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Charles Manski, François Salanié, Lei Shi and Danny Yeung, as well as seminar and con-
ference participants at ESEM 2011, Paris-Dauphine and University of Technology Sydney
(UTS) for comments. The first version of this paper was written while Nicolas Treich
visited UTS in 2010. Financial support from the Quantitative Finance Research Center
and the Paul Woolley Center at UTS is gratefully acknowledged. Tony He acknowledges
funding for his subsequent visit in 2011 to Toulouse from the European Research Coun-
cil under the European Community’s Seventh Framework Programme (FP7/2007-2013)
Grant Agreement no. 230589. Nicolas Treich also thanks the chair “Marché des risques
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Heterogeneous Beliefs and Prediction Market Accuracy

Abstract

We consider a prediction market in which traders have heterogeneous
prior beliefs in probabilities. In the two-state case, we derive necessary and
sufficient conditions so that the prediction market is accurate in the sense
that the equilibrium state price equals the mean probabilities of traders’
beliefs. We also provide a necessary and sufficient condition for the well doc-
umented favorite-longshot bias. In an extension to many states, we revisit
the results of Varian (1985) on the relationship between equilibrium state
price and belief heterogeneity.

Keywords: Prediction market, heterogeneous beliefs, risk aversion, favorite-
longshot bias, complete markets, and asset prices.
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1 Introduction

In 1906, Francis Galton attended in Plymouth a prediction contest about the
weight of an ox. About 800 people participated, and Galton was surprised by
how much they were accurate at predicting the correct weight. He concluded
that the result is “more creditable to the trustworthiness of a democratic
judgment that might have been expected” (Galton 1907, p. 451). Since then,
the measurement of popular beliefs has become increasingly common both
in academia and in practice of prediction. In particular, prediction markets
are now considered as one of the most efficient tool to elicit people’s beliefs
(Hahn and Tetlock 2006, Surowiecki 2005). They have been repeatedly used
to predict the outcome of political elections, like with the Iowa electronic
market (www.biz.uiowa.edu/iem/). They are also increasingly used by pri-
vate companies like Microsoft, Google and Chevron for instance to elicit their
employees’ beliefs about future sales or industry trends. Given the develop-
ment of prediction markets, it is thus important to better understand when
prediction markets are expected to be accurate at predicting future events.

Technically, prediction markets are simple financial markets in which
traders bet on the outcomes of uncertain events. But the main purpose
of prediction markets is to predict future events, not to share risks. With
that purpose, asset prices in prediction markets are typically interpreted as
probabilities. For instance, Arrow et al. (2008) introduce prediction markets
as follows: “Consider a contract that pays $1 if Candidate X wins the presi-
dential election in 2008. If the market price of an X contract is currently 53
cents, an interpretation is that the market ‘believes’ X has a 53% chance of
winning” (Arrow et al. 2008: 877).1

In this paper, we examine theoretically this interpretation. More pre-
cisely, we consider a simple prediction market in which traders have hetero-
geneous beliefs in probabilities of different states. We then derive conditions
so that the prediction market is accurate in the sense that the equilibrium

1This interpretation is consistent with the information displayed on one of the lead-
ing prediction market, Intrade. Indeed, each prediction market on Intrade is based on
whether an event occurs or not (coined “YES/NO proposition”), and for each market the
current market price is provided together with the “% chance” that the event occurs. The
explanation provided online on Intrade reads as follows: “The market prices of shares also
indicate the probability of the event happening. For example, a market price of $3.63
indicates a 36.3% probability the event will actually happen, according to the market. In
other words, the market is predicting a 36.3% probability”, taken from www.intrade.com
(April, 12, 2012).
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state price equals the mean probabilities of traders’ beliefs.2 Manski (2006)
presents a first formal analysis of this problem using a model with risk neu-
tral traders and assuming limited investment budgets. He shows that the
equilibrium price can largely differ from the mean beliefs of traders. Wolfers
and Zitzewitz (2006) consider a more standard model with risk averse traders
and show theoretically that the prediction market is accurate when the utility
function of traders is logarithmic. Moreover Wolfers and Zitzewitz explore
numerically how the equilibrium price is affected by belief heterogeneity for
several utility functions and several beliefs distributions.3

Our main contribution in this paper is to derive the exact necessary and
sufficient conditions for prediction market accuracy for general utility func-
tions and for general distributions of beliefs. Specifically, we show in the
two-state case that the prediction market is accurate i) for all distributions
of beliefs if and only if the utility function is logarithmic, and ii) for all
strictly concave utility functions if and only if the distribution of beliefs is
symmetric about one half. Moreover, we present several examples in which
the (joint) distributions of traders’ beliefs, wealth and risk preferences lead
to a systematic violation of prediction market accuracy. Nevertheless, we
provide indications about the direction of the bias. Most significantly, we
exhibit the necessary and sufficient condition for the equilibrium price to be
always below/above the mean beliefs for all symmetric beliefs distributions.
This condition provides a rationale to the well documented favorite-longshot
bias (Ali 1977). We also critically discuss some previous results obtained in
a generalized complete market setting with heterogeneous beliefs. In partic-
ular, we revisit Varian (1985)’s early results that, first, the equilibrium state
price only depends on the distribution of beliefs about that state and, second,
that more heterogeneity in beliefs should lead to decrease asset prices when
relative risk aversion is high enough. We show with the help of an example
that the first result is not correct, and argue that the second result is based
on an inappropriate comparative statics analysis.

2We realize that the word “accurate” may not be appropriate here. Typically, traders’
beliefs may be biased, and inferring the mean of their beliefs may not be enough to predict
accurately an uncertain event. We use this word mostly for simplicity, and also because
it compactly refers to discussions about the empirical success of prediction markets (see,
e.g., Forsythe et al. 1992 and Hanson 2006).

3See Gjerstad (2004) for theoretical results under constant relative risk aversion
(CRRA) utility functions, and some numerical results. See also Fountain and Harrison
(2011) for further numerical results with wealth and beliefs heterogeneity.
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We organize the paper as follows. In the next section we introduce a
simple binary prediction market model and derive a sufficient condition for
the equilibrium state price to be unique. In the next two sections we derive
necessary and sufficient conditions for prediction market accuracy. More
precisely, Section 3 derives a condition on the utility function, and Section 4
derives a condition on the probability distribution representing the beliefs of
traders. Then in Section 5 we examine the conditions leading to the favorite-
longshot bias. Finally in Section 6 we study the generalization of previous
results to more than two states, and discuss the link with Varian (1985). The
last section concludes.

2 The model

We first consider a simple binary prediction market in which risk averse
agents can buy and sell a financial asset paying $1 if a specific event occurs,
and nothing otherwise. The main assumption of the model is that the beliefs
of the agents about the occurrence of the specific event are heterogeneous.
We thus consider a model in which agents “agree to disagree”, and therefore
have different prior beliefs. Namely, the heterogeneity in beliefs does not
come from asymmetric information but rather from intrinsic differences in
how agents interpret information.4 In this section, we derive some properties
of the individual asset demand, and then of the equilibrium price in this
specific model.

