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Abstract

Renewable Portfolio Standards (RPS) are often used to promote renewable energy

and to foster substitution for fossil energy sources. In practice, the minimal level of

renewable energy to be supplied can be de�ned either as a ratio of the energy-mix

(proportional mandate) or as an independent quantitative target (quantity mandate).

The objective of this paper is to compare the consequences of the two types of quan-

titative mandates in terms of energy prices, support economic policies and carbon

emissions. We thus extend the Chakravorty et al. (2006) model by considering, in

addition to the carbon cap constraint, a RPS constraint (alternatively, a quantity or

a proportional mandate). Our main results are the following. Independently of any

carbon taxation, a quantity mandate requires a single subsidy on renewable energy

to be enforced whereas a proportional mandate is equivalent to a tax-subsidy scheme

that is revenue-neutral. Whatever its type, the mandate lowers the energy price and

the social objective function, and it delays the date at which the carbon cap constraint

is binding. If the two types of mandates are such that they yield the same social ob-

jective value then, the quantity mandate implies a lower energy price, a larger subsidy

on renewable energy and a smaller fossil fuel tax (including the carbon tax) than the

proportional mandate.
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1 Introduction

Including power generation, transport and industry, the energy sector accounts for 65%

of total greenhouse gases emissions in 2006 (Stern, 2007). More particularly, the largest

source of carbon emissions is due to electricity generation and heat, accounting for 41%

of emissions worldwide according to the International Energy Agency (IEA, 2008). In

this context, substituting renewable energy sources for fossil energy sources has, at least,

two advantages. First, it relaxes the availability constraint on the fossil non-renewable

resource stocks. Second, since renewable energy sources are the most often carbon-free,

such a substitution constitutes a key technological option to reduce carbon emissions in

the energy sector and to satisfy some mitigation targets.1

The main break to a massive development of technologies based on renewable energy

sources is their cost as compared with traditional fossil fuels.2 Since they are more costly,

renewable energy sources currently represent only a small portion of the energy portfolio,

that is 19% including hydropower (IEA, 2008). However, as underlined by Popp et al.

(2011), while the costs of these technologies are higher than other fuels, they have also

been falling. On the one hand, competitiveness of renewable energies may grow since the

traditional fossil energies are expected to be more expensive in the future because of their

scarcity. On the other hand, the fall in their costs which is observed since the 1980s (in

particular for solar PV) is mainly due to a technical change e�ect, both through learning

processes and R&D activities. The gap between renewable and fossil energies is then

expected to be gradually reduced, but this will take time. Consequently, speci�c policies

to promote renewable energy technologies are needed to accelerate the energy transition

(Kalkhul et al., 2011).

Many renewable energy promoting policies take the form of quantitative mandates

or, equivalently of Renewable Portfolio Standards (RPS). This regulation requires the

increased production of energy from renewable energy sources and aims at reaching some

given target by a pre-de�nite future date. Apart from its contribution to climate policy

(through lower carbon emissions per unit of energy), the main motive of RPS is the security

1Another mitigation option would consist in maintaining the fossil fuel consumption and reducing its
carbon print by using some abatement devices, such as CCS or air capture (see La�orgue et al., 2008, or
Amigues et al., 2011).

2For wind and geothermal technologies, the extra-cost of generation is near $0.05/kWh in the most
favorable locations, and larger elsewhere. This extra-cost rises to $0.20-0.30/kWh for solar PV (IEA,
2006).
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of energy supply since it allows for decreasing the dependence on foreign fossil energy

deliveries (Boeters and Koornneef, 2011).

Technically, the type of obligation placed on the energy supplier can be twofold since

the associated mandate can be de�ned either in quantity or in proportion. In practice,

both types of mandates have been unclearly adopted. In United States, the 2005 Energy

Policy Act established a Renewable Fuel Standard (RFS) that mandates speci�c quantity

targets for biofuel use (36 billion gallons by 2022). For electricity, US Renewable Electricity

Standards (RES) policies are implemented at the federal level. Reviewing state-by-state

RES programs, it is clear that the norm is to di�erentiate support by technology type,

but without any harmonization about the type of mandates. Hence, the Michigan's target

is to produce 300MW of renewable electricity by 2013 and 600MW by 2015 whereas Col-

orado committed to reach 30% of renewable electricity by 2020 for instance. Even at the

international level, RPS are not harmonized. China adopted in 2009 a renewable energy

target aiming at producing 500GW of renewable electricity by 2020 (300 from hydro, 150

from wind, 30 from biomass and 20 from solar PV). In 2007, the EU Directive on Energy

Production from Renewable Sources committed itself to target of 20% of renewable energy

in the total EU energy consumption by 2020, and of 33% of renewable electricity.

Even if the quantitative objectives induced by quantity and proportional mandates can

seem to be equivalent, di�erences in their direct economic consequences, both in quantities

and prices, are not harmless. These two approaches contrast at least in two points. The �rst

di�erence concerns the de�nition and the implementation of the critical support economic

policies induced by each type of mandate. A quantity mandate requires a single instrument

to be enforced: a subsidy for renewable energy use (Vedenov and Wetzstein, 2008, Galinato

and Yoder, 2011).3 In contrast, a proportional mandate requires a combination of fossil

fuel taxes and renewable energy subsidies that are revenue neutral (Lapan and Moschini,

2011). This tax-subsidy scheme is equivalent to a feed-in-tari�: a tax on fossil energy

is used to cross-�nance a subsidy on renewable energy and thus yields an income-neutral

policy for the government (Kalkhuhl et al. 2011). Taking into account these di�erences,

the energy consumer-price may vary according to the type of mandate.

The second di�erence lies in the dynamic properties on the induced energy-mix. Whereas

non-renewable and renewable energy uses are disconnected under a quantity mandate, they

are linked with under proportional device. In particular, if the proportional target is con-

3In the case of biofuels in the US, Vedenov andWetzstein (2008) remark that, historically, these subsidies
are funded from general tax funds, mostly from income and labor taxes, and not from fuel tax revenus.
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stant over time, as long as renewable energy is still more expensive than the non-renewable

one, the energy producer will just supply the minimal amount of renewable required to

satisfy the mandate. This may lead to a situation where both primary energy consump-

tions are declining over time, the fossil energy because of the standard Hotelling scarcity

e�ect, and the renewable one because of its proportionality link with the fossil energy use.

The economic literature on RPS mentioned above is quite recent and analyzes sepa-

rately these two kinds of mandates, mainly through simulated models. To our knowledge,

there does not exist any comparative study of quantity and proportional mandates. Never-

theless, such a comparative analysis would be useful, in a policy harmonization objective,

to answer to some crucial questions such as: i) Which type of mandate is the cheaper for

the energy user? For the energy producer? For the social planner? What are their impacts

on the fossil fuel consumption path (and then on carbon emissions)? The objective of our

paper is to provide answers to these questions.

We use the Chakravorty et al. (2006) model to determine the optimal exploitation

time-paths of two primary energy sources that are perfect substitutes, a fossil energy

and a renewable one. These optimal paths are considered along with the two following

features. First, the cumulative atmospheric pollution stock is set not to exceed some

critical threshold. Second, the renewable energy use is constrained by a mandate which is

constant over time and de�ned ab-initio. This mandate can be de�ned either in quantity

or proportionally. We do not discuss about the normative properties of the carbon cap and

the RPS. We simply assumed that they are recommended by an independent expert and

that they must be taken as given by the agents. Then, the policy-maker must implement

a carbon tax to enforce the carbon bank constraint, and, alternatively, a single subsidy

on renewable energy use to enforce the quantity mandate, or a simultaneous tax-subsidy

scheme on the energy-mix to enforce the proportional mandate.

