentive-compatible and budget-balanced allocation even when the entrant is restricted to

offer a single contract, whereas the tariff (15) is robust to entry even when the entrant can

offer an arbitrary tariff. This contrasts with Glosten’s (1994) characterization of an entry-

proof tariff when demand is continuously distributed, which crucially relies on the entrant

offering a tariff satisfying a property he dubs “single crossing” and that generalizes convexity.

Another difference with Glosten (1994) is that we do not request the buyer’s preferences to

be quasilinear. In fact, our characterization is very general and does not even rely on an

expected-utility representation for the buyer’s preferences such as (2), (3), or (4).

3.4 Discussion

3.4.1 Sorting and Tie Breaking

Our definition of an entry-proof tariff only requires that, given any tariff of the entrant, the

buyer has a best response such that the entrant does not make a profit. Hence we do not

require this no-profit property to be satisfied for all best responses of the buyer. This rules

out positive sorting, whereby the entrant would be able to break the buyer’s ties in his favor.

The existence part in the proof of Theorem 1 exploited this degree of freedom by considering

a best response of the buyer in which type 2 purchases at least as much coverage from the

entrant as type 1 does.17

17By contrast, allowing the entrant to select the buyer’s best response, in line with Peters’ (2001) and
Han’s (2007) strongly robust equilibrium refinement, would undermine the existence of an entry-proof tariff.
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3.4.2 Uniqueness and Existence

According to Theorem 1, robustness to entry pins down a unique budget-balanced allocation.

This shows that the planner is severely constrained by his inability to control the buyer’s

trades with a potential entrant, as the threat of such trades effectively deprives him of any

possibility to transfer utility between the two types. This contrasts with the multiplicity

of second-best allocations, which, in the Rothschild–Stiglitz economy, for instance, form

a nondegenerate frontier. The possibility of multiple contracting is key to this result, as

exclusive contracting would allow the planner to prevent entry.

Another important insight of Theorem 1 is that, no matter the distribution of types, there

always exists a budget-balanced allocation that is implementable by an entry-proof tariff.

This contrasts with the exclusive case, in which an entry-proof allocation can robustly fail to

exist: for instance, under exclusivity, the only candidate for an entry-proof allocation in the

Rothschild–Stiglitz economy is not robust to entry with a pooling contract if the proportion

of type-1 buyers is too high. The difference is that an entrant in the exclusive case can

fully control the buyer’s trades, whereas, in our setting, any contract he may offer can be

combined by the buyer with the contracts offered by the planner. Although this enlarges the

set of contracts an entrant can offer to attract the buyer, this also gives the planner more

instruments to deter entry, as we shall now see.

3.4.3 Allocations, Tariffs, and Latent Contracts

An important property of the tariff (15) we use to implement the JHG allocation is that it

allows the buyer to trade other amounts of coverage than Q∗
1 and Q∗

2. This contrasts with

the case in which the planner can fully monitor trades: according to the Revelation Principle

(Myerson (1979, 1982)), tariffs then need not include trades other than the ones the planner

wishes to implement and, therefore, in our two-type setting, involve at most two positive

amounts of coverage. That is, tariffs need not be distinguished from allocations in that case.

This distinction, however, is crucial under multiple contracting.

To clarify this point, consider the configuration illustrated in Figure 2, where it is assumed

that the JHG allocation is such that Q∗
1 > Q∗

2 − Q∗
1 > 0 and U2(Q

∗
2, T

∗
2 ) > U2(2Q

∗
1, 2T

∗
1 ).

Suppose the only nonzero trades made available by the planner are (Q∗
1, T

∗
1 ) and (Q∗

2, T
∗
2 ).

Now, consider the contract (q, t) as shown. This contract allows the buyer to purchase an

amount of coverage less than but close to Q∗
1 at a unit price lower than v. It certainly

attracts type 1 and yields a strictly positive profit to an entrant offering it if it does not

attract type 2. To see that this is indeed the case, observe that combining (q, t) with (Q∗
1, T

∗
1 )
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or, a fortiori, (Q∗
2, T

∗
2 ), leaves type 2 with a strictly lower utility than just trading (Q∗

2, T
∗
2 )

with the planner.18 An entrant offering the contract (q, t) can thus cream skim type 1 and

make a profit. Hence, in this configuration, the JHG allocation is not, per se, entry-proof.

-

6

Q

T

I∗
1

r
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I∗
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r

v2
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1 + q

T ∗
1 + t

Figure 2 Cream skimming type 1.

This example shows that, to implement the JHG allocation in an entry-proof way, the

planner may have to issue additional, latent contracts, which are not traded by the buyer

but are only meant to block entry. For instance, in the above example, the attempt at cream

skimming type 1 with contract (q, t) is defeated if the buyer can trade, in addition to it,

any amount of coverage up to Q∗
1 at unit price v, for then type 2 is also attracted by (q, t).

Observe that, whereas such contracts may be necessary, the planner must make sure that,

by merely offering them, he does not create further profitable entry opportunities. The tariff

(15) strikes a balance between these two requirements.

4 Implementation

Whether incentive-compatible allocations can be implemented as equilibrium outcomes is

a fundamental question for evaluating how markets perform under adverse selection. Bisin

18This is because (Q∗
1 + q, T ∗

1 + t) is close to (2Q∗
1, 2T

∗
1 ) and thus is, by assumption, strictly less preferred

by type 2 than (Q∗
2, T

∗
2 ), and because (Q∗

2 + q, T ∗
2 + t) is even less preferred by type 2 than (Q∗

1 + q, T ∗
1 + t)

as τ2(Q
∗
1 + q, T ∗

1 + t) < v2 and the unit price of the layer Q∗
2 −Q∗

1 in the JHG allocation is v2.
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and Gottardi (2006) provide a positive answer in the case of fully observable trades: for

any second-best allocation, there exists a system of transfers ensuring that this allocation

obtains in a competitive equilibrium of an economy in which sellers offer exclusive contracts.

When sellers cannot enforce exclusivity, however, the decentralization of the JHG allocation

raises the issue of specifying a competitive environment in which sellers do not observe the

buyer’s aggregate trade. In this section, we address this issue by motivating and studying a

parsimonious model of trade under adverse selection in which the JHG allocation emerges,

under circumstances we characterize, as the unique equilibrium allocation.

4.1 The Nonexclusive Benchmark

As a benchmark, it is useful to start with the fully nonexclusive situation where no restrictions

are imposed on the set of contractual instruments available to any seller, subject to the

constraint that he cannot monitor the trades that the buyer makes with his competitors.

According to the Delegation Principle (Peters (2001), Martimort and Stole (2002)), there is

no loss of generality in assuming that sellers compete by offering arbitrary menus of bilateral

contracts or, equivalently, arbitrary tariffs, from which the buyer is then free to choose

according to her information. Attar, Mariotti, and Salanié (2014) provide a general analysis

of this arbitrary-menu game for the economy studied in this paper.

The main insight of their analysis is that a positive level of trade for type 2 can be

sustained in equilibrium only if type 1 is left out of the market. As a result, the only

allocation that can be supported in equilibrium is a degenerate JHG allocation in which

(Q∗
1, T

∗
1 ) = (0, 0). That is, type 1 purchases no coverage at the average premium rate v,

while type 2 obtains full coverage at the actuarially fair rate v2. A necessary and sufficient

condition for implementation is τ1(0, 0) ≤ v, that is, Akerlof’s (1970) condition for a market

breakdown in which only the worse-quality goods are traded. When this condition is not

met, the JHG allocation satisfies Q∗
1 > 0 and at least one seller can profitably destabilize

this allocation by exploiting the buyer’s ability to engage in multiple trades.

To clarify this point, consider a candidate equilibrium in which the aggregate trades for

the buyer are described by a JHG allocation satisfying Q∗
1 > 0. Each seller then earns zero

expected profit. A Bertrand-like argument shows that no seller is indispensable to provide

the first layer Q∗
1 at unit price v. That is, the aggregate trade (Q∗

1, T
∗
1 ) remains available if

any seller unilaterally withdraws his menu offer. This observation, along with the fact that

type 1 subsidizes type 2 at (Q∗
1, T

∗
1 ), implies that any seller who is actively trading with type

1 has a profitable menu deviation consisting of two nonzero contracts. The first contract,
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targeted at type 1, is approximatively the same as the one the seller trades with type 1 on

the candidate equilibrium path, and makes a profit when traded by type 1 only. The second

contract, targeted at type 2, allows the buyer to purchase the second layer Q∗
2−Q∗

1 at a unit

price slightly less than v2, and makes a small loss when traded by type 2. Because the seller

now offers the second layer at slightly better terms than his competitors, it is optimal for

type 2 to trade it with him on top of the first layer Q∗
1 provided by the other sellers at unit

price v. By deviating in this way, the seller almost neutralizes his loss with type 2, while

securing a profit with type 1. This amounts to dumping bad risks on one’s competitors by

selling complementary coverage to type 2 slightly below the fair premium rate, and basic

coverage to type 1 significantly above the fair premium rate.