2.1 Individual asset demand

In our model, each agent maximizes his expected utility based on his own
beliefs. Formally, when he decides how much to invest in the financial asset
paying $1 if the event occurs, he maximizes over α the following expected
utility

pu(w + α(1− π)) + (1− p)u(w − απ), (1)

in which w is the agent’s initial wealth, p ∈ (0, 1) his subjective probability
that the event occurs (i.e., his belief), α his asset demand and π the price

4Many models in finance have considered agents with heterogeneous prior beliefs (see,
e.g., Varian 1985, Abel 1989, Jouini and Napp 2006 and 2007, Gollier 2007 and Roche
2011). For a justification and implications of these models, see for instance the survey
papers by Varian (1989), Scheinkman and Xiong (2004) and Hong and Stein (2007).
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of this asset.5 We assume the utility function u(·) to be strictly increasing,
strictly concave and three times differentiable.

The first order condition of this optimization program is given by

p(1− π)u′(w + α(p, π)(1− π))− (1− p)πu′(w − α(p, π)π) = 0, (2)

in which α(p, π) is the unique solution. Differentiating with respect to p the
last equality, we obtain

0 = (1− π)u′(w + α(p, π)(1− π)) + πu′(w − α(p, π)π)

+αp(p, π){p(1− π)2u′′(w + α(p, π)(1− π))

+(1− p)π2u′′(w − α(p, π)π)}, (3)

and rearranging we have

αp(p, π) =
(1− π)u′(w + α(p, π)(1− π)) + πu′(w − α(p, π)π)

−p(1− π)2u′′(w + α(p, π)(1− π))− (1− p)π2u′′(w − α(p, π)π)
> 0,

(4)
that is, the asset demand increases with belief p. Since α(p, p) = 0, we
conclude that α(p, π) ≥ 0 if and only if p ≥ π. Namely, the agent buys
(respectively sells) the asset yielding $1 when the event occurs if and only
if he assigns a probability for this event higher (respectively lower) than the
asset price.

2.2 The equilibrium

Let p̃ be the random variable representing the distribution of beliefs in the
population of agents, and let π∗ be the equilibrium price. The equilibrium
condition is

Eα(p̃, π∗) = 0, (5)

in which E denotes the expectation operator with respect to p̃. Our main
objective in the paper is to compare π∗ to Ep̃. In particular, in Sections 3 and
4 we will derive conditions so that there is prediction market accuracy defined

5The individual asset demand α can be seen as the net asset demand of one asset in a
model with two Arrow-Debreu assets. To see that, let αs and πs denote respectively the
demand for and the price of Arrow-Debreu assets in state s = 1, 2. The objective can then
be written: maxα1,α2

[pu(w+α1−π1α1−π2α2)+(1−p)u(w+α2−π1α1−π2α2)]. Denoting
α = α1 −α2 and observing that π1 + π2 = 1 by arbitrage then leads (with π = π1) to (1).
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by π∗ = Ep̃. Notice immediately that, when p̃ is degenerate and is equal to
p with probability 1, then π∗ = p and there is no trade at the equilibrium.
This is a trivial case always leading to prediction market accuracy. We rule
out this case (until Section 6), and consider nondegenerate p̃ in the following.

It is easy to see that an equilibrium always exists in such a prediction
market. Indeed, when π tends to 0 (respectively tends to 1) α(p, π) be-
comes positive (respectively negative) for all p, so its expectation over p̃ also
becomes positive (respectively negative). Therefore when π increases, the
function Eα(p̃, π) must go from a positive to a negative region and thus
must cross zero somewhere in between.

We now discuss the uniqueness of the equilibrium, that is we study
whether Eα(p̃, π) only crosses the origin once. We know that α(p, π) has
this single crossing property at π = p. But that does not guarantee that
Eα(p̃, π) also has the single crossing property, as illustrated by the following
example.

Example 1 (Multiple equilibria): Consider agents with a quadratic utility
function u(w) = −(1 − w)2 and initial wealth w = 1/2. The optimal asset
demand is equal to α(p, π) = p−π

2(p−2pπ+π2)
. In a prediction market with only

two agents with respective beliefs denoted p1 = 0.1 and p2 = 0.9, the equilib-
rium condition is equivalent to 9− 68π+ 150π2− 100π3 = 0. Solving for this
equation, it is found that there are three equilibrium prices in this prediction
market: π∗ = (0.235, 0.5, 0.764).

A sufficient condition for the uniqueness of the equilibrium however is
απ(p, π) < 0 everywhere. Indeed, this implies that the function Eα(p̃, π) is
strictly decreasing in π, and therefore crosses zero at most once. Differenti-
ating (2) with respect to π, we have

απ(p, π) = (6)

−pu′(w + α(p, π)(1− π))− (1− p)u′(w − α(p, π)π)

−p(1− π)2u′′(w + α(p, π)(1− π))− (1− p)π2u′′(w − α(p, π)π)

−α(p, π)
p(1− π)u′′(w + α(p, π)(1− π))− (1− p)πu′′(w − α(p, π)π)

−p(1− π)2u′′(w + α(p, π)(1− π))− (1− p)π2u′′(w − α(p, π)π)
.

The first term is strictly negative but the second term is of ambiguous sign
under risk aversion, so that the demand may increase when the price π in-
creases, as it is the case in Example 1. We now provide a sufficient condition
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for uniqueness by ensuring that the second term is also negative. We show
that this is the case under nonincreasing absolute risk aversion.

Proposition 1 The equilibrium price π∗ is unique if u has nonincreasing
absolute risk aversion.

Proof : We are done if we can show that the second term of the right hand side
in (6) is negative. As this is simple to show, we only provide a sketch of the
proof. Let x̃ = (1−π,−π; p) denote a random variable x̃ which takes values of
1−π and −π with probabilities p and 1−p, respectively. Then the first order
condition (2) can be written more compactly E[x̃u′(w + αx̃)] = 0. We thus
are done if we can show that this last equality implies −αE[x̃u′′(w+αx̃)] ≤ 0,
that is, the second term of the right hand side in (6) is negative. Then it is
direct to see that this implication means that −u′ is more risk averse than
u, which is equivalent to nonincreasing absolute risk aversion. �

The intuition is the following. When the price of an asset increases,
there are two effects captured by the two terms of the right hand side of
equation (6). First, there is a substitution effect that leads to a decrease in
its demand, but there is also a wealth effect that may potentially increase
its demand. Intuitively, as the terminal wealth distribution deteriorates,
the investor’s attitude towards risk may change, and this wealth effect might
prove sufficiently strong to increase the demand for the risky asset, as initially
shown by Fishburn and Porter (1976) in the case of a first-order stochastic
dominance (FSD) shift. Under decreasing absolute risk aversion (DARA)
however, the negative wealth effect leads the agent to be more risk averse, and
therefore further decreases the demand for the risky asset. Under constant
absolute risk aversion (CARA), there is no wealth effect, and only the first
negative effect is at play. Finally, we note that Example 1 features multiple
equilibria because the quadratic utility function has increasing absolute risk
aversion.