The main results of the paper are the following. i) Whatever the type of mandate,

the optimal subsidy on renewable energy is declining over time. ii) Under a proportional

mandate, an additional penalty on fossil energy, proportional to the subsidy, must be added

to the carbon tax. The resulting global tax on fossil fuel, which combines this penalty with

the traditional carbon tax, can exhibit unusual non-monotonous time paces as long as the

atmospheric carbon cap is not reached. iii) Whatever the type of mandate, a RPS lowers

the energy price, reduces the social objective function and delays the date at which the
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carbon cap constraint is binding. iv) If the two types of mandates are such that they yield

the same social objective value then, with an inelastic energy demand function and as long

as the carbon cap is not reached, a quantity mandate implies a lower energy price, a larger

subsidy on renewable energy and a smaller fossil fuel tax (including the carbon tax) than

a proportional mandate.

The paper is organized as follows. Section 2 presents the model and lays down the social

planner program under each type of mandate. In section 3, we derive the optimal solution

under the quantity mandate. In particular, we characterize the content and the time pace

of the optimal energy-mix, the energy price trajectory and the policy-mix allowing to

sustain this optimal path. The case of a proportional mandate is examined in section 4.

In section 5, we develop a comparative analysis of the two types of mandates in the case

where the energy demand function is inelastic. Finally, we brie�y conclude in section 6.

2 Model and notations

We consider a stationary economy in which the �nal consumption good is a bundle of energy

services, which can be produced from two primary natural resources: A carbon-emitting

non-renewable resource, oil, and a carbon-free renewable resource, solar.

Fossil resource

Let us denote by X0 the initial oil endowment of the economy, by X(t) the remaining part

of this endowment at time t, and by x(t) the instantaneous consumption �ow of oil, so

that:

Ẋ(t) = −x(t), with X(0) = X0, X(t) ≥ 0 (1)

x(t) ≥ 0 (2)

The average delivery cost of oil cx is assumed to be constant and, absent any sunk

cost, equal to the marginal cost. This cost includes the extraction cost of the resource,

the cost of industrial processing (crude oil re�ning) and the transportation cost. To keep

matter as simple as possible, we also assume that no oil is lost during the delivery process.

Equivalently, the oil stock X(t) may be understood as measured in ready-for-use units.
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Carbon emissions and atmospheric carbon stock

Let Z(t) be the stock of carbon within the atmosphere at time t, and Z0 be the initial stock.

The atmospheric carbon stock is fed by carbon emission �ows resulting from oil burning.

We denote by ζ the quantity of carbon by unit of oil which is released into the atmosphere

after combustion. The atmospheric carbon stock is assumed to be self-regenerating at some

constant proportional rate α, α > 0, so that the dynamics of Z(t) results into:

Ż(t) = ζx(t)− αZ(t), with Z(0) = Z0 ≥ 0 (3)

We assume that a carbon cap policy is prescribed to prevent any catastrophic damages

which would be in�nitely costly for the society. This policy consists in forcing the at-

mospheric carbon stock to not overshoot some critical level Z̄, Z̄ > Z0, resulting in the

following constraint upon the state variable Z(t):

Z̄ − Z(t) ≥ 0 (4)

To satisfy the constraint when the atmospheric carbon stock reaches its critical level, the oil

consumption x(t) must be at most equal to x̄ = αZ̄/ζ, the oil consumption rate generating

an emission �ow that is balanced by natural regeneration.

Carbon-free renewable resource

The alternative energy source is supplied by the carbon-free renewable resource, the solar

energy. Let y(t) be the solar energy instantaneous consumption rate and cy its average

delivery cost. Because cx and cy both include all the costs necessary to deliver ready-for-use

energy services to the potential users, both resources may be seen as perfect substitutes

for the users, so that we may de�ne the instantaneous aggregate energy consumption rate

as q(t) = x(t) + y(t), provided that the costs cx and cy are incurred.

The average cost cy is assumed to be constant and higher than cx. We also assume

that the natural �ow of available solar energy, denoted by yn, is large enough so that no

rent has ever to be imputed for its use. Denoting by ỹ the solar energy consumption rate

it would be optimal to consume at the marginal cost cy, we thus assume yn > ỹ.

Renewable Portfolio Standards (RPS)

The renewable energy promoting policy takes the form of a RPS and we alternatively

consider the cases of a quantity mandate and a proportional mandate. Each type of
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mandate implies a distinguishing additional constraint on the energy-mix. For the sake of

simplicity, we restrict the analysis to the case where the two types of constraints must be

satis�ed ab initio.4

• Quantity mandate:

This �rst type of RPS requires that some constant minimal amount of renewable

energy y, y > 0, has to be supplied at any point of time, which results in the

following constraint:

y(t)− y ≥ 0 (5)

We assume that y < ỹ, so that the mandate is smaller than the solar consumption

rate when oil is exhausted.

• Proportional mandate:

The proportional mandate requires that some constant minimal proportion σ, σ ∈

(0, 1), of the energy services have to be supplied by the solar energy: y(t) ≥ σ[x(t) +

y(t)]. Equivalently, de�ning θ as the ratio σ/(1−σ) of energy supply from renewable

source to energy supply from fossil source, this constraint may be rewritten as:

y(t)− θx(t) ≥ 0 (6)

Gross surplus

The instantaneous gross surplus derived from the instantaneous energy consumption rate

q(t) is given by some function u(q) satisfying the following standard assumptions. Function

u(.), u : R+ → R+ is of class C2, strictly increasing, strictly concave and veri�es the Inada

conditions: limq↓0 u
′(q) = +∞ and limq↑+∞ u

′(q) = 0. We denote by p(q) = u′(q) the

marginal gross surplus function, that is the energy consumer price, and by qd(p) = p−1(p)

its inverse, that is the direct demand function.

We also assume that the solar marginal cost cy is high enough so that solar energy

is not competitive without any speci�c promoting policy during any phase at the ceiling.

Denoting by p̄ the energy consumer price at the ceiling when energy services are only

supplied by oil, that is p̄ = u′(x̄), then: p̄ < cy.

In the last section, we will restrict the above general framework to the case of an inelastic

demand function over the price range within which the energy price must evolve along any

4More detailed scenarios in which some targeting is introduced by assuming that the RPS constraint
must satis�ed at some later date can also be derived. They are available upon request.
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optimal path. The lowest and highest benchmarks of this price will be determined by the

supply side of the model. This simpli�cation will allow to provide a comparison of the two

types of mandates without changing the main analytical properties of the optimal paths.

Social discount rate and program of the social planner

We assume that the instantaneous social discount rate, denoted by ρ, is constant and

strictly positive, ρ > 0. The program of the social planner consists in determining the

trajectories of x(t) and y(t) that maximize the sum of the discounted net surplus:

max
{x(t),y(t)}

∫ ∞
0
{u [x(t) + y(t)]− cxx(t)− cyy(t)} e−ρtdt

subject to (1)-(4) and, alternatively, to (5) or (6).

