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An economic agent, the incumbent, is operating in many environments at the
same time. These may be locations, markets, or specific activities. He is informed
of the particular conditions relevant to each situation. His action in each case is

- observable by another agent, the entrant, who does not have the private informa-
tion. Because the .incumbent is in operation in many environments simulta-
neously, the entrant has the ability to discern the exact statistical relationship
between the incumbent’s action and information, and we assume that he cannot
commit - not to draw this inference. At each location the entrant must choose one
of two actions, which we call “‘attack’ or ‘‘no attack.” This paper concerns the
interplay between these sets of decisions. We characterize the optimal actions of
the incumbent under the assumption that he can commit to his decisions, and thus
that he will behave as a Stackelberg leader by manipulating the inferences drawn
by the entrant. The solution obtained is compared with and contrasted to the
Bayesian perfect equilibria of a game where both players move simultaneously.
That game is a more appropriate model of the ‘‘no commitment’” case. Thus, the
value of the possibility of commitment and manipulation of the entrant’s beliefs is
assessed. Some applications are discussed. © 1990 Academic Press. Inc.
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1. ' INTRODUCTION

This paper presents a model of competition, or potential competition,
between two agents that takes place simultaneously on many fronts. One
economic agent, the incumbent, is operating on all these fronts. He faces
the possibility that on each front he will be “‘attacked’’ by the other agent.
We give an example of such situations below, in the context of further

‘specifications of the model. Suffice it to say, for the present, that the

““fronts’” may be a multiplicity of products being produced by a firm, the
locations of economic, or even military, activity, the specific services
provided to a variety of clients, or many other similar situations. The
“attack’” can be, for example, a military attack, or it can represent entry
into direct economic competition against the incumbent in a market, or it
can represent a legal action taken against the clients of the incumbent
based on observations of their actions.

The fronts are distinguished from each other by a characteristic, or set
of characteristics, known to the incumbent but unknown to the potential
competitor. This characteristic, to be denoted 8, plays three roles in the
model. .

" First, there is an action, x, to be taken by the incumbent on each front.
The payoff to the incumbent, if he is not attacked on that front, is given by
u(x, 8). Thus, there would be a desire to tailor the action x to the charac-
teristic 6, but for the fact that it would allow the attacker to make accurate
inferences about 6 by virtue of his observations of x.

Second, 6 affects the value of making an attack to the potential compet-
itor. If he attacks on a front whose characteristic is 4, he gains v (9). This
may represent the expected value of an attack whose actual result is
uncertain, but where the probability of the success depends on 6. Alterna-
tively, the result of the attack may be independent of 6, but the value of
having attacked, for example, the post-entry duopoly profit, may depend
on 6. One should interpret v (8) as the value of attack, net of any direct
costs of doing so. .

Third, 8 may affect the cost that the attack, if made, would impose on
the incumbent. This is represented by w(8). It comprises the direct costs
of a defense, if one is attempted, and the expected costs of the result of
the attack, for example, the loss of market share and the change in market

- conditions resulting from a duopolistic post-entry situation.

We assume that there are many fronts and that, therefore, the empirical
distribution of § across the fronts is the same as the a priori belief, F(6),
held by the potential attacker with respect to each given front. We also
assume that the incumbent chooses x at each front in advance of the
attacker’s choice. Moreover we assume that the incumbent knows that
the attacker will be inferring the value of 8 from his observation of x using
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Bayes’ rule, based on the prior F and a knowledge of how the incumbent’s
choice of x depends on 6,' and that the attacker cannot commit to do
otherwise (e.g., ignore this inference). These assumptions lead us to ex-
amine the Stackelberg equilibrium of the game in which the incumbent is
the ‘“‘leader.’’2

The problem we solve in this paper is the optimization problem of the
incumbent described above, under some further assumptions about u, v,
and w. The result we obtain is quite a strong one. For despite the com-
plexity of this problem, and its nonstandard nature as an optimization
problem, we can show that the incumbent will select x(8) nonstochasti-
cally for each 6, and that the function x(6) can be described quite simply.
In addition we can characterize the set of 8's at which an attack will take
place, and the complementary set on which an attack is avoided.

For purposes of comparison we also analyze the Bayesian perfect equi-
libria of the same model,? in which each front is controlled by an agent
who optimizes given a knowledge of his own 6. This is the appropriate
model when commitment to act according to a given behavioral rule, the
choice of x as a function of 6, is impossible to enforce and each *‘front’’
optimizes independently. .