4.2 The Single-Contract Game

The above argument is very general and only relies on the sellers’ ability to cross-subsidize

between different contracts at the deviation stage. Yet, as pointed out in the Introduction,

we do in practice observe insurance markets in which multiple contracting is prevalent and

features the basic- versus complementary-coverage distinction. The nonexclusive benchmark

thus does not seem to provide an adequate description of their working. Nevertheless, an

important lesson to be drawn is that cross-subsidies between contracts must somehow be

prevented for these markets to run efficiently. As a matter of fact, these markets are subject

to regulation, a key aspect of which is the redistribution of costs between insurers providing

basic coverage. In the light of our analysis, this can be interpreted as a way to prevent

insurers from dumping bad risks on their competitors so as to boost the profits they make

on good risks.

To capture in a parsimonious way the need to prevent cross-subsidies between contracts

at the firm level, we follow Rothschild and Stiglitz (1976), Wilson (1977), and Hellwig (1987)

in assuming that each seller offers at most one contract. The timing of the corresponding

single-contract game is as follows:

1. Each seller k ∈ {1, . . . , n} offers a contract (qk, tk) ∈ R+ × R.

2. After privately learning her type, the buyer selects which contracts to trade with the

sellers, if any.

Given a vector of contract offers ((q1, t1), . . . , (qn, tn)), type i’s problem is then

max

{
Ui

(∑
k∈K

qk,
∑
k∈K

tk

)
: K ⊂ {1, . . . , n}

}
, (19)
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with
∑

∅ = 0 by convention. We use perfect Bayesian equilibrium as our equilibrium concept.

Throughout the analysis, we focus on pure-strategy equilibria.

4.3 Equilibrium: Necessary Conditions

Our first implementation result can be stated as follows.

Theorem 2 Any equilibrium of the single-contract game implements the JHG allocation.

In combination with Theorem 1, Theorem 2 provides a version of the First Welfare

Theorem for our economy: if the single-contract game has an equilibrium, this equilibrium

implements the unique robustly incentive-compatible allocation.

Remark The characterization provided in Theorem 2 differs from the earlier contributions

of Jaynes (1978), Hellwig (1988), and Glosten (1994) in three crucial ways. First, sellers

in our trading game cannot exchange information about the buyer. This contrasts with

Jaynes (1978) and Hellwig (1988), in which such communication is explicitly allowed for and

indeed plays a key role in the characterization of equilibrium. Second, sellers in our trading

game cannot react to the offers of their competitors. This contrasts with Hellwig (1988),

who considers a specific sequential timing for the sellers’ offers. Third, our analysis is fully

strategic. This contrasts with Glosten (1994), whose analysis is entirely based on free-entry

arguments.

A direct implication of Theorem 2 is that any equilibrium of the single-contract game

involves zero expected profit for the sellers. An easy corollary is that any traded contract is

issued at unit price v or v2: that is, each active seller either provides basic coverage to both

types at the average premium rate, or complementary coverage to type 2 only at the fair

premium rate.

An important insight of our analysis is that, as in standard Bertrand competition, no

seller is indispensable in providing types 1 and 2 with their equilibrium utilities: otherwise,

he could earn a strictly positive expected profit by slightly increasing his price. Specifically,

we show in Appendix A that, if any seller withdraws his contract offer, type 1 can still trade

(Q∗
1, T

∗
1 ), while type 2 can still obtain her equilibrium utility by purchasing an amount of

coverage at least equal to Q∗
2. Thus any equilibrium of the single-contract game features free

entry, in the sense that at least one seller is inactive on the equilibrium path.

To examine the implications of this dispensability property, and to focus on the most

relevant scenario for applications, we hereafter restrict attention to the case where the two
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layers Q∗
1 and Q∗

2 − Q∗
1 are positive. That is, the JHG allocation is such that both types

are actively trading and there is no pooling. The following assumption on gains from trade

(GT) is accordingly maintained in the remainder of the analysis.

Assumption GT τ1(0, 0) > v and τ2(Q
∗
1, vQ

∗
1) > v2.

Assumption GT is implicit in the insurance models of Jaynes (1978) and Hellwig (1988).

In fact, in these models where the loss size is the same for both types, the second half of

Assumption GT automatically holds as the first layer Q∗
1 entails less than full coverage. The

same property is satisfied in the coinsurance example. In the case where the first half of

Assumption GT does not hold, the JHG allocation is degenerate with (Q∗
1, T

∗
1 ) = (0, 0) and

is, as shown by Attar, Mariotti, and Salanié (2014), the unique equilibrium allocation of the

arbitrary-menu game.

Under Assumption GT, multiple contracting must take place in equilibrium. Indeed,

as any traded contract is issued at unit price v or v2, type 2 must buy the first layer Q∗
1

from a first group of sellers, and the second layer Q∗
2 − Q∗

1 from a second group of sellers.

Interestingly, the existence of an equilibrium imposes additional restrictions on the relative

size of these layers. To see why, note from the dispensability property that, if Q∗
1 > 0, the

sellers’ aggregate supply at the relatively low price v must exceed Q∗
1. This excess supply

has no value for type 1, as Q∗
1 is her demand at price v. However, it could be attractive for

type 2, who may be interested in purchasing more basic coverage at the average premium

rate. A necessary condition for the existence of equilibrium is thus that type 2 be not willing

to exploit these additional trading opportunities. A second necessary condition is that it be

impossible for a deviating buyer to profitably take advantage of them. These two conditions

can be formulated as follows.

Corollary 1 If the single-contract game has an equilibrium, then the JHG allocation satisfies

U2(Q
∗
2, T

∗
2 ) ≥ U2(2Q

∗
1, 2T

∗
1 ), (20)

Q∗
1 > Q∗

2 −Q∗
1. (21)

Conditions (20)–(21) are most easily understood when only two sellers issue contracts at

unit price v. Because none of them is indispensable, they must each offer a contract equal

to type 1’s equilibrium aggregate trade (Q∗
1, T

∗
1 ). Condition (20) then simply expresses that

type 2 is not willing to trade (Q∗
1, T

∗
1 ) twice on the equilibrium path. Consider now what

happens if condition (21) does not hold. Then some other seller can attract type 2 by offering
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her to purchase an amount of coverage Q∗
2 − 2Q∗

1 at a unit price slightly above v2.
19 Indeed,

combined with the trade (2Q∗
1, 2T

∗
1 ) made available by the two sellers issuing contracts at

unit price v, this offer allows type 2 to pay less than T ∗
2 for her equilibrium coverage Q∗

2.

As this deviation is clearly profitable, condition (21) must hold for an equilibrium to exist.

This logic easily extends when more than two sellers issue contracts at unit price v.

Geometrically, conditions (20)–(21) hold when the aggregate trade (2Q∗
1, 2T

∗
1 ) is located

in the lower contour set of (Q∗
2, T

∗
2 ) for type 2, to the right of (Q∗

2, T
∗
2 ), as illustrated in

Figure 2. This requires that the second layer Q∗
2 − Q∗

1 that type 2 wants to trade at unit

price v2 be sufficiently small relative to the first layer Q∗
1 that both types want to trade at

unit price v. In the Rothschild–Stiglitz economy or in the coinsurance example, this is the

case whenever the loss distributions of type 1 and type 2 are not too different. The testable

implications of these conditions are discussed at greater length in Section 4.5.

4.4 Equilibrium: Sufficient Conditions

Theorem 2 singles out the JHG allocation as the unique candidate equilibrium allocation of

the single-contract game. We now investigate how to construct an equilibrium that indeed

implements this allocation. It is throughout assumed that Assumption GT is satisfied, as

well as the necessary conditions (20)–(21).

We pointed out in Section 3.4.3 that, in these circumstances, cream skimming is possible

if the only feasible trades are (Q∗
1, T

∗
1 ) and (Q∗

2, T
∗
2 ). This more generally holds if all contracts

are issued at unit price v or v2. As this holds for all traded contracts in any equilibrium of

the single-contract game, these contracts must be complemented by latent contracts. Our

goal in this section is to characterize a single latent contract that allows for a minimal

implementation of the JHG allocation. The characterizing property is as follows.

Definition 4 A contract (qℓ, tℓ) deters cream skimming if, for any contract (q, t),

U1(q, t) ≥ U1(Q
∗
1, T

∗
1 ) implies U2(q + qℓ, t+ tℓ) ≥ U2(Q

∗
2, T

∗
2 ). (22)

That is, any contract (q, t) that attracts type 1 also attracts type 2 in combination with

(qℓ, tℓ) when the latter contract is offered by some other seller. Then (q, t) cannot be a

profitable deviation, as it must have a unit price at most equal to v to attract type 1.