When there is a unique equilibrium, one can make a simple comment on
the effect of a change in the distribution of beliefs on the equilibrium price.
Indeed, from the equilibrium condition Eα(p̃, π∗) = 0 and αp(p, π) > 0, any
FSD improvement in the distribution of beliefs must increase the equilibrium
price.
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3 Which utility functions lead to prediction

market accuracy?

Assuming a logarithmic utility function u(w) = logw (which displays DARA)
we can obtain a closed-form solution of the first order condition (2):

α(p, π) = w
(p− π)

π(1− π)
.

This implies that the equilibrium condition (5) can simply be written π∗ =
Ep̃. This shows that the logarithmic utility function is sufficient for pre-
diction market accuracy (Gjerstad 2004; Wolfers and Zitzewitz 2006). A
natural question is whether the utility function must be logarithmic to guar-
antee prediction market accuracy or whether this is possible for other utility
functions, i.e. whether u(w) = logw is also a necessary condition. We show
in the following Proposition that this is indeed the case.

Proposition 2 For all p̃, π∗ = Ep̃ if and only if u(w) = logw.

Proof : We just need to prove the necessity. Namely, let p = Ep̃, we must
show that Eα(p̃, p) = 0 for all p̃ implies u(w) = logw. We are done if
we can show that this implication holds for a specific class of probability
distribution in p̃. We consider the class of “small” risk, that is we assume
that p̃ is close enough to p in the sense of a second-order approximation:
Eα(p̃, π) = α(p, π) + 0.5E(p̃ − p)2αpp(p, π). Using this last equality, the
necessary condition Eα(p̃, p) = 0 implies α(p, p) + 0.5E(p̃ − p)2αpp(p, p) =
0. Since for all p, we have α(p, p) = 0, the necessary condition becomes
αpp(p, p) = 0. Differentiating again (3) with respect to p to compute αpp(p, p)
we obtain

0 = 2αp(p, π){(1− π)2u′′(w + α(p, π)(1− π))− π2u′′(w − α(p, π)π)}
+ αpp(p, π){p(1− π)2u′′(w + α(p, π)(1− π)) + (1− p)π2u′′(w − α(p, π)π)}
+ αp(p, π)2{p(1− π)3u′′′(w + α(p, π)(1− π))− (1− p)π3u′′′(w − α(p, π)π)}.

Taking π = p in the last expression, we have αp(p, p) = 1
p(1−p) ×

u′(w)
−u′′(w) from

(4), then rearranging yields

αpp(p, p) =
(1− 2p)

p2(1− p)2

[
u′(w)

u′′(w)

]2[
u′′′(w)

−u′′(w)
− 2
−u′′(w)

u′(w)

]
. (7)
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Therefore a necessary condition is u′′′(w)
−u′′(w) = 2−u

′′(w)
u′(w)

. Finally, integrating this

differential equation gives u(w) = logw. �

We complement this result with three remarks about its limitation in
more general settings.

Remark 1 (Wealth heterogeneity): The result of Proposition 2 cannot be
generalized to non-identical wealth, as possible correlation between wealth
and beliefs would invalidate the result. Indeed, let w̃ be the random variable
representing wealth heterogeneity. Assuming a logarithmic utility function,
we can obtain

π∗ = Ep̃+
1

Ew̃w̃
Cov(p̃, w̃). (8)

Therefore there is no utility function that can always ensure prediction mar-
ket accuracy when beliefs and wealth are potentially correlated. Observe
that, despite this impossibility result, the direction of the bias can be in-
ferred if the analyst knows the sign of the correlation between beliefs and
wealth. The intuition for equilibrium condition (8) is that richer individu-
als invest more, and therefore have more influence on the equilibrium price.
Thus, if wealth is positively (respectively negatively) correlated with beliefs,
the equilibrium price will be higher (respectively lower).

Remark 2 (Stakes): Suppose each agent has a (positive or negative) stake
∆ in the event he predicts, so that he now maximizes over α the following
expected utility

pu(w + ∆ + α(1− π)) + (1− p)u(w − απ).

Then it is easy to understand that the result of Proposition 2 is not guaran-
teed either. Indeed for the logarithmic utility function we have

α(p, π) = w
(p− π)

π(1− π)
−∆

π(1− p)
π(1− π)

,

leading to the equilibrium condition

π∗ =
wEp̃

w + ∆(1− Ep̃)
.

The intuition is that when there is a positive (respectively negative) stake,
the marginal utility decreases (respectively increases) if the event occurs. As
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a result, the agents want to transfer wealth to the state in which the event
does not occur (respectively occurs), and they typically use the prediction
market as a hedging scheme to do this. The consequence is that the equilib-
rium is biased downward (respectively upward). Observe that if the stakes
are individual-dependent but uncorrelated with beliefs, and if their mean
across individuals is equal to zero, then we retrieve prediction market accu-
racy under a logarithmic utility function.

Remark 3 (Quantities): Suppose that each agent can now bet on a random
quantity payoff t̃. Formally, he chooses the amount α to maximize

Et̃u(w + α(t̃− π)),

where Et̃ denotes his expectation over t̃. Note that we retrieve the previous
prediction market model when t̃ = (1, 0; p), implying that we would retrieve
prediction market accuracy for u(w) = logw in this special case. Never-
theless prediction market accuracy fails when t̃ is not a binary even for a
logarithmic utility, as the following example shows. Suppose that t̃ can take
three values, 1, 2 or 3. Let two agents with beliefs over t̃ be described re-
spectively by the two following random variables (1, 2, 3; 1/3, 1/3, 1/3) and
(1, 2, 3; 1/6, 1/6, 2/3). That is the first agent believes equal probabilities for
the three values and the second agent believes the probabilities of 1/6, 1/6
and 2/3 for values of 1, 2 and 3, respectively. This implies that the first agent
believes that the mean is 2 and the second agent believes that the mean is
2.5. Then solving for the equilibrium price assuming u(w) = logw and w = 1
we find π∗ = 2.227, which is different from the mean beliefs of 2.25 across
the two agents.

4 Which distributions of beliefs lead to pre-

diction market accuracy?

The previous section provides the conditions on the utility function so that
there is market prediction accuracy for all p̃. In this section, we study the dual
problem: which conditions on p̃ ensure prediction market accuracy for all u?
We show that the necessary and sufficient condition is that the probability
distribution of beliefs is symmetric about one half.
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Proposition 3 Assume that the equilibrium price π∗ is unique. For all u,
π∗ = Ep̃ if and only if p̃ is symmetric about 1/2.