Our results demonstrate a striking qualitative difference between the
Stackelberg and Bayesian Perfect equilibria. The latter, as is well known,
involve a combination of separating and pooling. The characteristics that
are pooled form an interval in the middle of the characteristics. space.
Optimal strategies in the Stackelberg case also involve pooling—but of
quite a different nature. For an interval in the characteristics space there
are pairs of values, one vulnerable to attack and the other not, for which
the principal will choose the same action. Only these two characteristics
are pooled together at this action. Thus the optimal strategy uses a whole

! Attackers can represent either a single entrant who can enter on all fronts or a continuum
of potential local entrants. We assume that attackers get to know the incumbent’s strategy
by sampling. In the second case above, sampling must be done jointly.

% In games of complete information, Fudenberg and Levine (1989) show how the Stack-
elberg equilibrium payoffs can emerge in repeated games with a long-run player playing
against a sequence of short-run opponents. This can happen when the Stakelberg behavior
belongs to the domain of the entrant’s beliefs. Our large number assumptions in a game of
incomplete information, combined with the inability of the entrants to commit not to learn
the incumbent’s strategy, is analogous to their assumptions that the sequence of entrant
observe all prior plays and the discount factor is close to one.

3 Our model has the temporal structure of a signaling model (see Spence, 1974), but the
informed player controls his actions as a function of the relevant specific information instead
-of a separate economic agent in control of each action. Most of the literature on signaling
models (see Milgrom and Roberts, 1982; Kreps and Wilson. 1982) has focused on the
Bayesian perfect equilibria of this model. In view of the large number of equilibria obtained,
efforts have concentrated on finding convincing selection criteria (see Kohiberg and Mer-
tens, 1986; Cho and Kreps, 1987; Banks and Sobel, 1987).
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range of actions to pool the continuum of pairs of characteristics in the
pooled interval. Furthermore, we characterize the domain of characteris-
tics 6 for which the ability to commit modifies the incentive compatibility
conditions that would be faced in Bayesian perfect equilibrium.

The problem is set up in Section 2. Section 3 offers a discussion in the
context of an industrial organization application. Section 4 states the main
results and provides further commentary on the relationship between the
solution of the incumbent’s problem and the Bayesian perfect equilib-
rium. Proofs, which are long, are deferred to appendices. Secuon S gives
a brief numerical example.

2. THE PROBLEM

We assume that the domain of the parameter 6 is a bounded interval
0 € O = [0, Ouax] of real numbers. The distribution function of @ is as-
sumed to be atomless and is denoted F. Its density is denoted f; it is, for
simplicity, assumed to be continuously differentiable on ® and strictly
positive. The set of possible actions is assumed to be the real line.

A strategy for the incumbent is a stochastic kernel s(-|8), which is a
measure over the real line for each § € ®. This allows for randomized
choices of x, although as we show, they are not used at the optimum.

The reaction of the potential attackers depends on their belief about
given the observations x. Let H(:|x) be the conditional distribution over 4
that would be obtained by Bayes’ rule. If an attack is made, the expected
payoff to the attacker depends only upon whether or not 6 exceeds a
critical value § € 0. If § > 6, the attacker gains an amount v, > 0, if § < 6,
the attacker loses an amount —v.(v_ < 0). One interpretation of this is
that the attack succeeds or fails according to this condition. Once an
attack has succeeded, however, the payoff to the attacker is independent
of 6, and of the associated decision x. Thus the expected payoff to an
attack will be

v HOL|x) + v_H(O_|x), ' 2.1

where ©, = {0]6 > 6}, ®_ = {#|6 = §). An alternative notation that will
sometimes be used is to define the function-

Il

v. fe>4 (2.2)
v.  ife =9,

Cv(8)

il

and then the expected value of an attack is Just fv(O)dH(le) often de-
noted [vdH. ,
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The alternative to attacking is not to attack, and the value of not attack-
ing is normalized to be zero. As is typical in the incentives literature, we
assume that the agent attacks only if (2.1) is strictly positive. The incum-
bent presumes that the attacker will form his beliefs according to the
Bayesian method described above. Thus the incumbent assumes that in
choosing his strategy he is able to manipulate the attacker’s beliefs. In-
stances in which this is a plausible model of the incumbent’s behavior are
described in the next section. ,

We assume that for each @ the incumbent’s utility is derived from two
sources. First, the action x is payoff relevant to him and he experiences a
utility u(x, 8) if x is the decision associated with 6. We assume that u is
twice differentiable, strictly concave in x, and u > 0. Moreover, for each
¢ there is a unique value of x, denoted x*(6), that maximizes u(x, ). It
follows that x*(6) is a continuously increasing function. The importance
of this condition is that the potential attacker can unambiguously learn all
values of 6, unless nonoptimal actions are taken in an attempt to hide
them.

Second, there is a disutility to being attacked. The level of the disutility
depends on whether or not > 9. If 6 > § is attacked it is w, and if § < 6is
attacked it is w_. Following the interpretation mentioned above, one
could say that defending against an unsuccessful attack costs w_, but the
loss incurred in a successful attack is w, . Although it might be natural to
assume w, > w_, we do not need that hypothesis below.