Geometrically, (22) states that the translate of the upper contour set of (Q∗
1, T

∗
1 ) for type 1

19 Note that Q∗
2 ̸= 2Q∗

1 if an equilibrium exists. Otherwise, 2T ∗
1 = 2vQ∗

1 < vQ∗
1 + v2(Q

∗
2 −Q∗

1) = T ∗
2 and

type 2 is better off trading (2Q∗
1, 2T

∗
1 ) instead of (Q∗

2, T
∗
2 ).
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along the vector (qℓ, tℓ) lies in the upper contour set of (Q∗
2, T

∗
2 ) for type 2. Our first result

shows that there is a single candidate for (qℓ, tℓ), characterized by

U2(Q
∗
1 + qℓ, T ∗

1 + tℓ) = U2(Q
∗
2, T

∗
2 ), (23)

τ2(Q
∗
1 + qℓ, T ∗

1 + tℓ) = v. (24)

Specifically, the following result holds.

Lemma 1 The contract (qℓ, tℓ) characterized by (23)–(24) is, among the contracts issued

but not traded in equilibrium, the only one susceptible to deter cream skimming.

We now provide a sufficient condition for (22), stated in terms of the Gaussian curvatures

κi ≡
1

∥∂Ui∥3

∣∣∣∣ −∂2Ui ∂Ui

−∂U⊤
i 0

∣∣∣∣
of type 1’s and type 2’s indifference curves (Debreu (1972)).

Assumption C If τ1(Q1, T1) = τ2(Q2, T2), then κ1(Q1, T1) > κ2(Q2, T2).

Assumption C can also be phrased in terms of the Hicksian demand functions Hi(p,u) ≡
min{pQ − T : Ui(Q, T ) ≥ u} associated to each type’s preferences. Indeed, it is equivalent

to the property that H2(p,u2) − H1(p,u1) is strictly decreasing in p for all u1 and u2;

that is, type 2’s Hicksian demand is more sensitive than type 1’s to changes in the price

of insurance, whatever utility levels are used as references. This occurs whenever type 2’s

indifference curves are flatter than type 1’s, once these curves are translated so as to make

them tangent at the point under study.20

The following result then holds.

Lemma 2 If the buyer’s preferences satisfy Assumption C, the contract (qℓ, tℓ) characterized

by (23)–(24) deters cream skimming.

Given the role it plays in our construction, it is natural to ask how restrictive Assumption

C is. A limiting case arises in the Rothschild–Stiglitz economy if the utility function in (2)

has constant absolute risk aversion, so that the buyer’s Hicksian and Marshallian demand

functions coincide.21 One can check that any pair of indifference curves for types 1 and

2 are then translates of each other, which implies that the contract (qℓ, tℓ) deters cream

20Observe the difference with the single-crossing condition, which does not allow for translations.
21Einav, Finkelstein, and Cullen (2010) similarly abstract from income effects in their estimation of the

welfare cost of adverse selection.
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skimming.22 More generally, Assumption C is satisfied if type 1 is uniformly more risk-

averse than type 2 in the sense of Aumann and Serrano (2008). This, however, creates a

tension with Assumption SC, which requires that type 2 be more eager to buy insurance

than type 1. If each type i has constant absolute risk aversion αi, these assumptions are

jointly satisfied if

0 > α2 − α1 >
1

L
ln

(
(1− v2)/v2
(1− v1)/v1

)
,

that is, type 2 is less risk-averse but sufficiently riskier than type 1. We are now ready to

state our minimal-implementation result.

Theorem 3 Suppose the buyer’s preferences satisfy Assumptions GT and C, as well as

conditions (20)–(21). Then, if there are sufficiently many sellers, the single-contract game

has an equilibrium.

Our equilibrium construction relies on three contracts: a basic-coverage contract, (Q∗
1, T

∗
1 ),

a complementary-coverage contract, (Q∗
2−Q∗

1, T
∗
2 −T ∗

1 ), and the latent contract (qℓ, tℓ). The

requirement that there be sufficiently many sellers reflects that no seller can be indispensable

in offering basic or complementary coverage, and that a large enough number of copies of

the latent contract must be available.

In combination with Theorems 1–2, Theorem 3 provides a version of the Second Welfare

Theorem for our economy: under additional conditions on the buyer’s preferences, the single-

contract game has an equilibrium, and this equilibrium implements the unique robustly

incentive-compatible allocation.

4.5 Testable Implications of Equilibrium

Taking into account multiple contracting yields new testable implications, compared to those

of the exclusive-contracting benchmark. The key difference is that in the latter case, whether

data are collected from consumer surveys or from the trade records of a single insurer makes

no difference, because each consumer’s demand for coverage must be met by a single contract,

sold by a single insurer. However, when multiple contracting is allowed, the second approach

yields strikingly different results, as we now argue.

Since Chiappori and Salanié (2000), many empirical studies have tested the validity of

the positive-correlation property, which states that, under adverse selection, there should be

22The same property of indifference curves is satisfied when the buyer’s preferences have the quadratic
representation (4).
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a positive correlation between the coverage purchased by a consumer and her risk. Due to

the single-crossing assumption, this property still holds in our setting when one considers

the aggregate coverage bought by a consumer: indeed, riskier consumers are also those that

are more eager to buy more insurance.23 The Rothschild and Stiglitz (1976) model also

yields the prediction that, in a separating equilibrium, the unit price of coverage should be

increasing, as each consumer pays the fair price, v1 or v2, associated to his type. Under

multiple contracting, this property also holds for the JHG allocation, though in a less clear-

cut manner. Indeed, the unit price paid by the low-risk consumer is v, while the unit price

paid by the high-risk consumer lies between v and v2, so that the difference is bound to be

lower than v2 − v1. In other words, multiple contracting reduces the convexity of the tariff

for aggregate coverage, as observed on consumer surveys.

However most studies do not rely on consumer surveys, which are often imprecise and

limited in size, but instead use records from a subset of insurance companies. We now

examine what difference this makes under multiple contracting, based on our analysis of the

single-contract game. Recall that our equilibrium construction relies on the basic-coverage

contract (Q∗
1, T

∗
1 ), with unit price v, the complementary-coverage contract (Q∗

2−Q∗
1, T

∗
2 −T ∗

1 ),

with unit price v2, and the latent contract (qℓ, tℓ). Now, under conditions (20)–(21), which

are necessary for an equilibrium to exist, the following inequalities hold:

Q∗
1 > qℓ > Q∗

2 −Q∗
1 and

T ∗
1

Q∗
1

<
tℓ

qℓ
<

T ∗
2 − T ∗

1

Q∗
2 −Q∗

1

.

That is, contracts that offer higher amounts of coverage have a lower unit price. Therefore,

a testable implication of equilibrium is that, although consumers end up paying quantity

premia for their aggregate coverage, the individual contracts offered by insurers exhibit

quantity discounts.

This striking result stands in stark contrast with the natural intuition that allowing

for multiple contracting should push consumers towards splitting their demands between

insurers.24 The reason why, in our competitive setting, insurers end up proposing quantity

discounts is that the basic layer of coverage must be larger than the complementary one

to prevent high-risk consumers from trading several basic policies with different insurers.25

Each consumer then finds in her own interest to concentrate her trades on a minimum

23Chiappori, Jullien, Salanié and Salanié (2006) show that this property, and similar ones, can also be
derived in much more general settings from a simple inequality on equilibrium profits, even when single
crossing is not postulated.

24See, for instance, Chiappori (2000) for an articulation of this view.
25This explanation for quantity discounts differs from that proposed by Biais, Martimort, and Rochet

(2000) and Chade and Schlee (2012) when they study the case of a monopolistic insurer as in Stiglitz (1977).
In both papers, the shape of the hazard rate of the distribution of types plays an essential role.
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number of contracts. The key is that insurers together only offer a few contracts, which the

consumer can combine. Low-risk consumers then end up trading a single contract, while

high-risk consumers end up trading two different contracts.

This contrast, under multiple contracting, between the implications of equilibrium for the

demand and supply sides of the market is also relevant for the positive-correlation property.

Indeed, a novel testable implication of equilibrium is that, with data originating from a single

insurer, one should now observe a negative correlation between risk and coverage, because the

relatively small complementary layer of coverage is only purchased by high-risk consumers.

Finally, a robust prediction of our analysis is that, conditionally on buying basic coverage, a

consumer should on average appear as riskier if she also buys further coverage from another

insurer: consumers holding more than one insurance policy are on average more likely to

experience a greater level of loss.