Proof : We first show that if p̃ is symmetric about 1/2 then Ep̃ = π∗ for all
u. Observe from the first order condition (2) that α(p, π) = −α(1 − p, 1 −
π). This implies that the equilibrium condition can be written Eα(p̃, π∗) =
Eα(1− p̃, 1−π∗) = 0. Observe then that p̃ symmetric about 1/2 means that
p̃ is distributed as 1 − p̃. Consequently the equilibrium condition implies
Eα(p̃, π∗) = Eα(p̃, 1 − π∗). Since the equilibrium is assumed to be unique,
this last condition implies π∗ = 1− π∗, that is π∗ = 1/2 = Ep̃.

We now demonstrate that if Ep̃ = π∗ for all u then it must be that
the distribution is symmetric about 1/2. This is proved by contradiction.
Consider the following example. Let u(w) = −e−rw with CARA coefficient
r > 0 and the probability density of beliefs p̃ is given by

f(p) =

{ 2p
b
, for 0 < p ≤ b,

2(1−p)
1−b , for b < p < 1.

Obviously, for b 6= 1/2, the belief distribution is not symmetric about 1/2. It
can be verified that Ep̃ > π∗ for 0 < b < 1/2 and Ep̃ < π∗ for 1/2 < b < 1. �

The intuition for Proposition 3 is simple. When p̃ is symmetric about one
half, the two states are formally indistinguishable, and therefore it cannot be
that the price of an asset yielding one dollar in one state is different from that
of an asset yielding one dollar in the other state, implying π∗ = 1/2. We note,
however, that if heterogeneity in individual utility functions is introduced,
prediction market accuracy may not hold anymore even under p̃ symmet-
ric about 1/2. The intuition is essentially the same as the one presented
in Remark 1. This is illustrated by the following example which considers
heterogeneity over (constant absolute) risk aversion.

Example 2 (Heterogeneous CARA): Let ui(w) = −e−riw in which ri > 0
represents the CARA coefficient of agent i = 1, 2 with respective beliefs
p1 = 0.1 and p2 = 0.9. Under positive correlation between beliefs and risk
aversion (r1, r2) = (1, 3), we have π∗ = 1/4 < 1/2 = Ep̃, while under nega-
tive correlation (r1, r2) = (3, 1), we have π∗ = 3/4 > 1/2 = Ep̃.

We have characterized the necessary and sufficient conditions for pre-
diction market accuracy, for all p̃ in Proposition 2, and then for all u in
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Proposition 3. These conditions are rather stringent. However, one can relax
these conditions in the sense that it is possible to find well-chosen pairs (u, p̃)
also yielding prediction market accuracy. This is shown in the following ex-
ample which uses a specific constant relative risk aversion (CRRA) utility
function and a specific nonsymmetric distribution of beliefs.

Example 3 (Prediction market accuracy under CRRA and nonsymmetric
beliefs). Consider agents with utility function u(w) = −1/w. Two groups of
agents participate in the prediction market: one group has beliefs p1 = p, and
the other group has beliefs p2 = 1− p. Denoting a the proportion of agents
in the first group, we have Ep̃ = ap + (1 − a)(1 − p). One may then easily
obtain that Eα(p̃, π) = 0 implies

√
π(1− π){ap + (1 − a)(1 − p) − π} = 0

leading to π∗ = Ep̃.

Examples 2 and 3 indicate that symmetric beliefs about 1/2 is neither
necessary nor sufficient for prediction market accuracy for general utility
function.

5 A necessary and sufficient condition for the

favorite-longshot bias

In the previous analysis, we have examined under which conditions the pre-
diction market is accurate in the sense that the equilibrium price π∗ is equal
to mean belief Ep̃. In this section, we derive necessary and sufficient condi-
tions for π∗ to be systematically above or below Ep̃.

The analysis developed in this section may provide a rationale for the
favorite-longshot bias, namely for the empirical observation that longshots
tend to be over-valued and that favorites tend to be under-valued (Ali 1977;
Thaler and Ziemba 1988). More explicitly, consider a horse race with only
two horses, and call the first horse the favorite (resp. longshot) if the mean
beliefs that this horse wins are such that Ep̃ ≥ 1/2 (resp. Ep̃ ≤ 1/2).
As we will see, the necessary and sufficient condition so that this horse is
under-valued, i.e. π∗ ≤ Ep̃, critically depends on whether it is a favorite
or a longshot. This result is presented in the following Proposition 4 in
which P (w) = −u′′′(w)/u′′(w) denotes the coefficient of absolute prudence
(Kimball 1990) and A(w) = −u′′(w)/u′(w) denotes the coefficient of absolute
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risk aversion.

Proposition 4 Assume that the equilibrium price π∗ is unique. Then for all
symmetric p̃, π∗ ≥ Ep̃ if and only if (1/2− Ep̃)(P (w)− 2A(w)) ≥ 0 for all
w.

Proof : See Appendix A. �

The difference between the mean belief and the equilibrium price therefore
depends on whether the mean belief is less than 1/2, and on whether absolute
prudence is greater than twice absolute risk aversion. The sign of P − 2A
is a familiar condition on utility functions derived from comparative statics
analysis within expected utility models (Gollier 2001). Under CRRA utility
functions, P ≤ 2A is equivalent to a parameter of constant relative risk
aversion greater than 1. Notice also that DARA is equivalent to that P is
larger than A.

The result presented in Proposition 4 is illustrated in Figure 1. The hor-
izontal axis represents the mean belief and the vertical axis represents the
equilibrium price. The diagonal therefore represents prediction market accu-
racy, which holds everywhere if and only if P = 2A (i.e., u is logarithmic).
The result therefore shows that there is a favorite-longshot bias if and only
if the utility function displays P > 2A.

Observe that the result in Proposition 4 is consistent with Propositions
2 and 3. Indeed, this result shows that there is prediction market accuracy
under two extreme and separate conditions on the utility functions and the
distribution of beliefs: either as in Proposition 2 when the utility is logarith-
mic (P = 2A) or as in Proposition 3 when mean beliefs equal one half and
are symmetric. This result also generalizes the theoretical results of Gjer-
stad (2004) obtained for CRRA utility functions and symmetric beliefs, and
provides a theoretical foundation for the numerical simulations presented in
Wolfers and Zitzewitz (2006) for various utility functions and distributions
of beliefs.

One may wonder whether the condition (1/2−Ep̃)(P (w)−2A(w)) ≥ 0 is
also necessary and sufficient for all distributions p̃, not only symmetric ones.
To see this, note first that π∗ ≥ Ep̃ is equivalent to Eα(p̃, p) ≥ 0, and since
α(p, p) = 0, by Jensen’s inequality the necessary and sufficient condition for
all p̃ is simply given by αpp(p, p) ≥ 0 for all p and p. The computation of
αpp(p, p) in (7) shows that the condition (1/2 − Ep̃)(P (w) − 2A(w)) ≥ 0 is
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Figure 1: This figure plots the equilibrium price π∗ as a function of mean
beliefs p. Under symmetric beliefs, there is a “favorite-longshot bias” for the
class of utility functions u for which absolute prudence P (w) is greater than
twice absolute risk aversion A(w).

indeed necessary for the favorite-longshot bias. However this condition is not
sufficient, as the following example shows.