Let us denote by λX the costate variable of the state variable X, by λZ minus the

costate variable of Z, by η the Lagrange multiplier associated with the ceiling constraint

on Z, by ν the Lagrange multiplier associated with the constraint on the solar energy

(quantity or proportional mandate) and by γ's the Lagrange multipliers associated with

the non-negativity constraints on the command variables.

3 Optimal solution under the quantity mandate

3.1 Optimal conditions

Under the nominal quantity mandate, resulting in constraint (5) on the solar energy use,

the current valued Lagrangian Lqm of the optimal program writes as:

Lqm(t) = u[x(t) + y(t)]− cxx(t)− cyy(t)− λX(t)x(t)− λZ(t)[ζx(t)− αZ(t)]

+η(t)[Z̄ − Z(t)] + ν(t)[y(t)− y] + γx(t)x(t)

The �rst-order conditions relative to the command and to the state variables are:

∂Lqm

∂x
= 0 ⇒ u′[x(t) + y(t)] = cx + λX(t) + ζλZ(t)− γx(t) (7)

∂Lqm

∂y
= 0 ⇒ u′[x(t) + y(t)] = cy − ν(t) (8)

λ̇X = ρλX −
∂Lqm

∂X
⇒ λ̇X(t) = ρλX(t) (9)

λ̇Z = ρλZ +
∂Lqm

∂Z
⇒ λ̇Z(t) = (ρ+ α)λZ(t)− η(t) (10)

8



The associated complementary slackness conditions are:

γx(t) ≥ 0, x(t) ≥ 0 and γx(t)x(t) = 0 (11)

ν(t) ≥ 0, y(t)− y ≥ 0 and ν(t)[y(t)− y] = 0 (12)

η(t) ≥ 0, Z̄ − Z(t) ≥ 0 and η(t)[Z̄ − Z(t)] ≥ 0 (13)

Last, the transversality conditions write as:

lim
t↑∞

e−ρtλX(t)X(t) = 0 (14)

lim
t↑∞

e−ρtλZ(t)Z(t) = 0 (15)

Due to the number of inequality constraints, all captured by the complementary slack-

ness conditions (11)-(13), the resulting number of possibilities to be analyzed is quite large.

The following preliminary remarks help to eliminate many of them and to directly draw

the optimal solution.5

Remark 1

The shadow marginal value λX(t) of the stock of oil, or mining rent, must grow at the

social rate of discount ρ. From (9), we get: λX(t) = λX0e
ρt, with λX0 = λX(0). Thus

the transversality condition (14) reduces to λX0 limt↑∞X(t) = 0. If oil has some positive

initial value, λX0 > 0, then it must be exhausted along the optimal path.

Remark 2

Concerning the shadow marginal cost of the atmospheric carbon stock λZ(t), note that, as

long as the atmospheric carbon cap is not attained yet, we must have η(t) = 0 from (13)

and then (10) reduces to λ̇Z(t) = (ρ + α)λZ(t). Once the ceiling is de�nitively left, this

shadow cost is nil since the economy is no more facing any stabilization constraint. Thus,

denoting respectively by tZ and t̄Z the date at which the ceiling constraint is beginning to

be active and the latest date at which Z(t) = Z̄, we may have:

t < tZ ⇒ λZ(t) = λZ0e
(ρ+α)t, λZ0 = λZ(0)

t ≥ t̄Z ⇒ λZ(t) = 0

5The multiplicity of solutions is a recurrent problem in this strand of literature already pointed out by
Tahvonen (1997).
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Remark 3

The full marginal cost of oil, as given by the right-hand-side of (7), includes the delivery

cost cx, the resource rent λX(t) and the environmental shadow cost ζλZ(t) in order to

enforce the ceiling constraint. The right-hand-side of (8) gives the full marginal cost of

solar energy, which writes as the delivery cost cy diminished by a "grant" ν(t) to enforce the

constraint on the energy-mix. From (7) and (8), as long as the two primary energy sources

are simultaneously used and since they are perfect substitutes, these two cost expressions

must be equal to the marginal gross surplus of consuming energy: cx + λX0e
ρt + ζλZ(t) =

cy − ν(t) = u′[x(t) + y(t)].

During a phase of simultaneous oil and solar consumption before the ceiling is attained,

since both λX(t) and λZ(t) are increasing (see remarks 1 and 2), we must have ν(t) > 0 so

that y(t) = y. The same conclusion can be drawn for a simultaneous use of both types of

energy after the ceiling is de�nitively left since λZ(t) is nil and λX(t) is still growing over

time. Finally, considering the case of a simultaneous use of oil and solar energy during a

phase at the ceiling, we must have: u′(x̄+ y(t)) = cy − ν(t). If y(t) > y, then ν(t) = 0 and

we would get u′(x̄+y(t)) = cy, which is clearly not possible since u′(x̄+y(t)) < u′(x̄) < cy

by assumption. We conclude that, as long as oil is not exhausted yet, the supplying �ow

of solar energy must be equal to the quantity mandate y.

Remark 4

Since oil is cheaper than solar, minimizing the sum of discounted cost �ows implies that

this energy may be used as much as possible. As a result, the energy-mix consumption

policy consists in two regimes: i) a �rst period [0, t̄x) during which both primary energy

sources are simultaneously used, the amount of solar energy being �xed to y and the fossil

resource being exhausted at time t̄x and ii) a second period [t̄x,∞) during which the energy

consumption is only supplied by the solar energy �ow y(t) = ỹ = qd(cy) > y.

The di�erent phases characterizing the optimal trajectory thus di�er depending on

whether the ceiling constraint is binding or not and depending on whether the two primary

energies are simultaneously used or not. We get four successive phases, separated by dates

tZ , t̄Z , and t̄x, with tZ < t̄Z ≤ t̄x.
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3.2 Description of a typical optimal path

The solution is similar to the optimal path derived in Chakravorty et al. (2006) for a

constant structure of costs and a stationary demand, except that the solar energy use is

now constrained by the RPS policy to be at least equal to y. This implies that an incentive

subsidy ν(t) on the solar energy use must be enforced as long as the full marginal cost of

the energy-mix remains lower than the trigger price cy, that is as long as solar energy is

not competitive yet. This subsidy is optimally set such that the respective full marginal

costs of using each type of primary resource are equal. The resulting optimal solution is

a four-phase path as illustrated in �gure 1 in the case where the initial oil endowment is

large enough to trigger the binding of the ceiling constraint. The entire characterization of

this solution depends upon the �ve variables λX0, λZ0, tZ , t̄Z and t̄x whose determination

is detailed in Appendix A.1.

[Figure 1 here]

The starting phase, for t ∈ [0, tZ), takes place before the atmospheric carbon stabi-

lization cap is reached. During this phase, both energy sources are simultaneously used

and the energy consumer price is equal to the full marginal cost of using oil: p(t) =

cx + λX0e
ρt + ζλZ0e

(ρ+α)t. This price is growing over time at a rate which is larger than

the social discount rate ρ. Since solar energy consumption is constant and equals to y, oil

consumption writes as the remaining part of the energy demand: x(t) = [qd(cx +λX0e
ρt +

ζλZ0e
(ρ+α)t)− y]. This phase ends at time tZ , when the energy price equals u′(x̄+ y) or,

equivalently, when the atmospheric carbon stock attains the ceiling level Z̄.

