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1. Introduction 

This paper considers a class of principal-agent problems which have the 
following features. 

(1) There is adverse selection because the principal ignores the value of 

one parameter of the agent’s true characteristics. 
(2) Leaving aside the information parameter, the principal’s welfare as well 

as the agent’s welfare depend on two types of variables, observable to both 
of them. The first ones, possibly multidimensional, are called action 
variable(s), and the second one, which is one-dimensional, has in general the 
meaning of a money transfer. 

(3) The principal is a Stackelberg leader of the two-person game. He can 
commit himself to decision rules which are admissible on informational 
grounds. He optimizes within the adequate class, taking into account, besides 
the agent’s reaction, one constraint which has generally the meaning of an 
individual rationality constraint and sometimes of a feasibility constraint. 
The optimization is limited to the class of non-stochastic mechanisms. 

(4) The problem can also receive an alternative interpretation: the prin- 
cipal faces a continuum of agents of unknown characteristics (the distribution 
being known, however). 

Stylized principal agent problems of this type have often been considered 
in the economic literature. In particular, the reader will later be able to 
recognize that the standard income tax model a la Mirrlees (1971), the 
quality (or quantity) choice model of the monopolist a la Mussa and Rosen 
(1978) [or Maskin and Riley (1982)], and the model of government regu- 
lation of the private monopolist of Baron and Myerson (1982) all belong to 

*The authors gratefully acknowledge support from the Commissariat au Plan. This paper is a 
revision of a CERAS Discussion Paper (1982). 
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the category we have just briefly defined. In 
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provides as a subproduct an example of a situation where incentives 
mechanisms are unable to extract information usable by the principal. 

(2) The paper puts more emphasis on rigor than is usual in this segment of 
the incentives literature. It attempts to be precise and careful on assumptions 
and statements of results.2 This observation concerns the implementability as 
well as the optimization questions. As one example among many, the 
analysis of sufficiency conditions for implementability when the agent has a 
non-separable utility function shows the need of a boundary assumption 
which has been overlooked in the few contributions which have faced this 
problem. 

(3) The paper is much concerned by the systematization of the argument. 
Implementation and part of optimization are considered in the case where 
the action vector is multidimensional. Also, we show how various models can 
be put in our framework. The theorems are in fact directly applicable to 
most of the models mentioned before but also to a class of models of 
government control of public firms which are considered elsewhere [Laffont 
and Tirole (1984)] and other models can be easily adapted to fit our 
framework. 

(4) The paper gives a converging algorithm allowing the computation of 
optimal solutions in cases where they cannot be solved analytically. 

The rest of the paper is organized as follows. Subsection 2.1 presents the 
model. The incentives point of view is compared with the more traditional 
‘taxation’ point of view. Definitions of implementability of action-profiles are 
recalled. Subsection 2.2 provides necessary conditions, and then necessary 
and sufficient conditions for implementability. Section 3 is devoted to the 
optimization problems under incentives constraints, under the assumption 
that the principal has type A preferences, and that the action variable is one- 
dimensional. An algorithm is presented in subsection 3.3. Section 4 is 
devoted to the study of the control of a self-managed firm. Section 5 extends 
the results of optimization to type B preferences and to the multidimensional 
case. A number of applications of the results are sketched. 

2. Implementation 

For the sake of simplicity, we will generally interpret the model presented 
here as involving one principal and one agent. However, the reader should 
remember that it is applicable in cases of a relationship between one 
principal and many agents, as explained in more detail below. 

‘However, things are relative and the paper is not intended to be a paper in mathematical 
economics, having often traded off rigor and generality on the one hand, simplicity of 
presentation on the other hand. Particularly, we limit our attention to piecewise differentiable 
mechanisms. It turns out that this is not a severe restriction in most of the cases we have treated 
here where it could be shown that the second-best optimal mechanism under incentives 
constraints belongs to this latter category. This is, however, an instance where generality has 
been sacrificed for simplicity of presentation. 



of princ~ipul-agmt prohlents 

2.1. Preliminaries: The model und the questions 

In this model the relationship between the principal and the agent(s) 
involves only two types of variables. The first type is associated with a vector 
of L decision variables, denoted /, which are observable to both actors. With 
respect to the specific models we have in mind, it can be called an action 

vector; in section 4, it will be the one-dimensional quantity of labor allocated 
to the firm (the agent) by the planner (the principal); it may also be the 
quality of the product when the principal is a monopolist and the agents are 
buyers. 

The variable of the second type, denoted t, is one-dimensional. It has 
generally the meaning of a money transfer from the principal to the agent. 
But it could be some other flow variable, under the condition that it affects 
monotonically the agent’s preferences. The principal and the agent interact- 
ing through these two variables, the main features of the relationship, can be 
described as follows. 

(1) There is a one-dimensional parameter 0 which is known to the agent 
but unobservable to the principal. This parameter is assumed to belong to 
some closed connected set 0 c IF!,. Without loss of generality we take 
0 = [a,b]. The principal has some a priori probability on 0, which is 
associated with a continuous probability density function v(6) s.t. r(O) >O for 
any H in 0. This function either reflects the principal’s subjective assessment of 
the probability of 0 when there is only one agent, or when there are many 
agents the objective distribution of their characteristics which is then 
assumed to be known by the principal. 

(2) The agent’s welfare is represented by a utility function depending upon 
1, t, the action vector and the transfer, and 0 the unknown parameter. It is 
denoted @(I, t,U). It is defined on X x 0, where X has the form [c, + cx[‘x R, 
with E>O. It is always assumed to be strictly increasing in t. 

(3) Preferences of the principal are of two possible types. 

Either (type A), they do not depend upon the transfer but only upon the 
action of the agent, 1, and possibly the true value of the unknown parameter, 
H. The corresponding utility function is denoted W(l,O) and if the agent of 
characteristic 0 takes the action l(8), the expected value of the principal’s 

utility is: 

W=j W(l(H),U)v(H)dH. 
e 

(2.1) 

These type A preferences occur in particular in our framework when the 
principal is a planner or a government who has no concern for the transfers 
made to the firm, i.e. when the transfers are ‘socially indifferent’. 

Or (type B), they depend in addition linearly on transfers: 

W=j W(l(O),H)v(H)dO-j3.(fl)t(H)dH, 
0 0 

(2.2) 
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where I+(H)d&ck(0)v(B). Whatever the preferences of the principal, he has to 
take into account constraints which generally concern the welfare of the 
agent. These constraints can take different forms. If 0 is the value of a 
variable unknown to the agent when the binding contract between the 
principal and the agent is decided upon, the constraint is of the form: the 
expected value of the agent’s welfare is greater than some a priori specified 
value. This constraint can be written: 

(2.3a) 

where U is the reservation level of utility and il some function which will fit 
the above interpretation as soon as it coincides with %. [In fact, with this 
more general version, we leave open the possibility of considering a feasibility 
constraint rather than an individual rationality constraint (see section 5).] 

In other problems, for instance the one we will consider in section 4, it is 
assumed that the contract is signed (or can be broken) after 19 is known by 
the agent; the welfare constraint is then an individual rationality constraint 
for each value of 8: 

“iY(l(e),t(e),e)~ii, V8EO. 

It should be clear that with a principal’s welfare function of type A, 
constraint (2.3b) has no obvious reason to be binding at the optimum. On 
the contrary, with type B preferences the constraint is normally binding for 
some tr since it is in the interest of the principal to decrease as much as 
possible the transfer to the agent. 

We now focus attention on the abstract mechanisms which could be 
designed to govern the relationship between the principal and the agent. A 
mechanism can be viewed as a procedure giving the decision to the principal 
who commits himself to a decision rule relating the choice of 1 and t to 
messages sent by the agent. Mechanisms have the simultaneous purpose of 
extracting information and of making the decision. It is known from the 
incentives literature - this is the so-called revelation principle - that any 
mechanism is isomorphic to a revelation mechanism, called direct, by which 
the principal elicits truthful answers about 6. Therefore, without loss of 
generality, we restrict attention to direct mechanisms; such a mechanism is 
defined as a vector function 1, t :BE 0-+(1(Q), t(H)} E X which relates the 
decision to the answer of the agent about his parameter. 