Example 4 (Nonsymmetric beliefs): Consider two groups of agents with
u(w) =

√
w (i.e., P > 2A) and heterogeneous beliefs p1 = 0.1 and p2 = 0.9.

When the proportion of agents with beliefs p1 = 0.1 is 75% then π∗ =
0.272 < Ep̃ = 0.3 (i.e., the longshot is undervalued), and when the propor-
tion of agents with beliefs p1 = 0.1 is 25% then π∗ = 0.727 > Ep̃ = 0.7 (i.e.,
the favorite is overvalued).

We believe that the general results and selected numerical examples pre-
sented so far provide a fairly complete view of the properties of equilibrium
prices of a prediction market in the two-state case. This is the case that has

15



been usually considered in the handful of theoretical papers on prediction
markets that we have found in the literature. We next extend our discussion
to a prediction market with more than two states.

6 The S−state case

Until now, we have considered a prediction market with only 2 states. In
this section we discuss prediction market accuracy for any finite number S of
states with S > 2. We also discuss the effect of more heterogeneity in agents’
beliefs over one state compared to another state. Note that this effect cannot
be studied in the 2-state case. Consistent with previous notations, we denote
by the vector pi = (pi1, ..., piS) the agent i’s beliefs over states s = 1, ..., S,
and by πs the equilibrium price of state s. Prediction market accuracy for
state s therefore means πs = 1

N

∑N
i=1 pis.

6.1 Generalization of previous results

As indicated in Section 3, a well-known result in the literature is that under a
logarithmic utility function u(w) = logw there is prediction market accuracy
in the 2−state case (Gjerstad 2004; Wolfers and Zitzewitz 2006). It turns
out that this sufficiency result can be generalized in the sense that all S state
prices equal the mean of agents’ beliefs for each state under u(w) = logw.6

Since we have shown in Section 3 that u(w) = logw is also necessary for
prediction market accuracy in the 2−state case, we can therefore state the
following result7.

Proposition 5 (Generalization of Proposition 2) There is prediction market
accuracy for all distributions of beliefs in the general S−state case if and only
if u(w) = logw.

This result should not suggest, however, that previous results can be di-
rectly generalized to the S−state case. Indeed, we first show that a basic
result derived in the 2−state case is no longer valid in the general case. More
precisely, we next show with the help of an example that, even if all agents

6This result is not inconsistent with the example in Remark 3 as the framework differs.
Specifically, in our S-state prediction markets, markets are complete.

7All Propositions and statements in this section are proved in Appendix B.
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have the homogeneous belief over one state, the equilibrium price of that
state could nevertheless be different from its homogeneous belief.

Example 5 (Failure of prediction market accuracy under homogeneous be-
liefs): Let N = 2 and S = 3, and assume the following agents’ beliefs:
p1 = (1 − 2p, p − ε, p + ε) and p2 = (1 − 2p, p + ε, p − ε). Observe that
the two agents have homogeneous beliefs 1− 2p over state 1. Under CARA
u(w) = −e−rw with r > 0, we have however π1 = 1−2p

1−2p+2
√
p2−ε2

> 1− 2p for

any ε 6= 0.

We now make another observation using the previous example. Start from
the same numerical values for individual beliefs and utilities, but consider an
alternative prediction market. Assume that there are only two Arrow-Debreu
assets: an asset that pays $1 if state 1 occurs, and another asset that pays
$1 if either state 2 or state 3 occurs. We have therefore a binary prediction
market. But since the agents’ beliefs over the two states (1− 2p, 2p) are now
homogeneous, we obviously retrieve prediction market accuracy. Therefore,
this simple observation shows that the equilibrium state price varies depend-
ing on the number of states on which it is possible to bet. In other words,
this means that the “design” of the prediction market matters for equilibrium
state prices.8 This makes sense since the design may affect trading opportu-
nities under heterogeneous beliefs. Following this observation, one may ask:
when is an equilibrium state price always independent from the design of
the prediction market? It can be easily shown that this is the case when all
agents believe that all other S − 1 states are equally likely (see Proposition
6 below).

Example 5 also shows that the equilibrium price of one state depends on
the distribution of beliefs in other states (through the parameter ε). Note
that this is in contradiction with “FACT 1” in Varian (1985)’s early paper on
the topic.9 One may therefore ask: When does the equilibrium price of one

8To illustrate this interpretation, consider the horse race illustration. Example 5 and
the last observation indicate that in a race with S > 2 horses, the equilibrium state
price that one specific horse wins the race depends on whether it is possible to place bets
separately on each of the other horses participating in the race.

9We explain here why this is a contradiction. Varian’s result is obtained in a S−state
complete market setting with heterogeneous beliefs and heterogeneous initial wealth. Our
prediction market model in this section is thus a particular case of Varian’s model since
we assume a common initial wealth (thus removing any initial risk-sharing motivations
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state depends only on the beliefs about that state? Interestingly the answer
to this question is exactly the same as the one to the question asked above
about the prediction market design. Indeed, if the equilibrium price of one
state in a S−state prediction market is always equal to the equilibrium price
of that state in a binary prediction market, this precisely means that the
distribution of beliefs in all the other states is irrelevant for that equilibrium
state price. We state this result in the following proposition.

Proposition 6 For all u, the equilibrium price of one state, say s = 1, in a
S−state prediction market only depends on the beliefs about that state if and
only if pis = pi for all s = 2, ..., S, and for all i = 1, ..., N (i.e. if and only if
states 2 to S are judged as equally likely by all agents).

The previous Example 5 has shown that prediction market accuracy in a
state may fail despite homogeneous beliefs in that state. The next example
shows the dual result that prediction market accuracy may hold despite het-
erogeneous beliefs. Specifically, Example 6 identifies a case with symmetric
beliefs where there is prediction market accuracy for all constant relative risk
aversion (CRRA) utility functions with CRRA parameter γ > 0.

Example 6 (Prediction market accuracy under heterogeneous beliefs): Let
N = 2 and S = 3, and assume the following agents’ beliefs: p1 = (1/2 +
1/4, 1/3−1/6, 1/6−1/12) and p2 = (1/2−1/4, 1/3+1/6, 1/6+1/12). Then
under u(w) = w1−γ/(1− γ) with γ > 0, we have prediction market accuracy
for all states, i.e., π1 = 1/2, π2 = 1/3 and π3 = 1/6.