Let

w@) =w. if6>6 (2.3)
= w_ ifo <.

The assumptions (2.2) and (2.3) that the value and cost of an attack
depend only on its success or failure, and are otherwise independent of
and of the action x, are admittedly very special. If they were weakened we
would still preserve the structure of the optimization problem and the
great qualitative differences of Stackelberg equilibria and Bayesian per-
fect equilibria that are stressed by our analysis. But the exact character-
ization of the Stackelberg equilibrium that we are able to obtain under
these conditions would certainly not hold. In particular, the nature of the
pooling that would occur might be much more complex that we obtain in
Theorem 1.

Consider a strategy s(-|6). Let A, C R be the set of x € R such that 2.1
is strictly positive. We call A, the set of arracked values, given the strat-

egy s.
The incumbent’s utility can then be written as

]@{ jR u(x, 0) ds(x|6) ~ f‘@’ w(@)a’s(x]@)} dF(6). 2.4)
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We study the problem of maximizing (2.2) by the choice of the strategy
5. The complexity (and nonlinearity) of this problem is due to the particu-
lar nature of the dependence of A; on s.

A Stackelberg signaling equilibrium (SE) is a strategy s*(-|- ) which
maximizes (2.4).

3. EXAMPLES

There are several key ingredients in the model which determine its
domain of applicability. The attacker draws his inference about the ‘in-
cumbent as a Bayesian statistician. He moves after the incumbent and it is
common knowledge that he can learn the incumbent’s behavioral rule and
optimize against it. Thus he cannot, for example, threaten attacking in
any way other than would be dictated by independent optimization at
each front. .

An example of this might be a retailer or a bank who is operating at
many locations, initially in the absence of any competition. The incum-
bent may be the first firm to have expanded into a new area. It is reason-
able to suppose that it will soon learn the profitability of each of its
locations. At more profitable locations it might be optimal to expand the
hours of business, increase staff or enlarge its physical facility.

But the bank knows that if it were to do so it would be giving future
competitors the knowledge of the quality of each location. The competitor
could learn the relationship between the observable attributes of the in-
cumbent’s locations and their underlying quality by entering at a sample
of locations and drawing the appropriate inferences. Then it could target
its entries at all the other locations accordingly. As the total number of
locations is very large, the mistakes made in the initial sample are insignifi-
cant in the total payoff.

Because the incumbent’s characteristics are fixed once and: for all,
there is no scope for the entrant to try to manipulate the incumbent by
engaging in any nonmyopic behavior. Moreover, even after the initial
entry (attack) at various cites, it turns out that the incumbent’s optimal
strategy Is unchanged. Therefore, when the next entrant (if any) is
present, he will not find it profitable to attack anywhere. All values of the
observable for which there is a positive expected benefit of attack have
already been attacked by the previous entrant.

Another example that is well modeled by the Stackelberg equilibrium
concerns the preparation of income tax returns by a firm that handles the
returns for many clients, each of whom may be audited by the IRS at
some time in the future. Returns must be filed for the previous tax year
but are not examined by the IRS until several years later. The IRS knows
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which returns have been prepared by this tax preparation firm and, as it
begins to examine them it can note those characteristics of the return that
indicate that it is worth auditing (audits are costly). Because of the large
number of returns involved, the statistical relationship between observ-
able characteristics and audit potential can be estimated very precisely
using only a negligible proportion of all returns filed by this firm. For the
remaining returns, the optimal audit policy can be followed. Thus, when
the income tax preparation firm decides on its policy for how to prepare
returns with underlying characteristics that are known, prior to audit,
only by itself (and its client) it will behave as Stackelberg leader. The IRS
cannot commit not to draw the inference about audit potential, for an -
announcement to this effect would not be credible—it is common knowl-
edge that once the returns are filed, and several years have passed so that
they cannot be changed, the IRS will have every incentive to audit them
in a way that will produce the largest payoff at that time.

To be sure, some of the specific assumptions of Section 2—such as the
invariance of the costs of an attack to the incumbent to the characteristics
of the front in question—may not be satisfied in a particular application.
Nevertheless, we believe that the strategic situation studied here, where
the incumbent can make a commitment to his strategy and the attacker
cannot, does characterize many competitive situations where “many
fronts’’ ‘are involved.

4. STATEMENT OF RESULTS

In Theorem 1, we describe the qualitative features of an optimal strat-
egy if an optimal strategy exists. Theorem 2 proves the existence of an
optimal strategy under our assumptions. To contrast the Stackelberg sig-
naling equilibrium with the Bayesian perfect equilibria (Proposition 1) we
first characterize the Bayesian perfect equilibria using a mild condition on
out of equilibrium expectations (Theorem 3).