These observations are useful when considering the empirical evidence, as exemplified by

the work of Cawley and Philipson (1999) on life insurance or that of Cardon and Hendel

(2001) on health insurance. Because the reference model in those papers is the exclusive-

competition model of Rothschild and Stiglitz (1976), the distinction between demand- and

supply-side approaches stressed above is overlooked. As a result, the absence of quantity

premia or the failure of the positive-correlation property are interpreted as rejecting the

presence of adverse selection on life- and health-insurance markets. Yet, because multiple

contracting is allowed and even prevalent on these markets, one must be careful when testing

for the existence of quantity premia or for the positive-correlation property: in principle,

one would need to observe, for each consumer, her aggregate coverage and her aggregate

premium. In particular, checking only the contracts offered by insurers or the contracts sold

by a given insurer can be insufficient and even misleading. A careful empirical analysis is

beyond the scope of the present paper, but it would certainly be worth proceeding to this

task while taking all precautions to ensure that data are comprehensive.26

5 Public Intervention

In this section, we discuss why, in the light of our analysis, public intervention in insurance

markets may be needed and which forms it can take. We then argue that our results are

more generally relevant for public intervention in financial markets.

26At least one of the econometric treatments performed in Cawley and Philipson (1999) seems to escape
this criticism, as it is based on a consumer survey (AHEAD) that includes information on aggregate demand.
For a recent and positive test for adverse selection using the same data, see He (2009).

28



5.1 Why Markets May Fail

Our implementation of the JHG allocation suggests that the observed prevalence of multiple

contracting in insurance markets can in principle be reconciled with the existence of adverse

selection. Yet competition under adverse selection may fail to lead to an equilibrium in a

relevant set of circumstances. First, the equilibrium construction provided in Section 4.4

crucially exploits the properties of a specific class of consumers’ preferences. Second, and

more fundamentally, the necessary conditions for equilibrium derived in Section 4.3 impose

severe restrictions on each consumer type’s willingness to trade. In particular, high-risk

consumers should find it optimal to trade only a relatively small layer of complementary

coverage on top of the layer of basic coverage.

Overall, the impossibility to prevent consumers from simultaneously trading with several

insurers fundamentally alters the standard view of decentralization. On the one hand, as

discussed in Section 3.4, redistribution between different consumer types is made impossible:

the JHG allocation is the only budget-balanced allocation implementable by an entry-proof

tariff. On the other hand, the market mechanism, based on competition among private

insurers, may fail to perform its allocative role. Thus public intervention may be needed to

implement the only allocation robust to competition from the private sector.

Theoretically, a straightforward way to implement the JHG allocation is for the state to

post the tariff (15). The supply of public insurance then effectively dissuades any private

insurer from proposing additional trades. However, public intervention need not involve such

a complete crowding out of the private sector, and can instead help stabilize the market.

Indeed, as we now discuss, our multiple-contracting framework can accommodate several

forms of coexistence between public and private insurance. This may, in particular, shed

light on several existing health-insurance systems in which private coverage complements

public insurance.27

5.2 Mandatory Insurance

Different forms of mandatory health insurance, whereby consumers are not allowed to remain

uninsured, are in place in France, Germany, Japan, Netherlands, and Switzerland. The

modalities of mandatory insurance vary from country to country. It can be publicly provided,

as in France; privately provided, as in Japan, Netherlands, or Switzerland; or consumers can

27In this context, private coverage is said to complement public insurance when it covers all or part of
the residual nonreimbursed costs in the form of copayment or cost sharing. We refer to the surveys of
Thomson and Mossialos (2009) and Thomson, Osborne, Squires, and Jun (2013) for institutional details and
cross-country evidence.
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have the choice to opt out from the public-insurance system to buy basic coverage designed

and priced by private insurers, as in Germany. Mandatory insurance can be complemented

by additional, privately-provided coverage, such as mutuelles in France.

In the context of our model, one can think of mandatory insurance as a situation in

which it is compulsory for each consumer to purchase the layer of basic coverage Q∗
1 at price

T ∗
1 , independently of any additional coverage that she may privately purchase. The contract

(Q∗
1, T

∗
1 ) can be provided by the state or by private insurers in a cost-effective way. Given

this obligation, private insurers then engage in Bertrand competition for complementary

insurance services.

In equilibrium, at least two insurers stand ready to sell any amount of complementary

coverage at the fair premium rate v2, allowing high-risk consumers to trade according to

the JHG allocation. Mandatory insurance acts as a threat against deviations and entry.

Indeed, to profitably attract low-risk consumers, an insurer should issue a contract that, in

combination with (Q∗
1, T

∗
1 ), yields them at least utility U1(Q

∗
1, T

∗
1 ). In this case, however,

the deviating contract is also traded by high-risk consumers, who can complement it with

additional coverage provided by some other insurer. Equilibrium existence is thus restored

and the market fulfills its allocative role: basic mandatory coverage is either provided by the

state or the private sector, while complementary coverage is provided by the private sector.28

5.3 Public Versus Private Insurance

Mandatory health insurance schemes require to identify and penalize both the consumers

who choose to remain uninsured, and the insurers who deny coverage to some consumers.

In practice, this raises the question of their enforceability.29 Moreover, allowing consumers

to opt out from the public-insurance system and turn instead to private insurers for basic

coverage, as in Germany, creates an incentive to cream skim low-risk consumers.30

Our analysis, however, suggests an alternative policy proposal that does not require

28The role of mandatory insurance under adverse selection has been so far only analyzed under exclusive
contracting. Mandatory insurance is evoked in Akerlof (1970), and has been the focus of much empirical
work (Finkelstein (2004), Einav, Finkelstein, and Cullen (2010), Einav and Finkelstein (2011)). Wilson
(1977), Dahlby (1981), and Crocker and Snow (1985a) show that making basic coverage mandatory and
simultaneously allowing private insurers to compete on an extended coverage allows one to reach a second-
best outcome. Villeneuve (2003) performs a similar analysis under nonexclusive contracting, but in a model
that assumes linear pricing.

29A key reference is provided by the recent discussion of the system of penalties associated to the Affordable
Care Act (see https://www.treasury.gov/tigta/auditreports/2015reports/201543030fr.pdf).

30In line with this point, Thomson, Osborne, Squires, and Jun (2013, page 57) note that “Especially for
young people with a good income, [...] [privately offered basic coverage] [...] is attractive, as the insurance
may offer contracts with more extensive ranges of services and lower premiums.”
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such a legal requirement. Indeed, a less intrusive form of public intervention has the state

offering any amount of basic coverage up to Q∗
1 at the average premium rate v. As any

private insurer is ready to sell any amount of coverage at the high premium rate v2, the

state together with any of them make available the entry-proof tariff (15). Thus no private

insurer has an incentive to deviate and entry is impossible. The JHG allocation is thereby

implemented by a mix of public and private insurance, while letting consumers free to choose

their preferred level of coverage. This is reminiscent of the universal healthcare vouchers

advocated by Emanuel and Fuchs (2005, 2007), whereby universal coverage is provided,

while letting consumers free to purchase additional services or amenities.

Public intervention thus need not interfere with the choices of consumers, who can remain

sovereign in their decisions to purchase insurance. Neither are taxes or subsidies needed.31

This contrasts with policy recommendations from exclusive models of competitive insurance

markets under adverse selection: in our setting, competition is powerful enough to select

a unique equilibrium in which prices efficiently reflect costs—though this rule applies to

successive layers of insurance and not to the aggregate coverage bought by each type of

consumer.

5.4 Financial Markets

In the aftermath of the recent crisis, the design of public intervention under the threat

of adverse selection has become a central issue for the regulation of credit and interbank

markets. In particular, the opportunity for agents to opt out of a public program and trade

in private markets has been acknowledged as a key constraint for the design of financial

institutions. In this respect, the recent works of Philippon and Skreta (2012) and Tirole

(2012) suggest a foundation for liquidity-injection programs that provide a credible signal to

uninformed lenders by rejuvenating the relevant markets. The logic underlying their results

can be summarized as follows. First, assuming that lenders and informed borrowers have

linear preferences over the traded assets, market equilibria in the absence of any intervention

feature the market unravelling originally described by Akerlof (1970). Second, assuming that

public and private liquidity are mutually exclusive, an optimal intervention consists in the

state attracting only the least profitable borrowers, either through direct lending (Philippon

and Skreta (2012)), or by repurchasing low-quality assets (Tirole (2012)). By participating

in a bailout program, a borrower may however end up signalling her financial weakness to

the market, crucially affecting her reputation. A large literature has analyzed the potentially

31See Crocker and Snow (1985b) for a study of taxes and subsidies under exclusive contracting.
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perverse implications of such a stigma effect.32

In modern financial markets, however, borrowers’ choices are not limited to opting out

of a public program or exclusively participating to it, because they have the opportunity

to complement such a program with additional funds raised on private markets. Focusing

on the US interbank market over the 2007–2010 period, Armantier, Ghysels, Sarkar, and

Shrader (2015) document how banks combine their loans at the Fed Discount Window with

additional funding raised on ABCP and Repo markets, which exhibit similar lending terms

with respect to eligibility, collateral and maturity.33 To the extent that these practices

create an effective threat for the state, our results offer novel insights for the design of

public intervention under adverse selection. In these contexts, as long as borrowers are risk-

averse, the absence of any intervention may imply the nonexistence of a market equilibrium.34

Thus, public intervention is not needed to unfreeze the market, but rather to guarantee its

functioning. To achieve this goal, a program must successfully discipline lenders’ strategic

behavior, preventing them from engaging in dumping practices. This would require public

liquidity provision to involve a price sufficiently low, v, so as to attract the most profitable

borrowers, corresponding to type-1 buyers in our model, and a borrowing limit Q∗
1 such that

no overborrowing by the least profitable ones is possible. Overall, such an intervention would

achieve budget balance, unlike those proposed by Philippon and Skreta (2012) and Tirole

(2012), and induce all types of borrowers to participate. This in turn would make it harder

to infer their individual financial conditions, mitigating the impact of the stigma effect.