In contrast, remember that Proposition 4 implies for symmetric beliefs
of two-state and under CRRA utility functions that there is underpricing if
and only if γ > 1, and thus that there is prediction market accuracy only
in the knife-edge logarithmic case, i.e. γ = 1. This example illustrates that
the prediction market accuracy in many state markets can be very different
from 2-state markets.

for trade). Therefore Varian’s result should also hold in our simpler setting. Note that
Ingersoll (1987, p. 214) also presents a similar result as that of Varian: “The Arrow-Debreu
price for an insurable state depends only on agregate wealth in that state and the pattern of
beliefs about that state”. Technically, the problem arises because both Varian and Ingersoll
“fix” the Lagrangian multiplier in their equilibrium conditions. This is misleading since
that multiplier may also depend on the distribution of beliefs about other states. We will
come back to a related problem in the next subsection.
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6.2 The effect of more heterogeneity in beliefs

We finally discuss the effect of more heterogeneity in beliefs on equilibrium
state prices. This question has been initially studied by Varian (1985) who
identifies conditions under which the equilibrium prices of Arrow-Debreu as-
sets in a complete market setting decrease when beliefs are more dispersed.
Interestingly, Varian shows that the necessary and sufficient condition under
a common utility function u is A′ ≥ −A2, or equivalently P ≤ 2A using
our previous notations. As we have indicated above, this condition always
holds under CARA utility functions (which is equivalent to P = A). Varian
considers this condition as plausible, which leads him to conclude that “equi-
librium asset prices should generally decrease with an increase in diversity of
opinion” (Varian 1985, p. 316). This result may be seen as intuitive since
the heterogeneity in beliefs about an asset’s payoff makes the asset appear
more risky, and therefore should decrease its market value and increase the
expected return for compensating that risk.

In the rest of the paper, we revisit this result by Varian. We first note
that, as recognized by Varian himself, this result is not based on the com-
parison of two different equilibria. Indeed Varian compares the state prices
within the same equilibrium.10 In the following, we also consider this within-
equilibrium comparison, but we are nevertheless concerned by the specific
nature of the comparative statics analysis of more heterogeneity considered
by Varian. Indeed Varian examines the effect of a mean-preserving spread
(MPS) of “weighted probabilities” (Varian 1985, p. 314), i.e. a MPS of
individual probabilities divided by individual marginal utilities. Although
this specific notion of beliefs dispersion drastically simplifies the theoretical
analysis,11 we wonder about the economic meaning of this comparison. In
particular, Varian’s notion of more heterogenous beliefs is not solely based

10To illustrate this comparison, we use again the horse race illustration. Varian considers
a race with S horses and compares the equilibrium price of two horses s and t within that
race, given that the mean beliefs that horses s and t win are identical but the beliefs
over horse s are more dispersed than those over horse t. Observe that such a comparison
requires S > 2.

11Technically, this leads to “fixing” the Lagrangian multiplier in the equilibrium condi-
tions. Several authors have used a similar approach (see, e.g., Ingersoll 1987, Gollier 2007
and Roche 2011).
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on the beliefs of agents since it also depends on marginal utilities (which are
determined endogenously). We thus argue that Varian’s definition of more
heterogeneity in beliefs is inappropriate from a conceptual point of view when
one is concerned by the pure effect of the heterogeneity in beliefs.

The following final proposition revisits Varian’s analysis in order to study
such a pure effect of beliefs heterogeneity, that is, the effect of a MPS of
individual “unweighted probabilities”. We can demonstrate that Varian’s
condition on the utility function still holds if one restricts the analysis to the
common CARA utility functions.

Proposition 7 Under CARA u(w) = −e−rw with r > 0, equilibrium state
prices decrease with a mean-preserving spread in agents’ beliefs.

7 Conclusion

In the last decades, academics as well as private-sector operators have in-
creasingly used financial prediction markets with the primary objective to
better predict future uncertain events. But under which conditions should
prediction markets be accurate? This paper has derived generic theoretical
conditions so that equilibrium state prices in prediction markets reflect the
mean of the beliefs held by the participants in the market. The bad news
is that these conditions are very stringent. They require the utility func-
tion of all participants to be logarithmic or their beliefs to be distributed
symmetrically. Moreover, several examples have illustrated that no general
conditions can be found under heterogeneity over participants’ characteristics
(e.g. wealth, risk preferences). Consistent with the early study by Manski
(2006), the general message from this theoretical analysis is that we cannot
realistically expect that equilibrium prices in prediction markets only reflect
the mean of participants’ beliefs. Typically, they should also reflect the distri-
bution of beliefs, as well as the individual characteristics of the participants.
The good news is that the paper has also provided a set of conditions that
are informative about how prices vary with the heterogeneity in beliefs and
the risk aversion of participants.
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Appendix A: Proof of Proposition 4

Recall that, when the equilibrium is unique, π∗ ≥ p if and only if Eα(p̃, p) ≥
0. For symmetric distributions, this holds true if and only if for all p (here-
after denoted p) we have

g(δ) = α(p+ δ, p) + α(p− δ, p) ≥ 0, (A.1)

in which α(p+ δ, p) is the unique solution of

(p+δ)(1−p)u′(w+α(p+δ, p)(1−p))−(1−p−δ)pu′(w−α(p+δ, p)p) = 0 (A.2)

and α(p− δ, p) is the unique solution of

(p−δ)(1−p)u′(w+α(p−δ, p)(1−p))−(1−p+δ)pu′(w−α(p−δ, p)p) = 0 (A.3)

for δ ∈ [0,min{p, 1− p}].
Observe that g(0) = 0 and g′(0) = 0. Moreover, we have g′′(0) =

2αpp(p, p). Then, taking αpp(p, p) from (7), we can see that g′′(0) ≥ 0 is
equivalent to (1/2 − p)(P (w) − 2A(w)) ≥ 0 for all w. This provides the
necessity part of the Proposition.

We now prove the sufficiency. From (A.3), condition (A.1) is equivalent
to

(p−δ)(1−p)u′(w−α(p+δ, p)(1−p))−(1−p+δ)pu′(w+α(p+δ, p)p) ≥ 0. (A.4)

Denoting φ(x) = 1/u′(x) and α = α(p+δ, p) ≥ 0, π∗ ≥ p is therefore satisfied
if

(p+ δ)(1− p)φ(w − αp)− (1− p− δ)pφ(w + α(1− p)) = 0 (A.5)

implies

(p− δ)(1− p)φ(w + αp)− (1− p+ δ)pφ(w − α(1− p)) ≥ 0. (A.6)

We now introduce two random variables:

x̃ =

{
w + αp, p−δ

2p

w − αp, p+δ
2p

, ỹ =

{
w + α(1− p), 1−p−δ

2(1−p)
w − α(1− p), 1−p+δ

2(1−p)
.
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Then it can be verified that Ex̃ = Eỹ = w − αδ and x̃ is a mean-preserving
spread of ỹ if and only if p ≥ 1/2. Note that φ′′(x) ≥ 0 if and only if P ≤ 2A.
Therefore, when p ≥ 1/2 and P ≤ 2A, we have

Eφ(x̃) ≥ Eφ(ỹ), (A.7)

which is equivalent to

1

2p

[
(p− δ)φ(w + αp) + (p+ δ)φ(w − αp)

]
≥ 1

2(1− p)

[
(1− p− δ)φ(w + α(1− p)) + (1− p+ δ)φ(w − α(1− p))

]
.