The second phase, for t ∈ [tZ , t̄Z), is a phase during which the atmospheric carbon

stock is constrained by the ceiling: Z(t) = Z̄. Minimizing the energy production cost

means that oil must be used as far as possible: x(t) = x̄. The solar energy consumption

still amounts to y and the energy price is thus constant: p(t) = u′(x̄ + y). This implies

that the environmental cost of carbon emissions, ζλZ(t) = u′(x̄ + y) − cx − λX0e
ρt, is

decreasing: ζλ̇Z(t) = −ρλX0e
ρt < 0. The phase ends at time t̄Z when this cost is nil and

when, simultaneously, the atmospheric carbon stock starts to fall down below Z̄.

The third phase, for t ∈ [t̄Z , t̄x), is a phase during which the environmental constraint

is not active anymore and the fossil resource extraction runs until exhaustion. The energy
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consumer price is p(t) = cx+λX0e
ρt and the energy-mix consists of x(t) = [qd(cx+λX0e

ρt)−

y] units of oil and y(t) = y units of solar. The phase ends at time t̄x, when the energy

price reaches cy. At this point of time, the fossil resource must be exhausted and the

solar energy consumption must be equal to qd(cy) = ỹ. Consequently, the oil consumption

trajectory makes a downward jump from (ỹ−y) to 0 and the solar consumption trajectory,

an upward jump from y to ỹ. These discontinuities occur because of the constant structure

of costs and RPS which is assumed in the model.

The last phase, for t ∈ [t̄x,∞), is a pure solar energy consumption regime with a con-

stant energy price cy and a corresponding energy consumption ỹ. Since solar is becoming

competitive, no speci�c subsidy is required anymore.

3.3 The optimal policy-mix

As discussed in the previous subsection, a second level of distortion, in addition to the

environmental externality, is introduced by the RPS policy which imposes, in the case of a

quantity mandate, a minimal amount of solar energy consumption. The policy-mix induced

by these two constraints, the atmospheric carbon cap and the mandate, is characterized in

the following proposition.

Proposition 1 Under the nominal quantity mandate, the policy-mix allowing to sustain

the optimal path consists of:

1. A unitary subsidy ν(t) on solar energy consumption, whose time pace is given by:

ν(t) =



cy − [cx + λX0e
ρt + ζλZ0e

(ρ+α)t] t ∈ [0, tZ)

cy − u′(x̄+ y) t ∈ [tZ , t̄Z)

cy −
(
cx + λX0e

ρt
)

t ∈ [t̄Z , t̄x)

0 t ∈ [t̄x,∞)

(16)

2. A unitary carbon tax ζλZ(t) on oil consumption, whose time pace is given by:

ζλZ(t) =


ζλZ0e

(ρ+α)t t ∈ [0, tZ)

u′(x̄+ y)−
(
cx + λX0e

ρt
)

t ∈ [tZ , t̄Z)

0 t ∈ [t̄Z ,∞)

(17)

As long as the solar energy is not competitive yet, the unitary subsidy ν(t) to promote

this type of energy, which is given by (16), simply writes as the di�erence between the
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energy price level cy at which solar becomes competitive and the current energy price, as

shown in �gure 1. Since this price is always increasing over time and since cy is constant,

the optimal subsidy rate must be non-increasing. At the end of the third phase, when the

fossil resource is fully exhausted, solar energy becomes competitive even without promoting

policy and the subsidy is nil.

As usual in dynamic climate models in which the environmental damages are captured

by a ceiling constraint on the atmospheric carbon stock, the optimal carbon tax, given by

(17), corresponds to the shadow marginal cost of the carbon stock. Graphically (see �gure

1), this tax is measured by the gap between the current energy consumer price path and

the current producer price path p(t) = cx + λX0e
ρt, or, equivalently, the marginal delivery

cost of oil augmented by the resource rent. Its shape is similar to the one obtained in

Chakravorty et al. (2006). As long as the ceiling constraint is not binding, the carbon

tax is increasing at a rate which is larger than ρ in order to take into account the natural

regeneration of the atmosphere at a constant rate α. It is next decreasing during the phase

at the ceiling and �nally, it falls to zero once the ceiling is de�nitively left.

The optimal time pro�les of ν(t) and ζλZ(t) are depicted in �gure 2.

[Figure 2 here]

4 Optimal solution under the proportional mandate

4.1 Optimal conditions

Under the proportional mandate, constraint (5) on the energy-mix composition must be

replaced by (6) and the current valued Lagrangian of the optimal program is:

Lpm(t) = u[x(t) + y(t)]− cxx(t)− cyy(t)− λX(t)x(t)− λZ(t)[ζx(t)− αZ(t)]

+η(t)[Z̄ − Z(t)] + ν(t)[y(t)− θx(t)] + γx(t)x(t)

The �rst-order conditions (7) and (8) become, respectively:

u′[x(t) + y(t)] = cx + λX(t) + ζλZ(t) + θν(t)− γx(t) (18)

u′[x(t) + y(t)] = cy − ν(t) (19)

and the complementary slackness condition (12) is replaced by:

ν(t) ≥ 0, y(t)− θx(t) ≥ 0 and ν(t)[y(t)− θx(t)] = 0 (20)
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The other conditions remain unchanged, as well as remarks 1 and 2.

As compared with the quantity mandate case, the main change induced by the propor-

tional mandate is that the constraint on the energy-mix now also relies on oil consumption.

Remark 3 is thus modi�ed in the following terms: i) The full marginal cost of oil, as given

by the right-hand-side of (18), includes an additional "penalty" component θν(t) to pro-

mote solar energy, in addition to the other usual terms. ii) This penalty writes as the

Lagrange multiplier associated with the RPS constraint, multiplied by the relative weight

θ of solar energy in the energy-mix. From (19), the full marginal cost of solar must be

diminished by a unitary subsidy ν(t), as in the quantity mandate case. In other words,

using both types of primary energy, which implies the equality of their full marginal costs,

requires to simultaneously subsidize solar at rate ν(t) as long as this energy source is not

competitive yet, and to tax oil at rate θν(t), irrespective of the usual carbon tax required

to enforce the constraint on the atmospheric carbon accumulation.

Next, it can be shown that the RPS constraint (6) must be binding until oil ex-

haustion. The proof calls for the same arguments as in the quantity mandate case.

Hence, as long as the two primary energy resources are simultaneously used, solar en-

ergy must be proportional to oil, y(t) = θx(t), and, from (18) and (19), we must have

ν(t) = (1− σ) {cy − [cx + λX(t) + ζλZ(t)]}.

Finally, note that, as in Lapan and Moschini (2011), the above tax-subsidy scheme is

revenue-neutral at each point of time. By construction, for any t, the tax burden θν(t)x(t)

must balance the amount of subsidy ν(t)y(t) since y(t) = θx(t). However, this does not

mean that tax and subsidy rates coincide. Actually they are equal if and only if θ = 1 or,

equivalently, if σ = 50%.

4.2 Description of a typical optimal path

A �rst phase A typical optimal path is a four-phase path as illustrated in �gure 3 in the

case where the reserves of oil are su�ciently large to guarantee that the atmospheric carbon

cap is attained. The details of its entire characterization are provided in Appendix A.2.