6 Conclusion

In modern economies, the insurance sector plays a key role by allowing agents to share risk.

Because those risks are often private information, the properties of equilibrium allocations,

and in fact the very existence of equilibrium, are still the subject of a lively debate among

academics. The absence of consensus on the justifications and on the right design of public

intervention may also be related to the fact that different countries display strikingly different

regulatory systems for, in particular, health insurance. In this paper, we have proposed to

put multiple contracting at the center stage of the analysis. We have characterized a robustly

incentive-compatible allocation, and we have analyzed whether and how competition between

32See Gorton (2015) for a survey.
33Relatedly, Berger, Black, Bouwman, and Dlugosz (2016) show how, in the same period, the banks’ relying

on both the Fed’s Discount Window and Term Auction Facility liquidity programs significantly increased
their aggregate lending.

34In the terminology of Hendren (2014), this is an instance of unravelling of market equilibrium.
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private insurers allows to implement it. Our equilibrium construction opens a new and rich

avenue for empirical research. We also hope that our policy proposals may renew the existing

policy debates about health insurance, and more generally about the management of financial

markets plagued by adverse selection.
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Online Appendix A: Proofs of the Main Results

Proof of Theorem 1. The only thing that remains to prove is that, given the tariff T P

offered by the planner and the tariff TE offered by the entrant, there exist a pair of solutions

(qP1 , q
E
1 ) and (qP2 , q

E
2 ) to (5) for i = 1, 2 such that qE2 ≥ qE1 . In line with Attar, Mariotti, and

Salanié (2015), notice that each type i evaluates any pair (qE, tE) she may trade with the

entrant through the indirect utility function

zi(q
E, tE) ≡ max{Ui(q

P + qE, T P (qP ) + tE) : qP ≥ 0}. (25)

Observe that the maximum in (25) is always attained and that, if (qPi , q
E
i ) is a solution to

(5), then qEi maximizes zi(q
E, TE(qE)) with respect to qE. As shown in Attar, Mariotti, and

Salanié (2015), the convexity of the tariff T P and Assumption SC together imply that the

functions zi satisfy the following single-crossing property: for all qE ≤ qE, tE, and tE,

z1(q
E, tE) < z1(q

E, tE) implies z2(q
E, tE) < z2(q

E, tE). (26)

We then obtain the desired result by a standard monotone-comparative-statics argument:

indeed, suppose, by way of contradiction, that qE2 < qE1 at any pair of solutions (qP1 , q
E
1 ) and

(qP2 , q
E
2 ) to (5) for i = 1, 2. Therefore, at any such pair, z1(q

E
2 , T

E(qE2 )) < z1(q
E
1 , T

E(qE1 )), so

that, according to (26), z2(q
E
2 , T

E(qE2 )) < z2(q
E
1 , T

E(qE1 )). But then, according to the above

observation, trading qE2 with the entrant cannot be part of a solution to (5) for type 2, a

contradiction. Hence the result. �

Proof of Theorem 2. Suppose an equilibrium exists, and let ((Q1, T1), (Q2, T2)) be the

equilibrium allocation. On the equilibrium path, we can partition the set of sellers into K∅∅,

the subset of sellers who trade with neither type 1 nor type 2, K1∅, the subset of sellers

who trade with type 1 only, K∅2, the subset of sellers who trade with type 2 only, and K12,

the subset of sellers who trade with both type 1 and type 2. If the subset K∅∅ of inactive

sellers is nonempty, then any such seller can behave as an entrant, and the first step of

the proof of Theorem 1 implies that the equilibrium allocation ((Q1, T1), (Q2, T2)) coincides

with the JHG allocation ((Q∗
1, T

∗
1 ), (Q

∗
2, T

∗
2 )). The bulk of the argument consists in showing

that any candidate equilibrium in which K∅∅ is empty and hence all sellers are active also

implements the JHG allocation. We later show that this property actually implies that such

an equilibrium cannot exist, and thus that any equilibrium involves some inactive sellers.

The proof consists of three steps.

Step 1 Suppose first that, in the candidate equilibrium under consideration, K1∅ is empty
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and there are at least two sellers in K12. Then the buyer’s aggregate trade (Q12, T12) with

the sellers in K12 coincides with (Q1, T1). Now, each seller k ∈ K12 can claim the aggregate

expected profit T1 − vQ1 by deviating to (Q1, T1 − ε), for some positive and small enough

ε. But then, denoting by bk seller k’s equilibrium expected profit, it follows that bk ≥
T1− vQ1 =

∑
k′∈K12

bk
′
for all k ∈ K12, so that any seller k ∈ K12 earns zero expected profit,

bk = tk − vqk = 0, and T1 = vQ1.

This observation implies that, in analogy with (11),

U1(Q1, T1) ≥ max{U1(Q, vQ) : Q ≥ 0}. (27)

Otherwise, any seller in K12 can deviate to (Q∗
1, vQ

∗
1 + ε), for some positive and small

enough ε, a contract that attracts type 1 and is profitable even if it also attracts type 2, a

contradiction. Hence (27) holds. Additionally, we have T1 = vQ1, so that (27) holds with

equality. This uniquely pins down Q1, which must coincide with Q∗
1 by (7).

Now, because Q∗
1 is the demand of type 1 at price v and the sellers in K12 trade (Q

∗
1, vQ

∗
1)

in the aggregate, any seller k ∈ K12 is indispensable for type 1 to reach her equilibrium utility.

Indeed, if some seller k ∈ K12 withdraws his contract offer (qk, vqk), type 1 can only trade

with the other sellers in K12, who sell at unit price v but whose aggregate supply is strictly

less than Q∗
1, or with the sellers in K2, who sell at a unit price no less than v2 > v. Therefore,

if seller k deviates to (qk, vqk+ε), for some positive and small enough ε, he still attracts type

1. Yet this contract is profitable even if it also attracts type 2, a contradiction. This shows

that, in any candidate equilibrium in which all sellers are active, one cannot simultaneously

have K1∅ empty and at least two sellers in K12.

Step 2 A direct implication of Step 1 is thatK∅2 is nonempty in any candidate equilibrium

in which all sellers are active. Otherwise Q2 = Q12, which, as Q2 ≥ Q1 by Assumption SC

and Q1 ≥ Q12 by construction, implies that Q1 = Q2 = Q12; but then all sellers belong to

K12, which contradicts Step 1. We now discuss the possible cases for K∅2, starting in this

step with the case in which it contains a single seller k.

In this case, seller k behaves as a monopolist for the layer Q2 − Q12. In particular, he

cannot increase tk, so that the sellers other than k must offer some aggregate trade (Q−k, T−k)

such that U2(Q
−k, T−k) = U2(Q2, T2). As these sellers are exactly those who sell to type 1,

one must have Q−k ≤ Q1. Moreover, Assumption SC applied to the case where the buyer

only faces the sellers other than k implies that one must have Q−k ≥ Q1. It follows that

Q−k = Q1 ≤ Q2 and thus that U2(Q1, T1) = U2(Q2, T2).

We next prove that Q2 > Q1 > Q12. The proof is by contradiction, starting from the
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observation that Q2 ≥ Q1 ≥ Q12. First, if Q1 = Q2, then the layer Q1 − Q12 = Q2 − Q12

is traded both by seller(s) in K1∅ and by the single seller k in K∅2, so that one must have

T1 = T2. But then seller k can slightly reduce tk in order to profitably attract both types,

a contradiction. Hence Q2 > Q1. Second, if Q12 = Q1, then K1∅ is empty. However, by

assumption, all n ≥ 3 sellers are active and there is a single seller in K∅2. Thus there must

be at least two sellers in K12 if K1∅ is empty, which contradicts Step 1. Hence, overall,

Q2 > Q1 > Q12, as claimed.