Two definitions are now in order: 

Dgfinition I. An action profile l:tl~O-+l(Q) is implementable via com- 
pensatory transfer (for short, we will often say implementable) if there exists a 
transfer function t(0) such that the revelation mechanism (2(Q), t(0)) induces 
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truthful revelation, i.e. 

%2(1(e), t(0), 0) ~42(1(0’), t(P), 0), VH, B’E 02. 

In other words, given I, t, the announcement of the truth is an optimal 
strategy for the agent, whatever the truth. 

Definition 2. The revelation mechanism I, t is said to be truthful when 

“t?(l(fl), t(0),0)~@(1(0’), t(P),@, V0,0’E oz. 

In other words, I, t is a truthful mechanism when t is a transfer function 
which makes 1 an action profile implementable via a compensatory transfer. 
Definition 2 puts the emphasis on the whole mechanism, while definition 1, 
which puts the emphasis only on the action profile, is better suited to the 
study of the case of type A preferences. 

We next consider the following questions. 
(1) What are the action profiles which are implementable via com- 

pensatory transfers or what are the truthful revelation mechanisms? This is 
the implementability problem (subsection 2.2). 

(2) Among these truthful mechanisms or among these implementable 
action profiles, what are the best from the principal’s view point? This is the 
optimization problem (section 3). 

Before going into these problems two preliminary observations are worth 
making. 

(a) When the principal has complete information about 8, his optimization 
problem consists in maximizing his welfare under the constraints of type 
(2.3a) or (2.3b) but for a given known 0. This optimization determines the 
first-best optimum. For example, in cases of type A preferences and if W is 
differentiable and strictly concave in 1, the first-best action profile Tis defined 

by 

a, W(T((e), 0) = 0. (2.4) 

More generally, the first-best optimum is characterized by a function (more 
generally a correspondence) t f which associates to every 0 a couple T(O), L(8) 
to solve: max W under (2.3a) or (2.3b), for given 0. Given the first-best action 
profile, one may wonder, following the Clarke-Groves approach in the 
problem of revelation of preferences for public goods, whether it is im- 
plementable via compensatory transfers in the sense of definition 1. If it is the 
case and if preferences are of type A (the principal is indifferent to transfers), 
it is straightforward that this first-best action profile will also be the solution 
to our optimization problem. However, this will not be the general case. The 
maximization of the expected value of the principal’s welfare under the 
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implementability constraints will determine a second-best optimum. The 
difference between the principal’s welfare at the second-best optimum and his 
expected welfare (before he knows 0) in a first-best solution can be viewed as 
the cost associated with informational constraints. It is generally non-zero. 

(b) The direct mechanisms described here can be viewed as decision rules 
to which the principal commits himself. Then the decision about the action is 
taken by the principal and the relationship can be interpreted as taking place 
in a ‘semi-planning’ context. Instead, one could imagine that the relationship 
between the principal and the agent is governed by market rules. Instead of 
designing a decision rule, the principal would leave the action under the 
agent’s control but would relate the transfer to the action taken, through an 
adequate reward scheme. 

Precisely, a reward scheme is defined as a function (:1-((l) which 
associates a net payment ((1) with the choice of the action 1. 

In many applications, and in particular in section 4, the reward scheme is 
better interpreted as a non-linear tax schedule. 

Faced with a reward scheme (or tax schedule) the agent of characteristic 0 
solves the program Ps,s: 

P,,,-max{@(l,t,8):t~[(1)1. 
(1. f) 

It is important to understand that the ‘market’ approach that we have just 
sketched and the ‘semi-planning’ approach based on mechanisms are, in this 
model, basically equivalent. We will state this more precisely as proposition 
1. 

Proposition 1. A mechanism 1, t is truthful if and only if there exists a tax 
schedule < such that, Q~EE, l(O), t(O) is a solution of the program P,,,. 

The proof of the above assertion can be sketched as follows. 
(i) A reward scheme can be considered as an indirect revelation mechan- 

ism where the message consists in the announcement of 1, and which in the 
class of environments considered (given distribution v) has a solution in 
‘dominant strategy’. Hence, according to the revelation principle there is a 
‘straightforward’ (i.e. direct and with dominant strategy equilibria) mechan- 
ism which gives the same outcome. 

(ii) Assume reciprocally that I is implementable and consider Y= 
u,[l(O), t(O)], where t is any compensatory transfer function associated with 
1. Define l as a function which associates with a given 1 either -CC, if this 1 

does not belong to the set ~,l(S)~~~l(0), or the unique t (because of the mono- 
tonicity in t of the principal’s preferences) such that (1, t) E Y if 1 belongs to l(0). 

We can immediately check that 5 is a tax schedule and that l(0) is a 
solution of P,,,. Q.E.D. 
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Hence, ‘attainable actions and transfers’ are identical for a principal relying 
on abstract revelation mechanisms and for a principal relying on market 
rules and using sophisticated reward schemes (or tax schedules). A fortiori, 
the maximization problems in both contexts are identical and lead to the 
same optimal level of social welfare. 

The whole analysis will be conducted in terms of mechanisms, but it is 
worth reinterpreting the results, particularly in section 4, in terms of reward 
schemes or tax schedules. 

2.2. Implementability 

From now on, two assumptions will be made on the agent’s utility 
function. On the ‘relevant’ domain X x 0 the following hold: 

(M) monotonicity: 9lI is strictly increasing in t. 

(D) d$ferentiability: @ is continuously differentiable of class C2. 

It follows from (M) 
substitution between 1 

respect to f1, exist. 

and (D) that ?,‘&/?lJfi, the vector of marginal rates of 
and t, and ((_:/?f~)(~,&/~~‘I/), its partial derivative with 

We will limit our study to action profile functions 1: 0 E 0-+1(H) which are 
piecewise continuously differentiable of class C’ and strictly positive.3 
Although some of our results can be generalized to any implementable action 
profile, significant additional difficulties can be avoided with this assumption; 
we will show in the next section that the welfare optimal allocation of our 
problem actually belongs to the class of piecewise C’ functions. 

We can now state a necessary condition for implementation. 

Theorem 1. Assume (M) and (D). !f’ a piecewise C’ action profile is 
implementuble via compensatory tratufers, then necessurily: 

or equizjalently: 

(2.5) 

(2.5’) 

fbr any 1, t, 0 such that 1= l(H), t = t(H) and 1 is differentiable at 0. 

‘That is, almost everywhere a derivative exists: at points where the derivative does not exist. 
left-hand-side and right-hand-side derivatives exist. The positivity of 1 is unessential; it is 
assumed for technical convenience. 
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Proof: Consider first a piecewise C2 allocation 1 which is implementable via a 
piecewise C2 transfer function t. Let 4 denote the true value and consider the 
maximization problem of the agent: 

max@(1(8), t(d), 6) and let (~(0, @“Gf&(l(U), t(d), 0). 
tlE@ 

At any H where dl/dH and d t/dti exist, consider 

+(a,@) (r(@).t(@).@ (2.6) 
(0) 

and ?,,cp(H,@ the derivative of alp with respect to 0. Following a standard 
argument, we know that if the truth is an optimal response for the agent, we 
have necessarily: 

Z1 ~(0, 0) =0 (first-order condition), (2.7) 

3, rrp(Q, 0) 5 0 (second-order condition). (2.8) 

Eqs. (2.7) and (2.8) are true for almost all 8, and since the function on the 
left-hand side of (2.7) is (almost everywhere) identical to zero, it has almost 
everywhere a zero derivative and for almost all 0: 

So (2.8) is equivalent to: 

(2.10) 

or 

20 with (.)=(l(O), t(O), 6). 