[Figure 3 here]
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During the �rst phase, for t ∈ [0, tZ), the ceiling constraint is not binding yet and

the two primary energy sources are simultaneously used. The energy price p(t) writes as

the sum of two terms. The �rst one is the marginal cost σcy of σ% of the energy-mix

supplied by solar and the second one, the marginal cost (1− σ)[cx + λX0e
ρt + ζλZ0e

(ρ+α)t]

of (1−σ)% of the energy-mix supplied by oil. Given this price p(t), the energy-mix content

consists of σqd(p(t)) units of solar energy and (1−σ)qd(p(t)) units of oil. Since the energy

price is growing over time, the total energy consumption must be declining, meaning that

oil and solar energy are both decreasing during this phase. A declining oil extraction

path is a standard result in the Hotelling literature, when a decreasing renewable resource

consumption is less usual. It is in fact a direct implication of the speci�c RPS which is

under consideration here and which links proportionally the consumption of the two types

of primary energy sources (insérer ici détails arbitrage).

The second phase, for t ∈ [tZ , t̄Z), is a phase at the ceiling during which the energy

price is constant: p(t) = u′(x̄/(1− σ)). Oil and solar consumptions are then also constant

and amount, respectively, to x̄ and θx̄.

During the third phase, for t ∈ [t̄Z , t̄x), the ceiling constraint is not active anymore

and the fossil resource must be fully exhausted at the end of the phase. The energy price

is p(t) = σcy + (1 − σ)[cx + λX0e
ρt]. As in the �rst phase, this price reads as the sum of

the marginal cost σcy of σ% of the energy-mix supplied by solar and the marginal cost

(1−σ)(cx+λX0e
ρt) of (1−σ)% of the energy-mix supplied by oil. The energy-mix consists

of (1−σ)qd(p(t)) units of oil and σqd(p(t)) units of solar and these consumption trajectories

are both decreasing through time.

Last, the fourth phase, for t ∈ [t̄x,∞), is the same type of pure solar energy consumption

regime as described in the quantity mandate case.

4.3 The optimal policy-mix

The policy-mix required to implement the optimal path as described above is characterized

in the following proposition.

Proposition 2 Under the proportional mandate, the policy-mix allowing to sustain the

optimal path consists of:
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1. A subsidy rate ν(t) on solar energy consumption:

ν(t) =



(1− σ)
{
cy − [cx + λX0e

ρt + ζλZ0e
(ρ+α)t]

}
t ∈ [0, tZ)

cy − u′
(

x̄
1−σ

)
t ∈ [tZ , t̄Z)

(1− σ)
[
cy −

(
cx + λX0e

ρt
)]

t ∈ [t̄Z , t̄x)

0 t ∈ [t̄x,∞)

(21)

2. A global tax rate τ(t) on fossil energy use:

τ(t) =



σ
[
cy − (cx + λX0e

ρt)
]

+ (1− σ)ζλZ0e
(ρ+α)t t ∈ [0, tZ)

u′
(

x̄
1−σ

)
− (cx + λX0e

ρt) t ∈ [tZ , t̄Z)

σ
[
cy − (cx + λX0e

ρt)
]

t ∈ [t̄Z , t̄x)

0 t ∈ [t̄x,∞)

(22)

As in the quantity mandate case, the unitary solar subsidy ν(t), as given by (21), can

be graphically measured by the gap between cy and the current energy price level p(t) (see

Figure 3). Its trajectory exhibits the same time pace as the one depicted by �gure 2.

The fossil energy tax τ(t) expressed in (22) writes as the sum of two tax rates. The

�rst one is the usual carbon tax ζλZ(t) whose time pro�le is given by:

ζλZ(t) =


ζλZ0e

(ρ+α)t t ∈ [0, tZ)

1
(1−σ)

[
u′
(

x̄
1−σ

)
− σcy − (1− σ)(cx + λX0e

ρt)
]

t ∈ [tZ , t̄Z)

0 t ∈ [t̄Z ,∞)

(23)

Its shape is similar to the one obtained in the quantity mandate case and illustrated in

�gure 2. The second component is the additional penalty θν(t) on oil consumption required

to promote solar energy. The resulting global tax is then τ(t) = ζλZ(t) + θν(t). It can

be graphically identi�ed in �gure 3 as the gap between the current energy consumer price

p(t) and the oil producer price cx + λX0e
ρt.

From (22), the fossil energy tax formally writes as a linear combination of an increasing

term, ζλZ(t) and a decreasing one, ν(t). Without any ambiguity, it is decreasing through

time once the ceiling has been reached, i.e. for t ≥ tZ , since ζλZ(t) and ν(t) are both

decreasing during this time interval. However, the dynamics of τ(t) is not clearly deter-

mined for t ∈ [0, tZ) and it depends upon the relative magnitude of variation of its two

components. During this interval of time, the di�erentiation with respect to time of (22)

yields τ̇(t) = −ρσλX0e
ρt + (ρ + α)(1 − σ)ζλZ0e

(ρ+α)t. Consequently, the following cases

have to be considered.
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Proposition 3 The dynamics of the fossil energy tax obeys to the following rule:

1. If θρλX0 ≤ (ρ + α)ζλZ0, the growth e�ect of the carbon tax overrides the decline of

the penalty rate during the �rst phase. The tax is then �rst increasing for t ∈ [0, tZ),

next declining for t ∈ [tZ ,∞).

2. If θρλX0 > (ρ + α)ζλZ0, then there exists a date t̃, t̃ = 1
α ln

[
θρλX0

(ρ+α)ζλZ0

]
> 0, such

that τ̇(t̃) = 0. Hence:

(a) if t̃ < tZ , the global tax τ(t) is non-monotonously evolving, being �rst decreasing

for t ∈ [0, t̃), next increasing for t ∈ [t̃, tZ) and �nally declining again for

t ∈ [tZ ,∞).

(b) if t̃ ≥ tZ then, for any t, the tax is always decreasing through time.

These possible time pro�les of τ(t) are illustrated in �gure 4 (ajouter commentaires).

[Figure 4 here]

5 Comparison of the two mandates when the demand func-

tion is inelastic

In this section, we assume that the energy demand is inelastic within the price range

[cx, cy], i.e. the price range within which the energy price must evolve along any optimal

trajectory. This restriction will allow us to develop a comparative analysis of the quantity

and proportional mandates. Moreover, as it will be shown, this assumption does not change

the analytical properties of the optimal paths. We denote by q̄ the energy �ow having to

be delivered at any point of time within this price range in order to satisfy the demand.

Given that the energy production is �xed, the social planner program may be reduced to

a simple cost-minimization problem:

min
{x(t),y(t)}

∫ ∞
0

[cxx(t) + cyy(t)] e−ρtdt

subject to constraints (1)-(4), alternatively to (5) or (6) and to:

x(t) + y(t) ≥ q̄ (24)
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We denote by γq the Lagrange multiplier associated with (24) and by V the optimal value

of the social planner program, that is the discounted sum of energy consumption costs.

We keep the same notations for the other costate variables.

5.1 The quantity mandate case

Under the quantity mandate and under the inelastic demand assumption, the �rst-order

conditions (7) and (8) become, respectively:

γq(t) = cx + λX(t) + ζλZ(t)− γx(t) (25)

γq(t) = cy − ν(t) (26)

together with the following complementary slackness condition:

γq(t) ≥ 0, x(t) + y(t)− q̄ ≥ 0 and γq(t)[x(t) + y(t)− q̄] = 0 (27)

The �rst-order conditions relative to the state variables, the other complementary slackness

conditions and the transversality conditions are those of section 3. In (25) and (26), the

Lagrange multiplier γq(t) plays the role of the energy consumer price, the pendant of u′ in

the elastic demand case. The interpretation of all the others multipliers does not change.