It follows from this observation that the single seller k in K∅2 can, instead of offering

(Q2 − Q12, T2 − T12), deviate to (Q2 − Q1, T2 − T1 − ε), for some positive ε. This contract

attracts type 2, along with the contracts proposed by the sellers in K1∅ ∪ K12. Hence one

must have, letting ε go to zero,

T2 − T12 − v2(Q2 −Q12) ≥ T2 − T1 − v2(Q2 −Q1)

or, equivalently,

T1 − T12 ≥ v2(Q1 −Q12). (28)

Thus sellers in K1∅ sell at a unit price at least equal to v2. This, in turn, implies that K12 is

empty. Otherwise, any seller in k′ ∈ K12 can deviate to (qk
′
+Q1 −Q12, t

k′ + T1 − T12 − ε),

for some positive ε. This contract attracts type 1, along with the contracts proposed by the

sellers in K12 other than k′. Moreover, because U2(Q2, T2) = U2(Q1, T1), it also attracts type

2, along with the same contracts. As the layer Q1 −Q12 is sold at a unit price at least equal

to v2, this deviation is profitable for ε small enough, a contradiction. Hence K12 is empty,

as claimed.

Because, by assumption, all n ≥ 3 sellers are active and there is a single seller in K∅2,

and because, as just shown, K12 is empty, there must be at least two sellers in K1∅. Any

such seller can deviate to (Q1, T1 − ε), for some positive ε, thus attracting both types as

U2(Q2, T2) = U2(Q1, T1). Therefore, one must have, for each k′ ∈ K1∅,

m1(t
k′ − v1q

k′) ≥ T1 − vQ1.

Summing over k′ ∈ K1 yields

m1(T1 − v1Q1) ≥ |K1|(T1 − vQ1)

or, equivalently,

0 ≥ (|K1| − 1)(T1 − vQ1) +m2(T1 − v2Q1).
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But, as |K1| ≥ 2 and T1 ≥ v2Q1 by (28) along with the fact that K12 is empty, the first

term on the right-hand side of this inequality is strictly positive and the second term is

nonnegative, a contradiction. Hence there exists no equilibrium in which all sellers are

active and K∅2 contains a single seller.

Step 3 Suppose finally that there are at least two sellers inK∅2. These sellers can undercut

each other to attract type 2, so that they earn zero profit. Hence any of them can behave

as an entrant to attract type 1, from which (27) follows. Moreover, in analogy with (9),

U2(Q2, T2) ≥ max{U2(Q1 +Q, T1 + v2Q) : Q ≥ 0}. (29)

Otherwise, letting Q be the solution to the problem on the right-hand side of (29), any seller

in K∅2 can deviate to (Q, v2Q + ε), for some positive and small enough ε, a contract that

attracts type 1 and is profitable even if it also attracts type 2, a contradiction. Thus both

(27) and (29) hold, and one can conclude as in the proof of Theorem 1 that the equilibrium

allocation coincides with the JHG allocation. Hence the result.

We provide below additional properties that are satisfied by any equilibrium, and that

are mentioned in the discussion of Theorem 2.

First, because the equilibrium allocation coincides with the JHG allocation, which makes

zero expected profit, each seller earns zero expected profit in equilibrium. Hence the sellers

in K12 sell at unit price v and the sellers in K∅2 sell at unit price v2. If there are some sellers

in K1∅, then they must sell at unit price v1. But, as the coverage Q∗
1 for type 1 is jointly

provided at unit price v by the sellers in K1∅∪K12, it follows that K1∅ is empty. As a result,

any traded contract is issued at unit price v or v2. Hence, in any equilibrium, the situation

is the following:

1. If Q∗
1 > 0, then sellers in K12 together supply Q∗

1 at unit price v. None of these sellers can

be indispensable for type 1 to reach her equilibrium utility, as characterized by (7). Therefore,

for each k ∈ K12, the sellers other than k must offer some aggregate trade (Q−k, T−k) such

that U1(Q
−k, T−k) = U1(Q

∗
1, T

∗
1 ). We prove below that Q−k = Q∗

1.
35 Thus, if any seller in

K12 withdraws his contract offer, type 1 can still trade (Q∗
1, T

∗
1 ). As the other active sellers

cannot together propose (Q∗
1, T

∗
1 ), this shows that K∅∅ is nonempty: any equilibrium involves

inactive players and thus features free entry.

To prove the claim, suppose, by way of contradiction, that Q−k ̸= Q∗
1. Then, from (7)–(8)

and the strict quasiconcavity of U1, one must have T−k−T ∗
1 < v(Q−k−Q∗

1) or, equivalently,

35A similar proof of this claim appears in Attar, Mariotti, and Salanié (2014).
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T−k < vQ−k. We distinguish three cases.

(i) If Q−k < Q∗
1, then seller k can deviate to (Q∗

1 −Q−k, T ∗
1 − T−k − ε), for some positive

and small enough ε. This contract attracts type 1 along with the aggregate trade

(Q−k, T−k) and, because T−k − T ∗
1 < v(Q−k − Q∗

1), it is profitable even if it also

attracts type 2, a contradiction.

(ii) If Q∗
1 < Q−k < Q∗

2, then seller k can deviate to (Q∗
2 − Q−k, T ∗

2 − T−k − ε), for some

positive and small enough ε. This contract attracts type 2 along with the aggregate

trade (Q−k, T−k) and, because

T ∗
2 − T−k − v2(Q

∗
2 −Q−k) > T ∗

2 − v2Q
∗
2 + (v2 − v)Q−k = (v2 − v)(Q−k −Q∗

1) > 0,

it is profitable even if it does not attract type 1, a contradiction.

(iii) Suppose finally that Q−k ≥ Q∗
2. Because type 2 is not attracted by (Q−k, T−k), one

must have U2(Q
−k, T−k) ≤ U2(Q

∗
2, T

∗
2 ), and because T−k < vQ−k, one must have

Q−k > Q∗
2. By Assumption SC, we get that U1(Q

−k, T−k) < U1(Q
∗
2, T

∗
2 ), which, as

U1(Q
∗
2, T

∗
2 ) ≤ U1(Q

∗
1, T

∗
1 ) by revealed preference on the equilibrium path, contradicts

the assumption that U1(Q
−k, T−k) = U1(Q

∗
1, T

∗
1 ).

This proves that Q−k = Q∗
1, as claimed. Note that the reasoning in (i) more generally shows

that no contract (qk
′
, tk

′
) such that qk

′ ≤ Q∗
1 and tk

′
< vqk

′
can be issued in equilibrium.

Thus (Q∗
1, T

∗
1 ) can only be obtained through contracts with unit price v.

2. If Q∗
2 > Q∗

1, then sellers in K∅2 together supply Q∗
2 −Q∗

1 at unit price v2. None of these

sellers can be indispensable for type 2 to reach her equilibrium utility, as characterized by

(9). Therefore, for each k ∈ K∅2, the sellers other than k must offer some aggregate trade

(Q−k, T−k) such that U2(Q
−k, T−k) = U2(Q

∗
2, T

∗
2 ). We prove below that Q−k ≥ Q∗

2. Notice

that, unlike for type 1, the equilibrium aggregate trade (Q∗
2, T

∗
2 ) of type 2 need not remain

available if any of the sellers who trade with her withdraws his contract offer.36 As the other

active sellers’ together supply less than Q∗
2, this shows again that K∅∅ is nonempty.

To prove the claim, suppose, by way of contradiction, that Q−k < Q∗
2. Then, from (9)–

(10) and the strict quasiconcavity of U2, one must have T−k − T ∗
2 < v2(Q

−k − Q∗
2). Then

seller k can deviate to (Q∗
2−Q−k, T ∗

2 −T−k − ε), for some positive and small enough ε. This

contract attracts type 2 along with the aggregate trade (Q−k, T−k) and is profitable even if

it does not attract type 1, a contradiction. �
36In Attar, Mariotti, and Salanié (2014), this property was satisfied because trades of negative quantities

were allowed, which is not the case in our setting.

38



Proof of Corollary 1. Fix an equilibrium of the single-contract game, assuming that such

an equilibrium exists. Let Kv be the set of sellers issuing contracts at unit price v and, for

each k ∈ Kv, let α
k ≡ qk/Q∗

1. Fix some k ∈ Kv ∩K12, so that, in particular, 0 < αk ≤ 1.

Because, as shown in the proof of Theorem 2, type 1 can still trade (Q∗
1, T

∗
1 ) if any seller in

K12 withdraws his contract offer, and no contract (qk
′
, tk

′
) such that qk

′ ≤ Q∗
1 and tk

′
< vtk

′

can be issued in equilibrium, there must exist K−k
v ⊂ Kv \ {k} such that

∑
k′∈K−k

v
αk′ = 1.

Therefore, we have

1 <
∑

k′∈K−k
v

αk′ + αk = 1 + αk ≤ 2.