Using (2.7) and dividing by a,% we obtain (always with vector notation): 

which implies (2.5). 
We next prove that the transfer function associated with a piecewise C2 

allocation is necessarily piecewise C2. Considering that cp(fl, 0) is maximum 
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for 8= 0 and writing down a Taylor expansion, we can study a o^, where 
dl/d6 exists, the limit of At/A8 when 8+&O and tI+e+O. We show then 
that (dt/d@ exists for almost every 6 and that it satisfies eq. (2.3); then, 
straightforwardly from (D), d2t/do2 also exists. 

Finally, since any piecewise C’ function can be approximated by piecewise 
C2 functions as closely as desired, property (2.5) is true by continuity for C’ 
action profiles. Q.E.D. 

An intuitive understanding of the monotonicity condition (2.5) can be 
obtained from fig. 1. An agent’s utility is increasing in 1 and t; indifference 
curves for agent 8 and agent O+d0 are represented under the assumption 
(?/S)(;l,4P/a,4?) >O. Given that l(0), t(0) is chosen by agent H, when l(0+d8) 
is larger than l(0), t(H+dH) can be chosen so that the point (l(e+dB), t(H +d0)) 
is below agent B’s indifference curve and on agent (0 +dB)‘s indifference curve 
[through I(0), t(0)]. This incentive condition cannot be met if, on the 
contrary, l(fl+ dH) is smaller than I(H). 

t 

t (ii+dB) 

Increasing U 

--------_. ---t._ ----_------ 
I 

l 

l(8) 1 (a+d8) 1 

Fig. 1 

Note also that condition (2.5) can be viewed as a condition of minimal 
compatibility between individual preferences and the candidate action profile. 

Let us now investigate the problem of sufficient conditions for implemen- 
tation. The reciprocal of theorem 1 does not hold even when I is one- 
dimensional. In that case, a function 1, the derivative of which changes its 
sign over 0, creates a problem. In fact, when a,% is strictly positive, ‘most’ 
allocation functions with a changing sign derivative are not implementable. 
Furthermore, no simple sufficient condition can guarantee that a given 
function of this type belongs to the ‘small’ subset of implementable ones.4 
For that reason, we will restrict ourselves to consider the problem of 
sufficiency in the case where (a/SI)(a,@/a,&) has a constant sign (implying 

41t is beyond the scope of this paper to give a precise meaning to this assertion 
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that one-dimensional candidates for implementability can be limited from 
theorem 1 to functions 1 whose derivative has the same constant sign). 

The assumption is formally written as condition CS. 

(CS): Constant sign of the marginal rate qf substitution. On the relevant 
domain of 1, t,0, the signs of the components of the vector (a/J0)(8,q/8,@) 
remain the same. 

Without loss of generality, but possibly after changing some Ii in -Ii, we 
can assume that this sign is positive; a case that we stress by referring to 
condition (CS+). Before stating the sufficiency theorem, we must introduce 
one additional condition on the boundary behavior of the principal’s utility 
function. 

(B): Boundary behavior of a. For any (I, t,Q)EX x 0,3K’>O such that for t 
large enough 

li(ff),,.,.,ii~K~ltl, uniformly in /,0. 

This condition indicates that the marginal rates of substitution between 1 and 
t do not increase too fast when t increases. This condition is trivially satisfied 
with quasi-linear (additive and linear in t) % and also holds, for example, 
with a Cobb-Douglas utility function. 

Since here 8,%/a,% is continuous, condition (B) implies that if 1 remains in 
a bounded cube, for any t, /I(d,%/d,@)II 5 K’ltl+ K” for some well chosen K”. 
Note also that the condition is satisfied if a,GY/a,4Z! is Lipschitzian in t on 
x x 6. 

Let us now state theorem 2. 

Theorem 2. Assume that the agent’s utility function satisfies assumptions (M), 
(D), (CS+), and (B). Then any piecewise C’ action profile such that its 
derivative is non-negative, dl/d9 2 0, is implementable via compensatory 
transfers. 

Proof Consider a candidate allocation T meeting the conditions of the 
theorem. Consider the following differential equation defined for every 8 
where dqde is defined, i.e. almost everywhere (a.e.): 

(2.11) 
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Thanks to (B), we have: 

Z;K(K’lrl+K”), when K’&f;p; 

Consider f defined by 

i.e. 

Clearly, t( 1) is an ‘a priori majoration’ of t defined by (2.1 I), [with the initial 
conditions t(O)=r(O)]. Hence, according to a theorem in the theory of 
differential equations [see Demazure (1979, p. 42)], (2.11) has a global 
solution on 0 ,Vr(O). 

Let T(0) be one solution of (2.11) (which depends on the initial point). We 
will show that an agent faced with the mechanism ‘I; f is induced to tell the 

truth. 
For that, consider cp(U,@ defined (as in the proof of theorem 1) by: 

cp(U, 6) =‘+!qt(o), f(O), a, 

and a.e. 

Clearly, for 0 < 0: 

By the very definition of ?, A(e, 6) = 0 a.e. In any 6’< 0, (CS +) implies: 

( qicn,, ~(n,,n) < ( g),r(,,,,“,~ 8) (coordinate-bY-coordinate 
inequality): 

(2.12) 

so that i,(H,H)<A(U,O^). From j,(H,H)=O a.e. it follows: 
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A(t), 8) > 0 a.e. (2.13) 

Hence, for UC 6, from (M) and (2.13), the integrand of the right-hand side of 
(2.13) is positive. Hence, (~(8, @ > ~(e, 6) a.e. A symmetric argument would 
prove the same equality for 6,> 0, a.e. and the argument extends by 
continuity to any (0, I??). Q.E.D. 

In the proof, condition (B)5 is crucial for global existence. The reason why 
it is required is now easy to understand. Incentive compatibility requires that 
the agent B+dO, in order to choose 1(H+d@, is compensated relatively to the 
agent 6, with a positive dt; however, it may happen that this infinitesimal 
compensation increases so fast that the total transfer t(B) tends to infinity 
before the upper bound of 0 is reached. Condition (B) rules out such a 
phenomenon. Although it is satisfied in the labor managed example con- 
sidered in the next section, it should not be considered a technicality. Its 
failure is indeed possible and would have undoubtedly consequences in certain 
problems. An elegant implication of theorems 1 and 2 is the following: 

Corollary 2.1. Assume that the agent’s utility,function satisfies (M), (D), (CS +) 
[resp. (CS-)] and (B). Then a piecewise C’ one-dimensional action profile 1 is 

implementable ifund only ij! 

d l/d 0 2 O(resp. 5 0) u.e. 

It is worth stressing, before closing this section, that the above results 
make neither any type of convexity assumption upon the utility function, nor 
a monotonicity assumption of utility with respect to 1, two remarks which 
are crucial for the application to the self-managed case of section 4. Also, the 
extremely simple necessary and sufficient conditions of corollary 2.1 do not 
simply extend to the multidimensional case L> 1. 

3. Optimization under incentives constraints: Type A preferences, 
one-dimensional action 

The optimization problem of the principal consists in choosing the best 
implementable mechanism from among the ones which have been character- 
ized in the preceding section. When the action is one-dimensional, we 
obtained through corollary 2.1 a very simple characterization of implemen- 
table mechanisms. Combining one-dimensional action and type A preferences 
will allow us under few additional assumptions to solve completely the 
optimization problem. This is the purpose of subsection 3.1. Subsection 3.2 
proposes an algorithm for the computation of the solution. The results are 
extended to type B preferences and multi-dimensional actions in section 5. 