In order to focus directly on the most relevant case, we assume that y+ x̄ < q̄, implying

both x̄ < q̄ and y < q̄. This assumption guarantees that oil has to be continuously used

until exhaustion and that the carbon stabilization cap Z̄ is reached in �nite time. Since

the objective of the social planner is to minimize costs, it can be easily shown that the

inequality constraint (24) must be always binding so that the energy-mix x(t) + y(t) must

supply the totality q̄ of the demand at any point of time.

As compared with the elastic demand case, the date at which the ceiling constraint

becomes no more active coincides with the date at which the fossil resource is exhausted,

t̄Z = t̄x, thus reducing to three the number of phases of the optimal path. The expression

of the energy price is simpli�ed in accordance and we get p(t) = cx +λX0e
ρt + ζλZ0e

(ρ+α)t

during the �rst phase before the ceiling, i.e. for t ∈ [0, tZ), and p(t) = cy during the two

next phases, i.e. for t = tZ onwards. Since the total energy to be supplied is constant,

the composition of the energy-mix is also constant within each of these three phases. The

oil consumption is discontinuously decreasing, making a downward jump from (q̄ − ȳ) to

x̄ between the �rst and the second phase, and a downward jump from x̄ to 0 between the

second and the third phase. Conversely, the solar energy consumption �rst jumps from y

18



up to (q̄ − x̄) and next, from (q̄ − x̄) up to q̄. A typical optimal path is depicted by �gure

5.

[Figure 5 here]

As in the elastic demand case, the policy-mix allowing to sustain this optimal path

is composed by a carbon tax ζλZ(t) on the oil consumption and a subsidy ν(t) on solar

energy use, as given by:

ζλZ(t) =


ζλZ0e

(ρ+α)t t ∈ [0, tZ)

cy −
(
cx + λX0e

ρt
)

t ∈ [tZ , t̄Z)

0 t ∈ [t̄Z ,∞)

(28)

ν(t) =

{
cy −

[
cx + λX0e

ρt + ζλZ0e
(ρ+α)t

]
t ∈ [0, tZ)

0 t ∈ [tZ ,∞)
(29)

The four variables tZ , t̄Z , λX0 and λZ0 are the solutions of a four-equation system as

detailed in Appendix A.1. The discounted sum of total energy expenditures, that is the

optimal value Φ of the objective function, is:

V =
1

ρ

[
cx(q̄ − y) + cyy + (cy − cx)(q̄ − x̄− y)e−ρtZ + (cy − cx)x̄e−ρt̄Z

]
(30)

Finally, the e�ect of a change in the mandate level y on the optimal path is summarized

in the following proposition.

Proposition 4 An increase (respectively a decrease) in y results in an increase (resp. a

decrease) in tZ , t̄Z and V , and a decrease (resp. an increase) in (t̄Z − tZ), λX0 and λZ0.

Proof: see Appendix A.3. �

Imposing a larger minimal amount of solar in the energy-mix reduces the consumption

of oil during the �rst phase before the ceiling since x = q̄ − y with an inelastic demand.

On the one hand, since during the next phase at the ceiling the oil consumption does not

depend on y, this diminution in the �rst period means that oil is less scarce and that the

date at which the initial reserves are exhausted is postponed. These results are illustrated

in �gure 5 by λ′X0 < λX0 and t̄′Z > t̄Z . On the other hand, the reduction of the oil

consumption during the �rst phase implies less carbon emissions. Consequently, the initial

shadow cost of the pollution stock is reduced and the date at which the ceiling is reached is
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postponed, as shown in �gure 5 by λ′Z0 < λZ0 and t′Z > tZ . Remark that, in this case, the

length [t̄Z−tZ ] of the phase at the ceiling is shortened. Since both λX0 and λZ0 decline, the

energy price trajectory shifts downward during the �rst phase6. Since the marginal cost

cy of solar, that is the price at which this energy becomes competitive, does not depend

on the mandate level, the unitary solar subsidy must increase and, simultaneously, the

carbon tax is diminished. Finally, the discounted overall impact of an increase in y can

be assessed by looking at the e�ect on V . We obtain that an increase in the imposed

amount of solar tends to increase the discounted sum of total cost of using the two kinds of

resource, thus implying a decrease in the social welfare. Again, with an inelastic demand

function, increasing the solar consumption means decreasing by an equivalent amount the

oil consumption. Due to the di�erence in the marginal costs of each resource, this increases

the discounted sum V of total costs.

5.2 Proportional mandate

With a proportional mandate, the development of the social planner problem in the in-

elastic case obeys to the same rules as with a quantity mandate, except that the con-

straint on the energy-mix (5) is replaced by (6). Deriving the optimal solution requires

to consider the following additional assumption: x̄ < (1 − σ)q̄. We thus obtain again

a three-phase optimal path. The only di�erence with the quantity mandate case lies in

the energy price trajectory which is followed during the �rst phase. As in the general

elastic demand case, this price is a linear combination between the full marginal cost of

the solar energy and the full marginal cost of oil, respectively weighed by σ and (1 − σ):

p(t) = σcy + (1 − σ)
[
cx + λX0e

ρt + ζλZ0e
(ρ+α)t

]
. From t = tZ onwards, this price is

constant and equal to the marginal cost of the solar energy: p(t) = cy. Consequently,

the consumption of each primary energy resource is also constant. Oil consumption �rst

amounts to (1− σ)q̄ during the �rst phase before the ceiling, next to x̄ during the second

phase at the ceiling and �nally to 0 when the ceiling is de�nitively left. The solar consump-

tion is this complement part that allows for satisfying the demand function: y(t) = q̄−x(t).

The corresponding environmental policy tools mixes a subsidy ν(t) on the solar energy

6This result is obtained through the assumptions of perfect substitution between the two primary energy
sources, and with constant marginal delivery cost. In a static model without any environmental constraint,
but with elastic energy supply curves, Fischer (2010) shows that a RPS lowers energy prices depending
on the elasticity of energy supply from renewable energy sources relative to nonrenewable ones and the
e�ective stringency of the RPS target.
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use and a tax τ(t) on oil consumption, which includes the tax ζλZ(t) on carbon emissions

and the penalty θν(t):

ν(t) =

{
(1− σ)

{
cy − [cx + λX0e

ρt + ζλZ0e
(ρ+α)t]

}
t ∈ [0, tZ)

0 t ∈ [tZ ,∞)
(31)

τ(t) =


ζλZ0e

(ρ+α)t + θν(t) t ∈ [0, tZ)

ζλZ(t) = cy −
(
cx + λX0e

ρt
)

t ∈ [tZ , t̄Z)

0 t ∈ [t̄Z ,∞)

(32)

The dynamic properties of these instruments, as discussed in section 4 in the general case,

are preserved by the inelasticity of the demand function.

Last, the four variables tZ , t̄Z , λX0 and λZ0, are characterized in Appendix A.2, and

the optimal value of the social planner program is:

V =
1

ρ

{
cx(1− σ)q̄ + cyσq̄ + (cy − cx)[(1− σ)q̄ − x̄]e−ρtZ + (cy − cx)x̄e−ρt̄Z

}
(33)

It can easily be shown that the optimal path is modi�ed by a change in σ in the same

terms as in the quantity mandate case. Hence, results of Proposition 3 as well as the

discussion that followed, hold whatever the type of RPS which is implemented.