Note that the aggregate trade ((1+αk)Q∗
1, v(1+αk)Q∗

1) is available on the equilibrium path,

so that

U2(Q
∗
2, T

∗
2 ) ≥ U2((1 + αk)Q∗

1, (1 + αk)vQ∗
1). (30)

Moreover, because some sellers trade contracts with unit price v2, there exists some seller

k′′ ̸∈ K−k
v ∪ {k}. To conclude the proof, we only need to show that

(1 + αk)Q∗
1 > Q∗

2. (31)

Indeed, along with (30), (31) implies that 2Q∗
1 > Q∗

2, which is (21), and, in turn, that

U2(Q
∗
2, T

∗
2 ) ≥ U2(2Q

∗
1, 2vQ

∗
1), which is (20). To establish (31), observe first that, because

T ∗
2 > vQ∗

2, (1+αk)Q∗
1 ̸= Q∗

2. Let us suppose, by way of contradiction, that (1+αk)Q∗
1 < Q∗

2.

Then any seller k′′ ̸∈ {k} ∪K−k
v can deviate to (Q∗

2 − (1 + αk)Q1, T
∗
2 − v(1 + αk)Q1 − ε), for

some positive and small enough ε. This contract attracts type 2 along with the aggregate

trade ((1 + αk)Q∗
1, (1 + αk)vQ∗

1) and, because

T ∗
2 − v(1 + αk)Q∗

1 − v2[Q
∗
2 − (1 + αk)Q∗

1] > T ∗
2 − v2Q

∗
2 + (v2 − v)(1 + αk)Q∗

1

= (v2 − v)αkQ∗
1

> 0,

it is profitable even if it does not attract type 1, a contradiction. Hence the result. �

Proof of Lemma 1. If a contract (qℓ, tℓ) deters cream skimming, then, by (22) applied to

(q, t) = (Q∗
1, T

∗
1 ), we have U2(Q

∗
1 + qℓ, T ∗

1 + tℓ) ≥ U2(Q
∗
2, T

∗
2 ). But this inequality cannot be

strict if the contract (qℓ, tℓ) is issued but not traded in equilibrium, because, otherwise, type

2 would be better off trading it on top of type 1’s aggregate trade (Q∗
1, T

∗
1 ). Hence (23).

Next, by (22), the translate of the upper contour set of (Q∗
1, T

∗
1 ) for type 1 along the vector
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(qℓ, tℓ) lies in the upper contour set of (Q∗
2, T

∗
2 ) for type 2. As these two sets intersect at

(Q∗
1 + qℓ, T ∗

1 + tℓ) by (23), we obtain along the lines of Benveniste and Scheinkman (1979,

Lemma 1) that the slope of type 2’s equilibrium indifference curve at (Q∗
1+ qℓ, T ∗

1 + tℓ) must

equal the slope of type 1’s equilibrium indifference curve at (Q∗
1, T

∗
1 ), that is, v. Hence (24).

The result follows.

For future reference, note that Assumption GT and condition (20) ensure the existence

and uniqueness of the contract (qℓ, tℓ) and also imply Q∗
1 > qℓ. Moreover, because the slope

of type 2’s equilibrium indifference curve is higher at (Q∗
2, T

∗
2 ) than at (Q∗

1 + qℓ, T ∗
1 + tℓ), one

must have qℓ > Q∗
2 −Q∗

1. The unit price tℓ/qℓ is therefore above v and below v2. �

Proof of Lemma 2. We shall hereafter slightly abuse notation by indentifying each type’s

equilibrium indifference curve with its functional expression T = I∗
i (Q). Recalling that

I∗
2 (Q

∗
1 + qℓ) = I∗

1 (Q
∗
1) + tℓ, we only need to prove that the translate of I∗

1 along the vector

(qℓ, tℓ) lies below I∗
2 . For this, it is enough to show that

∂I∗
1 (Q) ≷ ∂I∗

2 (Q+ qℓ) if Q ≶ Q∗
1.

A sufficient condition for this is the following single-crossing property:

∂I∗
1 (Q) = ∂I∗

2 (Q+ qℓ) implies ∂2I∗
1 (Q) < ∂2I∗

2 (Q+ qℓ).

which, under Assumption C, is a direct implication of the identities

τi = ∂I∗
i ,

κi = − ∂2I∗
i

[1 + (∂I∗
i )

2]3/2
.

The result follows. �

Proof of Theorem 3. Suppose that two sellers offer the contract c ≡ (Q∗
1, T

∗
1 ), two sellers

offer the contract c′ ≡ (Q∗
2 − Q∗

1, T
∗
2 − T ∗

1 ), and sufficiently many sellers offer the contract

cℓ ≡ (qℓ, tℓ) characterized by (23)–(24). We derive below a bound for this number beyond

which existence of an equilibrium is guaranteed. The proof consists of three steps.

Step 1 The first thing we have to check is that each buyer type chooses to trade according

to the JHG allocation, given the supply of contracts just defined. Consider first type 1.

Because τ1(c1) = v, c is her most preferred contract with unit price v. As all offered contracts

have unit prices at least equal to v, trading a single contract c is thus optimal for type 1.
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Consider next type 2. Because τ2(c + c′) = v2, and the unit price v2 of c′ is strictly higher

than the unit price v of c, she is strictly worse off trading only contracts c′ than trading

a contract c along with a contract c′. Thus type 2 optimally trades at least one contract

c. Moreover, if she trades exactly one contract c, it is optimal for her to trade in addition

exactly one contract c′. To prove that she cannot be strictly better off trading c twice, note

that, because, by (20)–(21), 2c is located in the lower contour set of c+ c′ for type 2, to the

right of the line with slope v2 going through c+ c′, and because τ2(c+ c′) = v2, τ2(2c) must

be lower than the unit price v2 of c′. This, together with (20), implies that trading c twice,

possibly along with one or two contracts c′, cannot yield type 2 a higher utility than trading

a contract c along with a contract c′. Finally, as U2(c+cℓ) = U2(c+c′), we only need to check

that, if type 2 trades cℓ once, the optimal thing for her to do is to combine this contract cℓ

with exactly one contract c. Indeed, because τ2(c + cℓ) = v, c is, among all contracts with

unit price v, the best that type 2 can combine with cℓ. As all offered contracts have unit

prices at least equal to v, trading a single contract c is, therefore, the unique optimal choice

for type 2 once she has traded cℓ. Thus, given the contracts offered, each buyer type chooses

to trade according to the JHG allocation, as claimed.

Step 2 We next check that any deviation that attracts type 2 is unprofitable.

First, we show that there is no profitable deviation for a seller that attracts both types.

Indeed, to be profitable, the corresponding contract c̃ would need to have a unit price strictly

higher than v. However, recall that τ1(c) = v and that all offered contracts have unit prices

at least equal to v. Trading c̃ would then yield type 1 a strictly lower utility than trading a

single contract c, which remains feasible following any seller’s unilateral deviation. Such a

deviation is thus not possible.

Second, we show that there is no profitable deviation for a seller that only attracts type

2. Indeed, to be profitable, the corresponding contract c̃ would need to have a unit price

strictly higher than v2. However, recall that τ2(c+c′) = v2 and that, as shown in Step 1, type

2 cannot gain from combining any contract with unit price strictly higher than v2 with 2c.

Trading c̃, possibly along with some contracts c or c′, would then yield type 2 a strictly lower

utility than trading a contract c along with a contract c′, which remains feasible following

any seller’s unilateral deviation. The possibility remains that type 2 combines cℓ with c̃.

However, as all offered contracts have unit prices at least equal to v, and strictly so for c̃,

trading a single contract c is the unique optimal choice for type 2 once she has traded cℓ, as

shown in Step 1. Such a deviation is thus not possible.
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Step 3 We finally derive an upper bound on the required number of sellers offering the

contract cℓ, which in turn gives us a bound for the number of sellers beyond which existence

of an equilibrium is guaranteed. Specifically, define

A1 ≡ {(q, t) ∈ R+ × R : q ≤ Q2 and vq ≥ t ≥ v1q},

A2 ≡ {Nc+N ′c′ : (N,N ′) ∈ {0, 1, 2} × {0, 1, 2}},

A3 ≡ {(Q, T ) ∈ R+ × R : U1(Q, T ) ≥ U1(c)}.