‘See appendix A for a different boundary condition. 
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3.1. Charucterizution oj’the optimum 

With type A preferences and with an agent of characteristic 0, when the 
action variable is 1, social welfare is W(/, Q); it depends upon the action taken 
and the unknown parameter 0, but is independent of transfers. Recall that 
the planner’s a priori (subjective) probability distribution about the unknown 
parameter 0 is characterized by a continuous density function v(0) which is 

strictly positive on the support 0 = [a,b]. Moreover, we make the following 
regularity assumption. 

(R): Regularity of W W(l,0) is strictly concave in 1 and C2, and the C’ 
solution l(8) of (c?W/al)(l, 8) = 0 is such that dl/dfI changes sign a finite 
number of times. 

The expected social welfare associated with a labor allocation I(H) is: 

4 W(I(U),H)v(fI)dfI. 

Assume from now that the action profile I is one-dimensional L= 1. Under 
the assumptions of corollary 2.1 with (CS+) and (B), a piecewise C’ action 
profile is implementable if and only if dl/dHZO almost everywhere. Restricted 
to the class of piecewise C’ action profiles6 and with (B), the planner’s 
choice is determined by the following program: 

maxi W(l(tl),O)v(Q)dti 
a 

s.t. 

dlld820 a.e. (3.1) 

The set of piecewise C’ action profiles satisfying the implementability 
condition is convex and the objective function, as a function of I(.), is strictly 
concave: if the program has a solution, it is unique. Existence is not a trivial 
question, but since it is technical, it is relegated to appendix B. In fact we 
prove slightly more than existence. 

‘We do not consider here a broader set of functions, since we have characterized implementa- 
bility only for piecewise C’ profiles. In fact, on a broader set of functions, implementability is 
equivalent to the property of being weakly increasing. Over this ‘universal domain’, when (R) 
holds, the social optimum is indeed piecewise C’. Therefore our approach does not involve any 
differentiability restriction but (R). 
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Theorem 3. Under (R), program (3.1) has a unique solution which furthermore 
has the property of having a finite number of points of discontinuity for its 
derivative. 

Then, let us denote p(e)=(dl/d8)(0). Using the control ~(0) restricted to 
the class of piecewise continuous and non-negative functions we write the 
following equivalent problem: 

maxi W(l(0),0)v(H)d6, 
0 

s.t. 

P(e) 2 0. (3.2) 

It is a classical non-autonomous control problem with free boundaries and 
an inequality constraint on the control; we can use the maximum principle to 
describe the solution. 

The Hamiltonian is: 

The necessary and sufficient conditions derived from the Pontryagin 
principle [see theorems 4-3-l and 5-7-l in Hadley and Kemp (1971)] are: 

(3.3) 

(3.4) 

6(a) =6(b) =0 (transversality conditions), (3.5) 

,u(Q) maximizes H(0,1, p(, 6) under the constraint ~(6) 20. (3.6) 

Integrating the piecewise continuous [and therefore integrable over (a, b)] 
function (3, W) v, and using the transversality conditions, we have: 

6(b)-b(a)=O= -~a,w(l(e),H)v(e)de. 
a 

(3.7) 

‘At points of non-differentiability, we define the derivative of !(.) as the right derivative 
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Integrating (3.3) between a and 0, we get: 

S(Q)= +,N’(l(H),il)v(H)dN. 
a 

At the solution, from (3.6) we know that 6(H)sO, or: 

~~lW(I(H),H)v(B)dH>O, V’~[a,b]. 
a 

Moreover, if S(0) ~0, then from (3.6) ,u(Q)=O; then 

~8JI’(QH):H)v(H)dH =O, V’HE[U,~]. 
a 1 

(3.8) 

(3.9) 

(3.10) 

A more concrete description of the solution can be obtained from (3.7), 
(3.9) and (3.10). Let us call I*(Q) the solution. 

If dI*/d8(8)>0 in an interval, then /*(d)=T(O). Indeed, if ,u(U)>O, S(e)=0 
in this interval; then (da/do)(Q) =0 in this interval, and from (3.3) a,IV 
(1*(O), 0) =O, implying 1*(Q) =t(@. 

The optimal solution coincides with T(0) or is constant. We show next how 
to obtain the finite number of intervals where it is constant. Let (o&Pi) be 
such an interval; from above: 

s(0) =0 for 0<& close enough to f&, 

6(H) = 0 for 0 > 0’i close enough to H;. 

Since the multiplier is continuous, we have: 

S(c&) = qu;) = 0. 

To characterize exactly what happens in the intervals where I*(0) is 
constant, we must distinguish three cases. 

Case (a). The first potential interval starts at 0, =u (fig. 2). Integrating 
(3.3) between a and 0; we have: 

y a,IV(l’,Q)v(Q)d0=0 and 1’ =T(Hi). (3.11) 

Now, if we assume that I’ >T(u), then 1’ >T(0) for any 0 close enough to a, 
and then s(0) > 0, contradicting (3.6). 

Cuse (b). An interior interval (fig. 3). Integrating (3.3) between 0; and B; 
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we have: 

7 a,W(1*,8)v(8)dB=O and r((&) = I*, l(@r ) = I*. (3.12) 

00 

Case (c). The potential interval ends at 0=b (fig. 4). As in case (a) the 
interval, if it exists, is associated with the system of two equations: 

IK =T(&). (3.13) 

With the same argument as in (a), we show that ZKzr(b). 
Since t(Q) changes sign a finite number of times, and since we know that 

there exists a solution, the end result can be represented as in fig. 5. 
We gather the results in the next theorem. 
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O,=a 
* 

- R co, 
-a (0) 

Fig. 5 

Ol=b 

Theorem 4. Optimization in the case L= 1. Under (M), (D), (CS+), (R) and 
(B), the unique optimul solution is characterized by a piecewise C’ weakly 
increasingfunction I*(0) such that: 

(i) l*(0) concides with T(0) except on a finite number K of disjoint intervals 
I, =(flk,,e:), k= l,.. ., K, Qk, increasing with k, where l*(0)=lkVt)~Ik. 

(ii) In each interior interval (@#a, 0: fb) we have: 

(iii) If I I starts at G=a, we have: 

0: 

B 
c7[ W(I’, Q)v(H)dB=O, T(tli) = I’. 

Furthermore 1’ zi(a). 
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(iv) If I, ends at 0 = b, we have: 

Furthermore lK 2 i(b). 
(v) For any BE [a, b]: 

Note that the results of this section, stated with (CS+), also 
straightforward modifications when the constant sign condition 
reversed in (CS-): 

hold with 
(CS+) is 

3.2. A constructive algorithm (under (CS+)) 

The fact that, from (R), we know that t(0) has a finite number of peaks 
leads to a constructive algorithm that we sketch below (by convention, here 
a=O, b=l). 

Note first that if t(0) decreases at 0=0, we consider that 0= 0 yields a 
peak; similarly, if t(f)) decreases at 8 = 1, 8 = 1 yields a peak. From now on we 
neglect the slight specificity (exhibited in theorem 4) of these extreme peaks. 

If t(0) is weakly increasing it is the solution. 
Consider first the case where T(0) has one peak, as in fig. 6. Note that Z1 W 

is strictly positive below q0), strictly negative above from the strict concavity 
of W and the definition of r(0). 

The conditions of theorem 4 are necessary and sufficient. Moreover, a 
constant piece of l*(0) must join two increasing pieces of T(0). Therefore, with 
one peak, there is a unique constant piece. 

The constant piece must be between AB and CD of fig. 6. Clearly: 

81 
1 d, W(I’,Qv(B)d8>0, (3.14) 
00 

“i 8, W(l”, B)v(O)dB<O. (3.15) 
00 

Consider an intermediary constant piece joining AC to DB with T(@)=l 

(3.16) 
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Fig. 6 

Then, 

T(U,) =?; 

I(N,) =‘I: 

(3.17) 

(3.18) 

Inverting (3.17) and (3.18), and substituting into (3.16) we have: 

and 

Since a, W(T, q’(r)) = d, W(?T q’(7)) = 0, and since W is strictly concave, 
d@/dl<O. Then, from (3.14) and (3.129, the continuity of @, and the 
intermediate value theorem, there exists a unique ‘1 such that 
ii:, a, W(t H)v(B)dQ = 0 satisfying the necessary and sufficient conditions (since 
s(0) is always non-positive). 