This last inequality then leads to

(1− p)(p− δ)φ(w + αp)− p(1− p+ δ)φ(w − α(1− p))

≥−
[
(1− p)(p+ δ)φ(w − αp)− p(1− p− δ)φ(w + α(1− p))

]
= 0,

where the last equality is given by (A.5). This shows that the condition
(A.6) is satisfied. Hence π∗ ≥ p when p ≥ 1/2 and P ≤ 2A. Moreover, when
p ≤ 1/2, ỹ is a mean-preserving spread of x̃, and φ′′(x) ≤ 0 is equivalent to
(A.7), leading to π∗ ≥ p. The case π∗ ≤ p under (1/2− p)(P − 2A) ≤ 0 can
be demonstrated in an analogous fashion. This concludes the proof. �

Appendix B [Not for Publication ]: Proof of

Results in Section 6

In this appendix, we setup a prediction market of S-state, derive the equi-
librium state prices, and provide the proofs of the propositions and details
of the examples in Section 6.

B.1 The model of S-state

Consider a prediction market with N agents, indexed by i = 1, · · · , N , and S
states, indexed by s = 1, · · · , S. Agents have the same utility function u(·),
however they have heterogeneous beliefs in the probability distribution over
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the states of nature, denoted by pi = (pi1, pi2, · · · , piS) for agent i. Let πs be
the price of the Arrow-Debreu asset s that delivers $1 in state s and $0 in
other states for s = 1, · · · , S. Agent i chooses a portfolio αi = (αi1, · · · , αiS)
of the Arrow-Debreu assets to maximize his expected utility of portfolio
wealth based on his belief pi. This leads to the standard first-order condition
(FOC):

pisu
′
i(wis) = λiπs, (B.1)

where λi is the Lagrange multiplier,

wis = wo + αis −
S∑
j=1

πjαij, i = 1, · · · , N ; s = 1, · · · , S

is the portfolio wealth of agent i in state s, and wo is the initial wealth.

B.2 The equilibrium state prices

Based on the setup in subsection B.1, the equilibrium state prices {πs} are
determined by the market clear condition

N∑
i=1

αis = 0, s = 1, · · · , S.

To derive the equilibrium state prices, we consider three types of utility
functions and the results are summarized in three Lemmas.

Lemma 1. For u(x) = log(x), the equilibrium state prices are given by

πs =
1

N

N∑
i=1

pis, s = 1, · · · , S, (B.2)

that is, the state price is the mean probability belief of agents in the state.

Proof : With u(x) = log(x), the FOC (B.1) becomes

wo + αis −
S∑
k=1

πkαik =
1

λi

pis
πs
, i = 1, · · · , N ; s = 1, · · · , S, (B.3)
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which leads to

αis = αiS +
1

λi

(
pis
πs
− piS
πS

)
, s = 1, · · · , S.

Substituting the above expressions into (B.3) for s = S, we obtain that
λi = wo. This implies that the Lagrange multiplier λi is a constant in this
case. Applying the market clearing condition to (B.3) then leads to the
equilibrium state prices (B.2). �

Lemma 2. For CARA utility u(x) = −e−rx/r with r > 0, the equilibrium
state prices are given by

πs =
p∗s∑S
k=1 p

∗
k

with p∗s =

( N∏
i=1

pis

)1/N

for s = 1, · · · , S. (B.4)

Proof : With u(x) = −e−rx/r, the FOC (B.1) becomes

pis
πs
e−rwis = λi, i = 1, · · · , N, s = 1, · · · , S.

This leads to

αis −
S∑
k=1

πkαik = −wo +
1

r

[
log

(
pis
πs

)
− log(λi)

]
, s = 1, · · · , S. (B.5)

Applying the market clearing conditions to (B.5), we obtain

rwo +
1

N

N∑
i=1

log(λi) = log

(
p∗s
πs

)
, s = 1, · · · , S, (B.6)

where p∗s is defined by log(p∗s) = 1
N

∑N
i=1 log(pis) for s = 1, · · · , S. Also, from

(B.5),

αis = αiS +
1

r

[
log

(
pis
πs

)
− log

(
piS
πS

)]
, (B.7)

for s = 1, · · · , S. Substituting (B.7) into (B.5) for s = S, we have

S∑
s=1

πs log

(
pis
πs

)
= rwo + log(λi), i = 1, · · · , N. (B.8)
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Aggregating (B.8) over i then leads to

rwo +
1

N

N∑
i=1

log(λi) =
S∑
s=1

πs log

(
p∗s
πs

)
. (B.9)

Substituting (B.9) into (B.6), we then have

log

(
p∗s
πs

)
=

S∑
k=1

πk log

(
p∗k
πk

)
, s = 1, · · · , S.

Therefore p∗s/πs = β is a constant, independent of the state. Then (B.4)
follows from

∑S
s=1 p

∗
s =

∑S
s=1 πsβ = β. �

Lemma 3. For CRRA utility u(x) = x1−γ/(1− γ) with γ 6= 1. the equilib-
rium state prices πs satisfy

π1/γ
s =

1

N

N∑
i=1

p
1/γ
is∑S

k=1 πk
(
pik
πk

)1/γ , s = 1, · · · , S. (B.10)

Proof : With the CRRA utility function, the FOC (B.1) becomes u′(wis) =
w−γis = λiπs/pis. Hence, with g = −1/γ, wis =

(
λi
pis
πs
)g

. This, together with

wis = wo + αis −
∑S

k=1 πkαik, leads to

αis = −wo +
S∑
k=1

πkαik +

(
λi
pis
πs

)g
. (B.11)

Equation (B.11) implies that, for s = 1, · · · , S,

αis = αiS +

[(
λi
pis
πs

)g
−
(
λi
piS

πS

)g]
. (B.12)

Substituting (B.12) into (B.11) for s = S and using the market clear condi-
tion, we obtain

wo =
S∑
s=1

πs

(
λi
pis
πs

)g
, i = 1, · · · , N (B.13)

Also, applying the market clearing condition to (B.11), we have

wo =
1

N

N∑
i=1

(
λi
pis
πs

)g
, s = 1, · · · , S. (B.14)

Combining (B.13) with (B.14) leads to the state prices πs in (B.10). �
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B.3 Proofs of Propositions 5 and 6

The proof of Proposition 5 follows easily from the equilibrium state prices
(B.2) in Lemma 1 for u(x) = log(x). To prove Proposition 6, we first show
that pis = pi for s = 2, ..., S and i = 1, ..., N implies π2,S =

∑S
s=2 πs, where

π2,S denote the state price of an Arrow-Debreu security that delivers $1 if
either state j = 2, ..., S occurs and $0 if state 1 occurs. If pis = pi for
s = 2, ..., S, we have from the FOC (B.1) that

u′(wij)

u′(wik)
=
πj
πk
, for all i = 1, ..., N and j, k = 2, ..., S.