5.3 Comparison of the two systems

Since the two typical optimal paths described above are parameterized by the level of the

two speci�c types of mandate, comparing them requires to exogenously select a particular

couple
{
y, σ
}
. We propose to identify the relationship between these two parameters such

that the two corresponding programs have the same objective function values. In what

follows, we index by i, i = {pm, qm}, the type of promoting policy which is considered,

proportional versus quantity mandate. It can be easily shown that, if y = σq̄, i.e. if the

mandate advocated by a quantity RPS policy is set to be equal to the amount of solar

energy resulting from the proportional RPS policy that is σ% of the total energy demand

q̄, then the two sets of variables (46)-(49) and (62)-(65) coincide. From (30) and (33), the

two corresponding programs thus have the same value:

y = σq̄ ⇒



tqmZ = tpmZ

t̄qmZ = t̄pmZ

λqmX0 = λpmX0

λqmZ0 = λpmZ0

⇒ V qm = V pm
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With an inelastic demand function, since the consumer price of the energy-mix is constant

and equal to cy from tZ onward for each type of mandate system, these two cases contrast

only during the �rst phase [0, tZ). During this phase, the key distinguishing features

between the two types of policies are summarized in the following proposition:

Proposition 5 If y = σq̄ so that Φqm = Φpm, then for t ∈ [0, tZ):

1. The price of the energy-mix with a proportional mandate is larger than the price with

a quantity mandate as long as the ceiling is not reached: ppm(t) > pqm(t).

2. The trajectories of the carbon taxes are the same: λpmZ (t) = λqmZ (t).

3. A proportional mandate induces a lower subsidy rate on solar energy than a quantity

mandate: θνpm(t) < νqm(t)

4. A proportional mandate requires a larger global tax rate on oil consumption than a

quantity mandate: τpm(t) > λqmZ (t).

Proof: We have ppm(t) = σcy + (1− σ)[cx + λX0e
ρt + λZ0e

(ρ+α)t] = σcy + (1− σ)pqm(t),

resulting in ṗpm(t) = (1 − σ)ṗqm(t) < ṗqm(t). Since tpmZ = tqmZ , the two price paths reach

the same level cy at the same time. The price pqm(t) being strictly increasing and growing

faster than the price p(t)pm, this later must be always larger than the former, which gives

the proof of result 1. Result 2 directly comes from the equality between λqmZ0 and λpmZ0 .

Results 3 and 4 are an implication of result 1 by observing that νi(t) = cy − pi(t) and that

τ i(t) = pi(t)− (cx + λX0e
ρt), for i = {pm, qm}. �

These results are illustrated in �gure 6.

[Figure 6 here]

Starting from the benchmark case where y = σq̄, we can use the results of Proposition

3 to investigate the other cases, that is to underline the e�ects of an unilateral change in

y. Consequently, if y > σq̄, we would have: tqmZ > tpmZ , t̄qmZ > t̄pmZ , λqmX0 < λpmX0, λ
qm
Z0 < λpmZ0

and Φqm > Φpm
id (and the opposite if y < σq̄). Hence, increasing the quantity mandate y

with respect to the proportional objective σ mainly reinforces the results of Proposition

4. It lowers the price of the energy-mix under the quantity mandate by increasing the

solar subsidy and reducing the carbon tax, thus enlarging the gap with the respective pm
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values. In the opposite case, when the quantity mandate is reduced as compared with the

proportional policy, the qm energy price is increased and becomes larger than the pm price,

at least at the end of the phase. However, since such parameter changes will also a�ect

the timing of each phase, it is di�cult to rank the policy instruments as it was previously

done.

6 Conclusion

We have extended the Chakravorty et al. (2006) model to compare two kinds of RPS that

only di�er in their de�nition basis. The minimal level of renewable energy supply to be

achieved was de�ned either as a ratio of the energy-mix (proportional mandate) or as an

independent quantitative target (quantity mandate). We found the following results. i)

Whatever the type of mandate, the optimal subsidy on renewable energy is declining over

time. ii) Under a proportional mandate, an additional penalty on fossil energy, proportional

to the subsidy, must be added to the carbon tax. The resulting global tax on fossil fuel can

exhibit unusual non-monotonous time paces as long as the atmospheric carbon cap is not

reached. iii) Whatever the type of the mandate, a RPS lowers the energy price, reduces the

social objective function and delays the date at which the carbon cap constraint is binding.

iv) If the two types of mandates are such that they yield the same social objective value

then, with an inelastic energy demand function and as long as the carbon cap is not reached:

a quantity mandate implies a lower energy price, a larger subsidy on renewable energy and

a smaller fossil fuel tax (including the carbon tax) than a proportional mandate.

We have not discussed about the normative properties of the carbon cap and the RPS.

We simply assumed that they come from some recommendations by an independent expert

and that they must be taken as given by the agents. However, one can ask the question

of the relative e�ciency of these two climate policy instruments (see Fischer and Preonas,

2010). An obvious extension of this paper would be to derive the second-best optimal

mandate time pace in the case where a carbon cap policy is not achievable. We would

thus be able to compare it with the optimal solution under a carbon cap constraint and to

conclude about its e�ciency both in terms of social welfare and environmental performance.

We let these developments for future works.
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Appendix

A.1 Full characterization of the optimal solution: The case of a quantity

mandate

The optimal solution is parameterized by λX0, λZ0, tZ , t̄Z and t̄x. With a general elastic

demand function, these �ve variables are given as the solution of the following system:∫ tZ

0

{
qd
[
cx + λX0e

ρt + ζλZ0e
(ρ+α)t

]
− y
}
dt+ (t̄Z − tZ)x̄

+

∫ t̄x

t̄Z

[
qd
(
cx + λX0e

ρt
)
− y
]
dt = X0 (34)

Z0 + ζ

∫ tZ

0

{
qd
[
cx + λX0e

ρt + ζλZ0e
(ρ+α)t

]
− y
}
eαtdt = Z̄eαtZ (35)

cx + λX0e
ρtZ + ζλZ0e

(ρ+α)tZ = u′(x̄+ y) (36)

cx + λX0e
ρt̄Z = u′(x̄+ y) (37)

cx + λX0e
ρt̄x = cy (38)

Equations (34) and (35) means, respectively, that the non-renewable resource stock X0

must be exhausted at time t̄x and that the atmospheric carbon stock must reach the

ceiling at time tZ , i.e. Z(tZ) = Z̄. Equations (36)-(38) insure continuity of the energy

price path, and then of the energy consumption path, at time tZ , t̄Z and t̄x respectively.