Suppose that r(0) has two peaks. Either it is possible with an increasing 
,function to deal as above with each peak separately, or it is not possible. 



R. Guesnerie and J.-J. Laffont, Class of principal-agent problems 349 

Fig. I 

Then, by a continuity argument similar to the one above there exists 8,, 8,, 7 
such that (see fig. 7): 

where [$,,8,] contains both peaks. It remains to show that s(e)50 for any 
0. 

s(0) takes its largest value at i?. If s(8) were positive, it would mean that: 
(1) by continuity, there exists [e&e:], 1’ with 0: < 6 such that 

(3.19) 

(2) since S(g,)=O and S(@>O, 

and by continuity there exists [I@, @I, I2 with 0; > 0 such that 

4 
pw(P,e)v(e)de=o. (3.20) 

But (3.19) and (3.20) would contradict the fact that it was not possible to 
deal with both peaks separately with an increasing function. Therefore 
S(0) 50 for any 8 E [0, l] and the solution with one constant piece satisfies 
the necessary and suficient conditions for optimality. 

Clearly, the above procedure can be extended to any finite number of 
peaks. 
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4. Application to the public control of a self-managed firm 

The example presented in this section is in fact the heart of our work on 
the class of principal-agent problems considered above. We will first explain 
briefly its motivation, and then place it in the context of more general 
research on the government control of public firms. 

Standard normative theory of the last thirty years most often considered 
that firms with legal public status were totally in the hands of the 
government. It was, for example, implicitly assumed that their production 
sets were known to the center, which was also in a position to dictate their 
production plans with as much detail as desired. This view of the world does 
not fit the experience of practitioners, and theorists have now become 
increasingly aware of the distance between real public firms and ideal 
‘controlled’ firms of second-best models. 

For a more realistic modelling of public firms it seems that two important 
facts should be singled out: first, public firms in general have specific 
objectives different from those of the ‘planner’; secondly, the so-called planner 
has incomplete information on the inside working and hence on the 
production possibilities of the firm. It should be understood that the 
interesting problems of public control of a firm follow from the coexistence 
of these two features. Under complete information, specific objectives for the 
firm are irrelevant: the government is able to impose the decisions considered 
as optimal whatever the reluctance of the firm to implement them. Also, with 
a total identity of objectives between the center and the public firm, in- 
complete information would present no problem at all. Also, both ingredients 
have to be introduced together. 

A reasonable formulation on the firm’s objectives is likely to be the most 
difficult issue for the theoretical modelling of the problem. As a complex 
organization, a public firm is a place where different actors interact (manage- 
ment, unions, etc.) and the outcome of the decision process reflects basic 
characteristics of the firm which affect the bargaining power of different 
parties [see, for example, Rees (1982) for a discussion of the subject]. Our 
analysis started from the simple case of a firm employing homogeneous 
workers who have no conflict of interest. We assumed, and this is at least a 
polar case of special relevance, that the management of the firm only 
reflected the common interest of its existing workers. In that case, everything 
goes in our original model as if the public firm were labor-managed in the 
sense of Vanek (1970). The reader who finds it surprising to have public 
and labor-management associated, should remember the already ancient 
argument by Ward (1958) concerning the relevance of the self-managed 
hypothesis for the study of the behavior of nationalized industries. 

4.1. The model 

We consider a two-commodity economy, with labor and a consumption 
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good. There exists a public firm in an otherwise competitive economy where 
the marginal productivity of labor is A. The total quantity of labor in the 
economy is L and all agents have a linear utility function in consumption 
taken to be U(x) =x,x>O., and feel no disutility from working their whole 
one unit endowment of labor. 

The technology of the public firm requires a fixed cost of k (in good units) 
and then provides f(l,@ units of good for 1 units of labor: H^ represents a 
positive real-valued parameter which affects in a continuous way the 
production possibilities of the firm, and which is known only by the agents 
working in that firm. We will treat I as a continuous variable and ignore the 
problems that might arise from the need of a marginal worker who can work 
only part-time in the L-M firm. We assume that f’(l,@ is C2 in (1,6) and 
strictly concave in 1. The subset of R, where 6 can be a priori, is a closed 
interval 0. We assume, without loss of generality, that O=[O, 1). The 
planner has incomplete information on the parameter N; he knows the set 0 
but does not know where e exactly lies in this set. 

The firm sells its product in a competitive market, by convention at a unit 
price. Production decisions in the public firm are made by workers who are 
assumed to agree on maximizing per capita value-added. This criterion assures 
to the homogeneous workers maximal earnings (which, unless specific 
mention, will be assumed to be superior to earnings associated with the 
market wage). The public firm behaves as the prototype labor-managed firm 
described by Vanek ( 1970).8 

We first consider the problem of a planner who has to decide in an 
authoritarian way on the allocation of labor to the firm.’ The heading of 
semi-planning is particularly adequate here to characterize this context: 
allocation of labor is made on the basis of quantity decisions while the firm’s 
output is sold in the market. To fulfill his task in a satisfactory way, the 
planner needs information on 8, but in many cases the labor-managed firm 
which maximizes per capita value-added will wish to misrepresent its 
information; it will be the case in particular when the planner attempts to 
equate the (unknown) marginal productivity of labor in the firm to its social 
value. 

We assume that the planner is utilitarian; if the number of workers 
employed in the labor-managed firm of characteristic 8 is 1, given that the 
transfer t is paid from the rest of society, and given our assumption on the 
productivity of labor, social welfare equals: 

j(l,H)-k+t 

1 > 
I-t+A(L--l)=f(l,O)-k+l.(L-I). 

‘As discussed in the literature, the validity of this criterion may depend upon the number of 
‘initial’ workers in the firm. In other words, it is more satisfactory in the context of the growth 
of the firm than in the context of contraction. 

‘See Thomson (1982) for a first formal study of this problem. 

JPE- D 
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Under incomplete information, the planner will compare two different 
mechanisms by looking at the expected values of the above expression. These 
values depend on a priori expectations on 0 which are described by a density 
function v(H) associated with the (subjective or objective)” probability 
distribution of the planner on 8. The problem of the planner is then: 

maxJ [f([(O),a)-i.l(n)llv(O)d8 
8 

under the constraint that I:O+l(N) is an implementable labor allocation. 
Consider the function idefined by 

(W,r,e. 0)) = i 

Given the objectives of the planner, if he had complete information on 0, he 
would allocate i’(f)) to a firm of characteristic 0; T(.) is what we called the 
jirst-best labor allocation. 

4.2. Implementability in the self-munuged cuse 

It is clear that the model of the preceding subsection is a particular case of 
the model of section 2. In other words, we have to specify the general results 
for 

In the space (1,~) indifference curves have the shape suggested by fig. 8. The 
marginal rate of substitution J,JL!/a,O& is nothing else than: 

so that condition (CS-) takes the specific form of condition C: 

Condition C: 

“‘We have considered here a unique L-M firm. Alternatively, the formulation applies when 
the L-M sector, although small with respect to the rest of the economy, consists of an infinity of 
firms, v(O) being the density associated with the true distribution. 
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Fig. 8 

Condition C asserts that for a fixed 1, the derivative with respect to 8 of the 
difference between the marginal and the average product decreases. In 
general, the interpretation of this condition is difficult; however, note that 
when 0 is a parameter of productivity which operates in a multiplicative way 
(f(s, I) = Of(l)), condition C reduces to: 

and is automatically fulfilled with a concave f: the marginal product is 
always smaller than the average one. Then, it is only when f ‘substantially’ 
differs from the multiplicative form that the condition may not be verified. 