Assume then by contradiction that πj > πk for some j, k = 2, ..., S and
j 6= k. This implies wij < wik, and hence αij < αik for all i = 1, ..., N . The
last inequality cannot hold at the equilibrium due to the market clearing
condition. As a result we must have πj = πk ≡ π for all j = 2, ..., S. It
is immediate that each agent i must demand the same amount, say αi, for
j, k = 2, ..., S. The problem of each agent i is then to select αi1 and αi to
maximize

pi1u(w+αi1−αi1π1−αi(S− 1)π) + (1− pi1)u(w+αi−αi1π1−αi(S− 1)π).

This is equivalent to a binary-prediction market in which (S − 1)π denotes
the equilibrium price of an Arrow-Debreu security that delivers $1 if either
state j = 2, ..., S occurs. Therefore we have

∑S
j=2 πj = (S−1)π = π2,S. This

implies the S-state problem is equivalent to a reduced two-state problem by
combining states 2 to S into one state. Thus the equilibrium price of state 1
only depends on the beliefs of the state.

We now show that if there exists an individual i who assigns differ-
ent probabilities for two states j, k = 2, ..., S then we may always have
π2,S 6=

∑S
j=2 πj. Consider a simple example with 3 states and 2 agents, with

the following structure of beliefs: p1 = (1−2p1, p1, p1) and p2 = (1−2p2, p2+
e, p2− e). Namely agent 1 judges states 2 and 3 as equally likely, while agent
2 judges states 2 and 3 as equally likely if and only if e = 0. With CARA
preferences, in the three-state prediction market we use the equilibrium state
prices in (B.4) of Lemma 2 and obtain πi = p∗i /(p

∗
1 + p∗2 + p∗3) for i = 1, 2, 3

with p∗1 =
√

(1− 2p1)(1− 2p2), p
∗
2 =

√
p1(p2 + e) and p∗3 =

√
p1(p2 − e).

However, in the two-state prediction market where states 2 and 3 are com-
bined into one state, the beliefs p1 and p2 become p̄1 = (1 − 2p1, 2p1) and
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p̄2 = (1 − 2p2, 2p2), respectively. Hence the corresponding state prices be-
come (using obvious notations) π̄1 = p̄∗i /(p̄

∗
1 + p̄∗2,3) and π̄2,3 = p̄∗2,3/(p̄

∗
1 + p̄∗2,3)

with p̄∗1 =
√

(1− 2p1)(1− 2p2) and p̄∗2,3 = 2
√
p1p2. Therefore π̄2,3 = π2 + π3

for all p1 and p2 if and only if e = 0. A similar example can be generated for
any arbitrary number of states. This completes the proof of Proposition 6.

B.4 Proofs of the results in Examples 5 and 6

In Example 5 with CARA utility function, we apply the equilibrium state
price (B.4) in Lemma 2 to agents’ beliefs and obtain that p∗1 = 1 − 2p and
p∗2 = p∗3 =

√
p2 − ε2, leading to the state price π1 in the example.

To show the result in Example 6, we apply the equilibrium state prices
(B.10) in Lemma 3 for CRRA utility function. With g = −1/γ, the state
prices πs for s = 1, 2, 3 in this case satisfy

2 = (π1)
g
[
p−g11 /∆1 + p−g21 /∆2

]
, (B.15)

2 = (π2)
g
[
p−g12 /∆1 + p−g22 /∆2

]
, (B.16)

2 = (π3)
g
[
p−g13 /∆1 + p−g23 /∆2

]
, (B.17)

where

∆1 = π1(π1/p11)
g + π2(π2/p12)

g + π3(π3/p13)
g,

∆2 = π1(π1/p21)
g + π2(π2/p22)

g + π3(π3/p23)
g.

With the specified heterogeneous probabilities, ∆1 = (12)gδ1 and ∆2 =
(12)gδ2, where

δ1 = π1(π1/9)g + π2(π2/2)g + π3(π3)
g,

δ2 = π1(π1/3)g + π2(π2/6)g + π3(π3/3)g.

Correspondingly, equations (B.15)-(B.17) lead to

2(π1)
−g = 9−g/δ1 + 3−g/δ2, (B.18)

2(π2)
−g = 2−g/δ1 + 6−g/δ2, (B.19)

2(π3)
−g = 1/δ1 + 3−g/δ2, (B.20)

From (B.19) and (B.20), we obtain π3 = π2/2. Hence

δ1 = π1(π1/9)g + (3/2)π2(π2/2)g, (B.21)

δ2 = π1(π1/3)g + (3/2)π2(π2/6)g. (B.22)
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Also, from (B.18) and (B.19),

3g[δ1 + 3gδ2]π
g
2 = 2g[3gδ1 + δ2]π

g
1 . (B.23)

Substituting (B.21) and (B.22) into (B.23), we obtain

[3g + 3−g][π1 − (3/2)π2]π
g
1π

g
2 = 3(2/3)1+gπ1+2g

2 [(π1/π2)
1+2g − (3/2)1+2g],

leading to π1 = (3/2)π2.

B.5 Proof of Proposition 7

To examine the effect of heterogeneous beliefs, Varian introduces the weighted
probabilities qis = pis/λi for i = 1, · · · , N and s = 1, · · · , S. By defining f(x)
as the inverse function of strictly decreasing function u′(x), Varian shows
that, when P < 2A, increasing the dispersion of heterogeneous beliefs de-
creases the state prices. In fact, for the S state market, the FOC (B.1) is
given by

wis = wo + αis −
S∑
k=1

πkαik = f(πs/qis) (B.24)

for i = 1, · · · , N and s = 1, · · · , S. Applying the market clearing condition
to (B.24), we have

Nwo =
N∑
i=1

f(πs/qis), s = 1, · · · , S. (B.25)

Note the facts that f(πs/qis) is an increasing function of qis and that it is
a concave function of qis if P < 2A. Based on (B.25), Varian shows that a
mean-preserving spread in the weighted probabilities qis must decrease the
state price πs when f(πs/qis) is an increasing concave function of qis. Propo-
sition 7 claims that this result also holds for the unweighted probabilities pis
for CARA utility functions. In fact, for CARA utility functions, P = A.
Note that log(p∗s) = (1/N)

∑N
i=1 log(pis) is a concave function of agents’ het-

erogeneous probabilities pis. Then Proposition 7 follows from the equilibrium
state price (B.4).
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