From (37) and (38), we can deduce the following optimal dates:

t̄Z =
1

ρ
ln

(
u′(x̄+ y)− cx

λX0

)
(39)

t̄x =
1

ρ
ln

(
cy − cx
λX0

)
(40)

Such a solution exists if λX0 < p̄ − cx and if λX0 < cy − cx. Since cy is assumed to be

larger than u′(x̄), with u′(x̄) > u′(x̄ + y), the existence condition of the optimal solution

writes:

λX0 < u′(x̄+ y)− cx < cy − cx (41)

With an inelastic demand function, t̄Z = t̄x and the above system reduces to the

following four-equation system:

(q̄ − y)tZ + x̄(t̄Z − tZ) = X0 (42)

Z0 +
ζ(q̄ − y)

α

(
eαtZ − 1

)
= Z̄eαtZ (43)

cx + λX0e
ρtZ + ζλZ0e

(ρ+α)tZ = cy (44)

cx + λX0e
ρt̄Z = cy (45)

24



Contrary to the general elastic demand case, the restriction to an inelastic demand

function allows us to solve this system:

tZ =
1

α
ln

[
ζ(q̄ − y)− αZ0

ζ(q̄ − y)− αZ̄

]
(46)

t̄Z =
ζX0 − [ζ(q̄ − y)− αZ̄]tZ

αZ̄
(47)

λX0 = (cy − cx)e−ρt̄Z (48)

λZ0 =
(cy − cx)

ζ

(
e−ρtZ − e−ρt̄Z

)
e−αtZ (49)

A.2 Full characterization of the optimal solution: The case of a propor-

tional mandate

The �ve variables λX0, λZ0, tZ , t̄Z and t̄x are given as the solution of the following �ve

equations system:

(1− σ)

∫ tZ

0
qd
{
σcy + (1− σ)[cx + λX0e

ρt + ζλZ0e
(ρ+α)t]

}
dt

+(t̄Z − tZ)x̄+ (1− σ)

∫ t̄x

t̄Z

qd[σcy + (1− σ)(cx + λX0e
ρt)]dt = X0 (50)

ζ(1− σ)

∫ tZ

0
qd
{
σcy + (1− σ)[cx + λX0e

ρt + ζλZ0e
(ρ+α)t]

}
eαtdt

+Z0 = Z̄eαtZ (51)

σcy + (1− σ)[cx + λX0e
ρtZ + ζλZ0e

(ρ+α)tZ ] = u′
(

x̄

1− σ

)
(52)

σcy + (1− σ)
(
cx + λX0e

ρt̄Z
)

= u′
(

x̄

1− σ

)
(53)

cx + λX0e
ρt̄x = cy (54)

from which we deduce the following optimal dates:

t̄Z =
1

ρ
ln

u′
(

x̄
1−σ

)
− σcy − (1− σ)cx

(1− σ)λX0

 (55)

t̄x =
1

ρ
ln

[
cy − cx
λX0

]
(56)

Those expressions implicitly require the following existence condition:

λX0 <
u′
(

x̄
1−σ

)
− σcy − (1− σ)cx

1− σ
< cy − cx (57)
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With an inelastic demand function, the above system becomes:

(1− σ)q̄tZ + x̄(t̄Z − tZ) = X0 (58)

ζ(1− σ)q̄

α

(
eαtZ − 1

)
+ Z0 = Z̄eαtZ (59)

σcy + (1− σ)[cx + λX0e
ρtZ + ζλZ0e

(ρ+α)tZ ] = cy (60)

cx + λX0e
ρt̄Z = cy (61)

and its solution is given by:

tZ =
1

α
ln

[
ζ(1− σ)q̄ − αZ0

ζ(1− σ)q̄ − αZ̄

]
(62)

t̄Z =
ζX0 − [ζ(1− σ)q̄ − αZ̄]tZ

αZ̄
(63)

λX0 = (cy − cx)e−ρt̄Z (64)

λZ0 =
(cy − cx)

ζ

(
e−ρtZ − e−ρt̄Z

)
e−αtZ (65)
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A.3 Proof of proposition 3

The proof is done from the partial derivative of the system (42)-(45) with respect to y.

• First, from (43), we have:

ζ(q̄− y)eαtZ
∂tZ
∂y
− ζ

α
(eαtZ − 1) = αZ̄eαtZ

∂tZ
∂y

⇒ ∂tZ
∂y

=
(1− e−αtZ )

α(q̄ − y − x̄)
> 0 (66)

• Second, the partial derivative of (42) is:

−tZ + (q̄ − y − x̄)
∂tZ
∂y

+ x̄
∂t̄Z
∂y

= 0

Using (66), it comes:

x̄
∂t̄Z
∂y

= tZ −
(1− e−αtZ )

α
(67)

Since the function f(z) = z − (1 − e−αz)/α is such that f(0) = 0 and f ′(z) =

1− e−αz > 0 for any z > 0, then f(z) > 0 implying ∂t̄Z/∂y > 0.

• Third, from (66) and (67), we have:

∂(t̄Z − tZ)

∂y
=

1

x̄

[
tZ −

(
q̄ − y

q̄ − y − x̄

)
(1− e−αtZ )

α

]
<

1

x̄

[
tZ −

(
q̄ − y − αZ0/ζ

q̄ − y − x̄

)
(1− e−αtZ )

α

]
(68)

Let us de�ne β1 = q̄ − y − x̄ and β2 = q̄ − y − αZ0/ζ, with β2 > β1 since Z0 < Z̄ =

ζx̄/α. Then, from (46), tZ can be rewritten as ln(β2/β1)/α and, after simpli�cation,

inequality (68) becomes:

∂(t̄Z − tZ)

∂y
<

1

αx̄

[
ln
β2

β1
−
(
β2

β1

)
+ 1

]
(69)

De�ning the function g(z) = ln(z) − z + 1, with z > 1, we have limz↓1 g(z) = 0,

limz↑+∞ g(z) = −∞, g′(z) = (1 − z)/z < 0 and then g(z) < 0 for any z > 1. Then

the right-hand-side of equation (69) is negative and ∂(t̄Z − tZ)/∂y is also proved to

be negative.

• Next, from (45), we obtain:

∂λX0

∂y
= −ρλX0

∂t̄Z
∂y

< 0 (70)

• The partial derivative of (44) yields:

ζeαtZ
∂λZ0

∂y
= −∂λX0

∂y
−
[
ρλX0 + (ρ+ α)ζλZ0e

αtZ
] ∂tZ
∂y
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Using (66), (67) and (70), and rearranging some terms, this last expression can be

rewritten as:

αeαtZ
∂λZ0

∂y
=

(ρ+ α)λZ0

(
1− eαtZ

)
(q̄ − x̄− y)

+
ρλX0

Z̄

[
tZ −

(
q̄ − y

q̄ − y − x̄

)
(1− e−αtZ )

α

]
(71)

The �rst term of the right-hand-side of (71) is clearly negative, and the second term

is also negative due to result (69). Hence, ∂λZ0/∂y < 0.

• Last, the partial derivative of (30) with respect to y is:

∂Φ

∂y
=

(cy − cx)

ρ

[
1− e−ρtZ − ρ(q̄ − y − x̄)e−ρtZ

∂tZ
∂y
− ρx̄e−ρt̄Z ∂t̄Z

∂y

]
Using (66) and (67), it comes:

∂Φ

∂y
=

(cy − cx)

ρ

{
1− e−ρtZ − ρe−ρtZ (1− e−αtZ )

α
− ρe−ρt̄Z

[
tZ −

(1− e−αtZ )

α

]}
Since t̄Z > tZ , we have −e−ρt̄Z > −e−ρtZ and then:

∂Φ

∂y
>

(cy − cx)

ρ

{
1− e−ρtZ − ρe−ρtZ (1− e−αtZ )

α
− ρe−ρtZ

[
tZ −

(1− e−αtZ )

α

]}
⇔ ∂Φ

∂y
>

(cy − cx)

ρ
e−ρtZ

(
eρtZ − 1− ρtZ

)
(72)

Since the function h(z) = eρz − ρz − 1 de�ned for z > 0 is such that h(0) = 0 and

h′(z) = ρ(eρz − 1) > 0, then h(z) > 0 for any z > 0 and ∂Φ/∂y > 0.
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Figure 1: Time pro�les of the energy price and consumption. The case of a quantity
mandate
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