From now on we assume that condition C holds, which is reasonable in 
view of our interpretation of 0 as a productivity parameter. We check that 
all the conditions of corollary 2.1 hold; (M) as well as (D) are satisfied. From 
the expression of 8,@/8,4Y, and the assumption on the domain we can show 
that (B) holds. 
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Theorem 5. In the case of the labor-munaged puhlicJirm assume that ,f is C2 
and concuve and that condition C holds. Then a necessary and sufficient 

condition for a piecewise C’ allocution to be implementable is (dl/dt))(@ 50 a.e. 
on 0; und the trunsfer function satisfies: 

~W+$(O) a,f(l(H),t))-’ 
[ 

f(l(W,@-h+t(@ =o, 

l(H) 1 

Theorem 5 shows that only labor allocations which give a quantity of 
labor decreasing with the parameter 0 are implementable. With the product- 
ivity interpretation, intuition suggests that, as a first-best objective, one 
would like to allocate increased labor for increased 8 so that the implemen- 
tation and first-best requirements are opposite. 

Coming back to the maximization problem defined in section 2, we can 
make precise the above idea as follows. 

Corollury 5.1. Under condition C, when f (.) is strictly concave in 1, the 
optimul labor allocation for the @St-best problem is implementuble tf and only 

$ 

c?,kf(l,O)~O, Vl~O,Vhr. (4.2) 

Proof We know above that the first-best allocation r(0) is a solution of: 

(4f)(r(@, Q) = 2. 

Hence, by differentiation, 

, - 

d&f-t a:,/$ = 0. 

It follows that dqd0 has the same sign as $,f: Q.E.D. 

Note, in particular, that if f(l,@ =Of (1) the first-best allocation is not 

implementable. Indeed, condition (4.2.) then reduces to a,f/‘ial sOVl,QO, which 
contradicts the assumption of strictly positive marginal productivity of labor. 

Finally, to illustrate the results of this section, we will consider the 

following example: f (1,O) =t3$. The first-best labor allocation function is 
l(0) = 6/4A2; it is increasing in 8 and therefore not implementable. For a 
decreasing I(.) function, t(0) must be a solution of: 

dt 

do de l(e) do 
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i.e. 

where A is an arbitrary constant. 
One might wonder whether the fact that the implementability condition is 

dl/dHzO (and then that this first best is not implementable) and the Ward 
pathology (i.e. the fact that the labor-managed firm wants to produce less 
when it is more productive) are connected. 

In the special case of multiplicative uncertainty, when the objective 
function takes the more general form @(I,t), the following connection can be 
made between the famous Ward pathology, i.e. dlldp<O, where p is the price 
of the commodity, and the possibility of implementing the first best. 

The behavior of the labor supply is obtained from maximizing 

yielding the first-order condition: 

Hence, 

dl 

dp= 

If % is concave, 

In the mechanism framework, we consider 

The first best is implementable if 
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or 

So, we obtain that the first best is implementable if and only if the Ward 
pathology is not present. However, this equivalence does not hold for more 
general utility functions or more general technologies. 

4.3. We&z-e optimum under incentives construints ulhen transjtirs ure socially 
indijferent 

As we have just made clear, first-best allocations will not be in general 
implementable. The planner’s problem is then to choose the best allocation 
under the implementability constraints, i.e. the second-best allocation. 

Given the planner’s utilitarian objective function defined in subsection 4.1, 
his expected social welfare associated with l( .), is, up to a constant: 

d [.f’(l(O), 0) -Al(H), v(U)dO. 

Under the assumptions of subsections 4.1 and 4.2 (f is C2 and strictly 
concave, condition (C)), implementable (piecewise C’) labor allocations are 
characterized by 

dl - dH 5 0 a.e. (Theorem 5). 

Furthermore, if f’ is C2, the regularity condition (R) obtains. So the 
planner’s problem falls in the class of problems solved in the previous section 
(subsection 3.1) [with (CS-)]. The results of theorem 3 and theorem 4 then 

apply. 
We summarize them as follows. 
(1) There exists a unique piecewise C’ labor allocation which maximizes 

social welfare under implementability constraints. 
(2) Recalling that the first-best labor allocation r(.) is defined by _ 

?,f(l(H),O) =i, we can consider a certain number of cases. 
(i) T(H) is LI decreasing ,function cf 0. Then I* =< the first-best labor 
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allocation, is implementable. However, as noted above, this case occurs when 
$,fSO, a condition which contradicts the productivity interpretation of 0. 

(ii) fi0) is an increasing function of 0. This case is in line with the 
productivity interpretation of H and occurs with the multiplicative specifi- 
cation f(0, I) = f3f(/). 

Then the optimal solution is of the form I*(O) = l**, where I** is a number 
between 1(O) and 1(l) and such that 

Hence, I** is the optimal quantity of labor to be allocated in the absence 
of any information. In that case, the use of mechanisms is particularly 
disappointing since the optimal mechanism does not extract any usable 
infbrmation. The planner’s ability to regulate the self-managed firm is severely 
limited. 

(iii) In an intermediate case such as that of fig. 9, the optimal solution 
coincides with ton some part of 0 and is constant on the complement. 

0 1 e 

Fig. 9 

We now return to the equivalence between what we called the semi- 
planning and the market contexts. We showed in section 2 that the optimal 
labor allocation described above could be considered as the outcome of an 
optimal tax schedule in a market context. We will exhibit here such optimal 
schedules, in the three typical cases. Note, however, that in each case there is 
not one but a family of tax schedules with one second-best optimal labor 
allocation” and that we only describe one of them. 

Consider the space t, 1. In case (i) a possible optimal tax schedule [which 
implements t(0)] has the shape shown in fig. 10. The subsidy decreases (resp. 
the tax increases) with the quantity of labor demanded. 

In case (ii) the optimal tax schedule takes the extreme form shown in fig. 
11. The tax is extremely high unless I= I**, where it may be a subsidy. 

“In the implementation problem, the corresponding multiplicity relates to the arbitrariness of 
the value of t(0) in the solution of the ditferential equation. This arbitrariness could be 
somewhat attenuated by introducing an ‘individual rationality’ constraint implying that the per 
capita income within the labor-managed firm is higher than the competitive wage. 
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subsidy 

Fig. 10 

subsidy 

Fig. 11 

In case (iii) we may observe a tax schedule as in fig. 12. Subsidies decrease 
with 1. But the constancy of the labor allocation has a counterpart in fig. 12 
at point A, where what is called in the optima1 taxation literature, bunching, 

obtains (a set of non-zero measure of ‘firms’ choose the same quantity of 
labor). 

The conditions for the occurrence of bunching in this optimal taxation 
problem are hence rigorously exhibited; any property of the constant part of 
the labor allocation can be interpreted as a property of the optimal tax 
schedule [particularly conditions (ii) in theorem 41. 
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subsidy 
T 

Fig. 12 

5. Extensions 

We will show how the reasonings we have presented can be adapted to 
deal with the case of type B preferences and of multidimensional 1. A number 
of applications of the extensions so obtained will be briefly considered. 

5.1. Optimization with type B preferences: The case L= 1 

In the case where preferences are of type B, further assumptions on the 
agent’s utility function will allow us to rely on previous theorems to provide 
an explicit solution to the maximization problem of the principal. Let us 
state now these assumptions. 

(S): Separability. uli(l, t, Q) = V(1, 0) + t. 