To interpret A1, observe that if type 1 were attracted by a contract (q, t) with q ≥ Q2

issued by a deviating seller, then this would mean that by trading (q, t), possibly along with

other available contracts, she could reach an aggregate trade (Q, T ) with Q ≥ Q2, which

she would weakly prefer to the aggregate trade c + c′ that remains available following any

unilateral deviation. Because c+ c′ is the equilibrium aggregate trade of type 2 and involves

an aggregate coverage Q2, it would follow from Assumption SC that type 2 would strictly

prefer (Q, T ) to her equilibrium aggregate trade c+c′, and thus would be strictly attracted by

the contract (q, t). Therefore, we can safely restrict our quest for potential cream-skimming

deviation to the set of contracts (q, t) such that q ≤ Q2. In addition, the contracts in A1

imply no loss for the sellers when only traded by type 1 and have a unit price lower than v, so

that they are potentially attractive for type 1, either per se or combined with other available

contracts. Next, A2 is the set of aggregate trades that can be made with four sellers, two

of whom offer the contract c and two of whom offer the contract c′. Last, A3 is the upper

contour set of c for type 1. Then

N ℓ ≡ max{N ∈ N : (A1 + A2 +Ncℓ) ∩ A3 ̸= ∅} (32)

is the maximum number of contracts cℓ type 1 may ever want to trade, if she were offered

a contract in A1, which she could complement by aggregate trades in A2 and as many

contracts cℓ as she wishes. Because A1 is compact, c ∈ A1 ∩ A3, (0, 0) ∈ A2, and τ1(c) = v

is strictly lower than v2 and the unit price of cℓ, N ℓ is well defined and finite. Suppose now

that two sellers offer the contract c, two sellers offer the contract c′, and max{N ℓ + 1, 2}
sellers offer the contract cℓ. Consider now a deviation that attracts type 1. Trading the

corresponding contract c̃, possibly along with contracts c, c′, and cℓ, must yield type 1 at

least her equilibrium utility. However, because the contract cℓ deters cream skimming under

Assumption C, type 2 could also weakly increase her utility by trading the same contracts

as type 1, plus one additional contract cℓ. The definition (32) of N ℓ ensures that type

1 will never trade more than N ℓ contracts cℓ following the deviation. If, as postulated,
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max{N ℓ + 1, 2} sellers offer the contract cℓ, a contract cℓ remains available for type 2 to

trade even after mimicking type 1. As a result, one can construct the buyer’s best response

in such a way that both types trade c̃ with the deviating seller, which, as shown in Step 2,

cannot be profitable for him. Overall, existence of an equilibrium is guaranteed as soon as

there are at least max{N ℓ + 1, 2}+ 4 sellers. Hence the result. �
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Online Appendix B: Omitted Calculations

On Single Crossing and Coinsurance. We show that Assumption SC is satisfied if f2

dominates f1 in the monotone-likelihood-ratio order. We have, for all (Q, T ) and i,

τi(Q, T ) =

∫
Lu′(W0 − (1−Q)L− T )fi(L) dL∫
u′(W0 − (1−Q)L− T )fi(L) dL

=

∫
L dGi(L), (33)

where Gi is a distribution with density

gi(L) =
u′(W0 − (1−Q)L− T )fi(L)∫
u′(W0 − (1−Q)L− T )fi(L) dL

(34)

with respect to Lebesgue measure. If f2 dominates f1 in the monotone-likelihood-ratio order,

then, by (34), g2 also dominates g1 in the monotone-likelihood-ratio order, and soG2 a fortiori

first-order stochastically dominates G1. It then follows from (33) that τ2(Q, T ) > τ1(Q, T ),

which is precisely Assumption SC. �

On Assumption C. We first show that Assumption C is equivalent to the property that

H2(p,u2)−H1(p,u1) is strictly decreasing in p for all u1 and u2. We shall hereafter slightly

abuse notation by identifying each type’s indifference curve associated to utility level u with

its functional expression T = Ii(Q,u). The strict quasiconcavity of Ui implies that, for each

u, Ii(Q,u) is strictly concave with respect to Q. By construction, the slope of Ii(·,u) is

type i’s marginal rate of substitution,

∂Ii

∂Q
(Q,u) = τi(Q, Ii(Q,u)),

and ∂Ii/∂Q is the inverse of the Hicksian demand function,

∂Ii

∂Q
(Q,u) = p if and only if Q = Hi(p,u).

Assumption C states that, if

∂I1

∂Q
(Q1,u1) =

∂I2

∂Q
(Q2,u2),

then

− (∂2I1/∂Q
2)(Q1,u1)

{1 + [(∂I1/∂Q)(Q1,u1)]2}
3
2

> − (∂2I2/∂Q
2)(Q2,u2)

{1 + [(∂I2/∂Q)(Q2,u2)]2}
3
2

,

so that

∂2I1

∂Q2
(Q1,u1) <

∂2I2

∂Q2
(Q2,u2).

44



Call p ≡ (∂I1/∂Q)(Q1,u1) = (∂I2/∂Q)(Q2,u2). Overall, Assumption C reduces to the

following condition:

∂2I1

∂Q2

((
∂I1

∂Q
(·,u1)

)−1

(p),u1

)
<

∂2I2

∂Q2

((
∂I2

∂Q
(·,u2)

)−1

(p),u2

)
,

that is, ((∂I2/∂Q)(·,u2))
−1(p) − ((∂I1/∂Q)(·,u1))

−1(p) is strictly decreasing in p, which is

precisely the desired property of Hicksian demand functions.

Next, assuming that type i’s preferences are represented by

Ui(Q, T ) = viui(W0 − L+Q− T ) + (1− vi)ui(W0 − T ),

we show that Assumption C is satisfied if type 1 is uniformly more risk-averse than type

2, that is, letting αi(w) ≡ −u′′
i (w)/u

′
i(w) be type i’s coefficient of absolute risk aversion at

wealth w, if α1(w1) > α2(w2) for any wealth levels w1 and w2. We have

∂Ii

∂Q
(Q,u) = τi(Q, Ii(Q,u))

=
1

1 + [(1− vi)/vi][u′
i(W0 − Ii(Q,u))/u′

i(W0 − L+Q− Ii(Q,u))]

and hence

∂2Ii

∂Q2
(Q,u) = −

(
∂Ii

∂Q
(Q,u)

)2(
1− vi
vi

)
B(Q,u)

[u′
i(W0 − L+Q− Ii(Q,u))]2

, (35)

where

B(Q,u) ≡ −u′′
i (W0 − Ii(Q,u))

∂Ii

∂Q
(Q,u)u′

i(W0 − L+Q− Ii(Q,u))

−u′
i(W0 − Ii(Q,u))

[
1− ∂Ii

∂Q
(Q,u)

]
u′′
i (W0 − L+Q− Ii(Q,u)).

Simple manipulations show that

B(Q,u)

[u′
i(W0 − L+Q− Ii(Q,u))]2

=
u′
i(W0 − Ii(Q,u))

u′
i(W0 − L+Q− Ii(Q,u))

αi(Q,u),

where

αi(Q,u) ≡ αi(W0 − Ii(Q,u))
∂Ii

∂Q
(Q,u) + αi(W0 − L+Q− Ii(Q,u))

[
1− ∂Ii

∂Q
(Q,u)

]
.

Substituting in (35) and simplifying yields

∂2Ii

∂Q2
(Q,u) = − ∂Ii

∂Q
(Q,u)

[
1− ∂Ii

∂Q
(Q,u)

]
αi(Q,u).
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These two equalities imply that, if type 1 is uniformly more risk-averse than type 2, we have

α1(Q,u1) > α2(Q,u2) and thus (∂2I1/∂Q
2)(Q,u1) < (∂2I2/∂Q

2)(Q,u2) for all u1 and u2

such that (∂I1/∂Q)(Q,u1) = (∂I2/∂Q)(Q,u2), which is precisely Assumption C. �

On the CARA Example. Preferences represented by (2) with u(x) ≡ − exp(−αx) can

alternatively be represented by

Ui(Q, T ) = ui(Q)− T (36)

with

ui(Q) ≡ − 1

α
ln(vi exp(−α(W0 − L+Q)) + (1− vi) exp(−αW0)).

Moreover, we have

∂u2(Q+Q0) = ∂u1(Q) (37)

with

Q0 ≡
1

α
ln

(
(1− v1)/v1
(1− v2)/v2

)
> 0.

Hence type 1 may be thought of having the same preferences as type 2, while having already

purchased an amount of coverageQ0. Geometrically, properties (36)–(37) imply that any pair

of indifference curves for types 1 and 2 are, over the relevant domain, oblique or horizontal

translates of each other. The translating vector is (qℓ, tℓ) and connects points of equal slopes

on these indifference curves.

When each type i has constant absolute risk aversion αi, one has

ui(Q) ≡ − 1

αi

ln(vi exp(−αi(W0 − L+Q)) + (1− vi) exp(−αiW0)).

A direct calculation yields the following expression for type i’s demand function:

Hi(p) = max

{
L+

1

αi

ln

(
(1− p)/p

(1− vi)/vi

)
, 0

}
.

Assumption C is satisfied if ∂H2 < ∂H1, that is, if α2 < α1. Assumption SC is satisfied if

∂u2 > ∂u1, that is, if

1

1 + [(1− v2)/v2] exp(−α2(L−Q))
>

1

1 + [(1− v1)/v1] exp(−α2(L−Q))
,

or, equivalently,

(α2 − α1)(L−Q) > ln

(
(1− v2)/v2
(1− v1)/v1

)
for all Q. The left-hand side of this inequality is an increasing function of Q when α2 < α1,

which leads to the condition given in the body of the paper. �
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