Recall here that (S) does imply (B) of section 2.2. We also assume: 

(CS+ +) (resp. CS- -) has two parts. The first is only a specification of (CS 
+) (resp. CS-) to the separable function 4!. The second part says that the 
value of 0 influences in an unambiguous way the value of I/: With (CS+ +), 
it is straightforward, from the incentive compatibility differentiable condition, 
that for any differentiable implementable (1, t) the function 9(0)dgf V(l(@), 0) 
+ t(0) is an increasing function of 0.l’ 

It follows that the individual rationality constraint (2.3b) reduces to: 

V(l(a), a) + t(a) 2 U. 
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Limiting ourselves to piecewise differentiable truthfully implementable action 
profiles, we know that under the assumptions of corollary 2.1, they have to 
satisfy dl/dt-lzO a.e. It follows that with (CS+ +) we can write down the 
principal’s maximization problem as: 

max~[kV(1(8),0)-k(H)r(B) v(O)d6’ 
(1 1 (5.1) 

over the set of functions 1( .), t( .) satisfying dl/dN 2 0 a.e. 

dt 

ds- - -a, 1/(1(e), O)&, I/(/(u), u) + t(a) 1 ii. 

We will show: 

Lemma. !f 1, t satis$es the constraint of the program (5.1), then the maximand 

can be written: 

with 

c = bw Ct(a) + vy441, 40) = 46) 44, $(H)=j%(r)dr. 

Noting that the incentive compatibility constraint can be written 

we get: 

Inverting the order of integration in the last integral (Fubini’s theorem), we 
obtain the expression of the lemma. 

Let us define: 

~(l,e)=W(1,H)v(e)-~(e)a,v(l,e)+n(e)v(l,e). (5.2) 
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The problem (5.1) is equivalent to the following problem: 

max~tii(l(H),H)dH 
a 

(5.3) 

over the set of piecewise C’ functions I(.) such that 

dl/dQzO a.e. 

and 

choose t(a) such that V(l(a), u) + t(a) = U. (5.4) 

In other words, program (5.3) has the same structure as the optimization 
program of subsection 3.1, where I% can be viewed as a surrogate welfare 
function (with surrogate uniform expectations). Hence, if we assume: 

(CRS): Concavity and regularity of the surrogate social weljbre function. 

(i) The function m defined in (5.2) is strictly concave in l,V’8. 
(ii) The function I(Q) defined by 3, m(l, 0) = 0 is C’ and has at most a finite 

number of peaks. 
Theorem 3 applies to program (5.3) and we get: 

Corollary 3.1. Assume that the constraint of the principal’s optimization 

problem is of type 3b and he has prejerences of type B with k(0) 2 0. Assume 
that the agent’s preferences satisfy (M), (D), (S) and (CS+ +). Then, the 
optimal action profile over the set of piecewise C’ action profiles is necessarily 

a solution of 

maxj m(l,8) over the set of functions lIdl/d8~0, 
U 

with 

EWJ) = W(1,8)v(t))-11/(8)a,1/(1,8)+~(8) V(1, q, 

with 

A(O) = k(Qv(B), W)=%Wdn. 

[fi in addition, I? satisfies (CRS), the optimal action profile exists and is the 
unique solution characterized, with m instead of W, in theorem 4, and 
computable from the algorithm of subsection 3.3. 
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Note that (CRS) is implied by V strictly concave and Z,,V’ strictly convex, but 
these conditions are clearly not necessary. 

Consider now the case of a constraint of type (2.3a) and assume: 

(A): Mditivity of constraint (2.3a). (2.3a) takes the form: 

; i;(r(o),s)~(s)ds+~t((l)j(U)dH~1T; 
a U 

where P is a Cz function and 3 a C’ density function. 

The computation of the preceding page can be repeated and implies that: 

jt(H)~(H)dH=t(a)+V(l(a),a)-; V(l(0),H):(B)dfI 
II (I 

+j.$$H)W’(U),~)d~ 
0 

with 

$(H)=i;(H)dfI. 
R 

Combining the binding constraint (2.3a) with the previous equality, we can 
express the maximand as (with straightforward notation): 

=i I?‘dO-$(a)(+)+ V(l(a),u)) 
a 

-$(u)ii or ji i%dH, with 

E=*(a)> (5.5) 

where, as above, b only depends upon (l(H),0) and not upon t(f)). This can 
be expressed as: 

Corollury 3.2. If the constraint is of the form (2.3a) und sutisfies (A) and if the 

agent’s prejkrences are the sume us in corollury 3.1, then the optimal action 

profile over the set of piecewise C’ action profiles is a solution of 

max]6J(l(H),B)dH over the set oflldl/d020 a.e., 
a 

with k(l, 0) given by (5.5). 
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If, furthermore, 6’ satisfies (CRS), then theorem 4 applies to the charac- 
terization of the optimal action profile which can also be computed from the 
algorithm of subsection 3.3. 

Although complex, corollary 3.2 deserves to be stated since it gives as a 
particular case some of the few explicit expressions of the optimal income tax 
in a (small) class of problems (see subsection 5.3). 

5.2. Optimization with type B preferences: The case L> I 

Up to now, our analysis has focused on the case where the action 1 is one- 
dimensional. It must be understood that what is specific to the one- 
dimensional case is not the argument developed in section 3 but the fact that 
in the multidimensional case the set of implementable action profiles 
contains, but is not identical to, the set of functions l(dl/dezO. In other 
words, the results of theorem 3 and its corollaries are easily extended to the 
case where 1 is multidimensional (this is left to the reader) but they 
characterize the solutions of program (3.1) and not necessarily the best 

incentives mechanisms from the planner’s point of view. There is, however, a 
full characterization theorem of the optimal multidimensional solution in a 
restricted subset of problems which obtains as a byproduct of the analysis of 
this section and of section 2. 

Theorem 6. Optimization in the multidimensional case. Assume that the 
agent’s utility function satisfies (S), (D) and (CS+ +) with an individual 
rationality constraint (2.3b).13 Consider the surrogate social welfare function of 
corollary 3.1: 

Eql,O)= w(l,e)v(e)-l+qe)a,v(l,e)+n(tI)v(l,e). 

If the solution t(0) of max, m(l, 0) is C’ and satisfies d fld 8 2 0, it is the optimal 
action profile for the principal. 

The proof obtains as a combination of the following remarks. 
(1) The argument of corollary 3.1 transforming the initial optimization 

problem into two problems is independent of the dimensionality of 1. Hence, 
the problem can be transformed into (i) max m(l, t3) over the implementable 1, 
and (ii) choose t(a) such that V(l(a), a) + t(a) = ii. 

(2) If the program max w(l, 0) has a solution T(d) which satisfies the above 
conditions, then according to theorem 2, and thanks to (CS+ +), T is 
truthfully implementable and is necessarily a solution of program 
(i). Q.E.D. 

13Note that both assumptions (S) and (CS+ +) do not refer specifically to the one- 
dimensional case. 
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Note that the theorem remains true with straightforward changes with 
corollary 3.2 instead of corollary 3.1 in the statement. Note also that the 
theorem (and its variant) although less powerful than theorem 4 for the one- 
dimensional problem, is likely to apply in a significant class of problems. 

5.3. Applications 

5.3.1. The quality choice problem 

1 is the quality of a product, 0 is the parameter taste of the agent (there is 
here a continuum of agents). The principal is a monopolist who tries to 
maximize his profit. The (marginal and average) cost of producing a unit of 
quality 1 is C(I). Take %(I, t,O)= t+81 (Mussa and Rosen’s formulation). The 
objective of the principal is maxjs( - t-C(I))v(O)dO [so that k(H)= 1 and 
W(1, I)) = - C(l)]. The surrogate social welfare function is 

m= -$(H)1+v(U)(HL-C(I)) with $(O)=lv(z)dT. 
0 

With C(I) =a+(P/2)1’ and a uniform distribution, it is straightforward that 

[see also Mussa and Rosen (1978, p. 312)] and the optimum is l*(O)=r(O) for 

0 bigger than some ‘cut off point. When the distribution is non uniform 

qH)=T ____ 
a-a+F(H)-1 

P(O) ’ 

where F is the cumulative distribution function associated with v. Clearly, 
dT/dfI may be negative for some non-uniform distribution (for example with a 
‘high peak’) and the way 1*(O) obtains from l(Q) conforms the principles of 
theorem 4. 

In Maskin and Riley (1982), 1 is the quantity of the product instead of its 
quality. The formulation can however be made very similar to Mussa and 
Rosen’s. With W= &I(/), C(l) = cl, the above calculation is hardly modified 
and one obtains: 
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a formula similar to the ones on which is based the (slightly more complex) 
analysis of the quoted article. 

5.3.2. The government control of a private monopolist 

The agent is a firm with a known fixed cost C, and an unknown marginal 
productivity 6 so that total cost as a function of the quantity put on the 
market, which is the action variable 1, is C= CO + l/6. The inverse demand 
function is D(1) and the principal’s objective function is: 

jD(x)dx-C(A,l)-kr. 

The agent’s utility function is - C(0, 1) + t and satisfies (CS +). With D(I) = 
LX-/U, the surrogate social welfare function is: 

With a uniform distribution, 

l(l)==l .-;(l +k)-k 
(I- F(Q) P Pv(0) 1 

is actually implementable and hence optimal. The corresponding optimal 
market price is hence (b-a = 1): 

p*(O)=; 

a formula which has the same flavour as the ones derived in Baron and 
Myerson (1982). 

5.3.3. The income tax problem with a quasi-linear utility function 

Take t as the complement of effective labour (‘effective’ leasure), 1 as 
consumption and assume @(I, t,(3)= t+&(l), when 0 is the usual productivity 
parameter. 

The feasibility constraint is Ji tdd=j,b ld6’ which identifies with (2.3a) as 
written in assumption A when V is the identity v”= 1, b-a = 1. 

The principal’s objective is: 

max~~(H)Q(l,t,O)v(~)d~=~v(H)(~(B)~v(l)+~(O)~)d~. 
a (1 
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Assuming 12 p(H)d 6, = 1 (normalization) and v(Q) = 1 (uniform distribution), 
we note that k(Q)= -p(O), $(Q=l -jlfp(tI)dB, $(a)= -1 and $(0)=2-8, so 
that the surrogate social welfare function may be written: 

&ill,@=@ 
I 

20-1-;p(B)dH -1. 
0 1 

One easily derives 7 and checks, after Lollivier and Rochet (1983), that 
[dii/dt)],=, <O if ~(0)>2, so that bunching obtains at the bottom of the 
optimal tax schedule. 

5.3.4. The self-managed firm which trades ojf between unemployment and per 
cupita value added 

Here O&(1, t. 0) = [(Of(l) -K + t)/l] lp and f‘(l) = 1”. 
We immediately check, following Guesnerie and Laffont (1984b), that 

when j?> 1 --m, i.e. when the employment concern is sufficient, (CS +) holds 
and, contrarily to what happens in section 4, the first-best allocation is 
implementable through compensatory transfers. 

5.35. The planner can observe production and (marginul) cost but cannot 

monitor an ejfort variable 

The problem can be formalized as follows. (Apparent) productivity is 
written 0e (e effort), which we call 1,. Call 1, the production of a commodity 
which is assumed to be a pure public good. 

The firm maximizes %!= t-(11/12)-q(lJO), where cp is the disutility of 
effort. Take cp (x) =x2/2. 

As above, assume W(l,O)=ctl, -(plf/2)-(1,/l,) and v(0)= l(b-u= 1). The 
surrogate social welfare function is: 

El _pl:_h_W-8) 
1 ,k/;+k( -k-(i)‘). 

2 1, 0 
(5.6) 

It is actually quasi-concave and one obtains TI(0) and I,(O) (cf. theorem 6) by 
differentiating (5.6): 

= l+k 
u-P,(H) = m’ 
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and the results have the same flavor as the ones obtained by Laffont and 
Tirole (1984). 

6. Conclusion 

This paper attempted to achieve two goals. First, in a class of incentives 
problems, which covers a variety of cases considered in the literature, it 
provided a complete characterization of implementable mechanisms as well as 
a characterization and determination of a solution for the welfare problem. 
Secondly, the application of this machinery to a simple problem of control 
of a public self-managed firm attempted to illustrate the relevance of the 
incomplete information approach for a renewed understanding of the public 
firms control. Each of these goals deserves a final comment. 

The general analysis conducted here relies on the use of mechanisms rather 
than on a non-linear taxation approach. In spite of the equivalence of non- 
linear taxes and mechanisms emphasized in section 2, mechanisms appear as 
particularly adequate tools for the analysis in the class of problems of this 
paper. When the assumptions of this paper are not fulfilled, it is not clear, at 
this stage, how far one can go with a mechanism approach; the correspond- 
ing mechanisms will be generally badly behaved and there is no simple way 
to meaningfully restrict the analysis to a manageable class of mechanisms. 
On the other hand, one can think that, on the contrary, the non-linear prices 
which can be used are easily restricted to simple classes of well-behaved 
functions without too much loss. In fact, the complexity reappears in the 
analysis of the first-order conditions through the possibility of corner 
solutions and the question of sufficiency of these first-order conditions to 
characterize an optimum. It is unclear at this stage which robust qualitative 
results of the principal-agent problem of sufficient generality and precision 
can be obtained, when one leaves the class of problems considered here. 

Appendix A: Integrability of the differential equation 

Instead of condition (B), another condition, (BR), easier to satisfy in some 
contexts. could have been introduced. 

(BR): A piecewise C2 allocation 1 satisfies (BR) if given K%fsup[dl/d0],3 
two numbers K”>O and t, such that VtE[-KKK’+t,, KK’+t,], l~l(@): 

I I !!? <K’, 

a,u = 

Hence (BR) implies that the trajectory of the differential equation remains 
below (resp. above) the diagonal of the upper rectangle (resp. lower); see fig. 

JPE E 



368 Ii. Guesnerie and J.-J. Luj’bnt, Ciuss of principal-agent problems 

KK' 

Fig. 13 

13. It then gives an a priori majoration which assures existence along the 
same lines as in the proof of theorem 2. 

Since (B),(BR) implies that the marginal rate of substitution does not 
increase too fast when t increases, the condition relates not only to the 
boundary behavior of a,‘&/a,U but also to the diameter of 0. 

For example, with a Cobb-Douglas utility function (BR) is satisfied when 
the diameter 1(O) is smaller than 1. Also, (BR) is a condition involving t,, so 
that it only implies existence for trajectories starting from well chosen t,. The 
theory would have to take this point into account to replace (B) by (BR). 

Appendix B: Existence proof 

Proof of proposition 2. First, we note from program (3.1) that if an optimal 
solution I*(O) exists, on any interval where it differs (a.e.) from T(H), it is 
constant. Otherwise any increasing piece of 1*(O) over an interval [f&WI] 
could be replaced by an increasing piecewise differentiable piece qS) with the 
same terminal points and uniformly closer to -c(0) over the interval. Since 
W(I, 0) is strictly concave in 1, this would contradict the optimality of t(Q). 

Consider the space of continuous functions on [u,b] endowed with the 
uniform topology. Let G( 1( )) = 5:: W( 1( 0), Qv( 0) dH. G( . ) is continuous in 1( ) 
under (R). 

Consider the subset A of continuous functions obtained from t(0) by 
piecing together, with constants, increasing portions of T(0). Since 7 is C’, A 
forms a family of equicontinuous functions. From Ascoli’s theorem, A is 
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compact; G( .) achieves its maximum on A. The maximum is unique because 

W is strictly concave in 1, and from above, is also the maximum of the 
program (3.1). 

Finally, since from (R), T(s) has a finite number of increasing portions and 
since any constant piece in 1*(.) must join two different increasing pieces, the 
unique optimum has a finite number of points of non- 
differentiability. Q.E.D. 
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