THEOREM 1. If s*(-|") is a Stackelberg signaling équilibrium, it is al-
most everywhere equal to a strategy s(-|-) such that there exists an inter-
val T = (a, b] C O, possibly degenerate and containing 0, and increasing
Junctionsy (-): T N O_ = (a, 8] — R and zZ(): T N O, =6, bl — R such
that : :

(1) for 6 & T, s(-9) is concentrated at x = x*8);

Q) foro e TN O, s(*|8) is concentrated at x = y(6);

(B) for 0 € T N Oy, s(-|6) is concentrated at x = z(6);

) v-fOUO) + v f(O)(6) = 0 a.e. with y(8) = 2(0) forany 6ET N O _;
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(5) lim infyq y(0) = lim infy_g 2(0); y(6) = 2(b);
(6) the set of attacked values is A = {6: 6 € O, and 0 & T}.

Proof. See appendix.

Let us call S the subset of strategies that can be described by a 3-tuple
T = (a, b) C ®, y(*), z(-) with y(-) and z(-) increasing and satisfying (4), (5)
of Theorem 1.

With Theorem 1 we can reduce the existence problem to the existence

of a solution to (2.2) in S. Then, the optimization problem (2.2) can be
rewritten.

max [ uGe(6), 0500 + [ u(r(0), Of @0 (4.1)

_(@b,y()znEs ! Gmin

+ f: w(z(6), 0)f(6)do + f: (u(x*(8), 8) — w.)f(O)dS.

We show below that there exists a solution to program (4.1) and there-
fore, from Theorem |, that there exists a solution to program (2.2).

THEOREM 2. There exists a solution to program (4.1) (which is not
necessarily unique). :

Proof. Let ¢(0) = z7(¥(0)) (well defined because z is increasing).
Conditions (4), (5) in Theorem 1 imply

oy = U= _f1O)
(o) = o 7)) (4.2)
6 = y(a). 4.3)

This is a differential equation in {-) with a boundary condition. Since
f() is differentiable and bounded below by a strictly positive number,
there exists from the fundamental existence theorem of the theory of
differential equations (Pontriagin, 1962) a differentiable solution y; ()
defined on [6inr, Omax)-

From (4.2), ¢ is increasing in § with a derivative bounded below by a

strictly positive number.
' Moreover, the differentiability of y in a follows from the differentiabil-
ity of a solution with respect to the initial condition (Pontriagin, 1962) and
from the differentiability of the solution in 6.

From (4.2), (4.3),

b = YF@) = Yrr (). (4.4)
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The maximization problem can now be rewritten:

ax U u(x*(8), 6)f(0)d6 + ff u(z(Y¥(0)), 6)f(6)do

(a,z()} (4 5)

+ P wz00), 0)fi60)d0 + (), 0) ~ w.) f(0)do .

e At)
Let us now change variables in the second integral of (4.5): n = $X0).
This integral becomes

dn

CETRO) o

15 et w1 fuzn)

Substituting the running variable 6 for 1 and using (4.3) and (4.4), (4.6)
becomes

N *— *— __L
fe— H(Z(g), l,[/a 1(0))f(¢a l(0)) d[:l(w:—l(o))'

But f(F O/ W 10) = —(v+/v-)f(8) from (4.2). Maximization
with respect to z(-) reduces to

max [ [u(@(6), 6) = 2= u(x(6), w2 ON1F©)db. (4.7)

For any a there exists a solutlon to (4 7) because u(-, 6) has by assump-
tion a solution for any 6§ € © (we are malelng a weighted average of
two such functions for every 6).

Moreover, since u is strictly concave in z this solution is defined by

%&,) +%&wrw»=u

U-

The solution is increasing since u,; > 0 and ¢*' > 0 and differentiable -
- from the inverse function theorem.

There exists a solution in a as we are maximizing a continuous function
in a compact set. However, as (4.5) is not concave in a, there may be
multiple solutions. =

Some simple results are seen directly in Fig. 4.1. The set of fronts that
are attacked are those with the upper extreme values of §. These are the
values that are hardest to protect in the sense that pooling them with ’s
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F1G. 4.1. The Stackelberg equilibrium.

" below 6 would require large deviations from x*(8) than for the lower
values, in T, which are pooled and protected from attack. It is natural that
the protection is afforded to the fronts that are less costly to protect.

The protection from attack in T requires an increase in x, above x*(0)
for the fronts that cause the protection, and a decrease in x for those that
are protected. Moreover, the two fronts that are pooled together choose an
x that is between their respective values of x*(6). Again, this seems quite
natural.

It is interesting to compare the solution above to the Bayesian perfect
equilibria of the same game. The Bayesian perfect equilibrium concept
would correspond to applications where each front is controlled by a
separate agent who optimizes given his own 6, taking the pattern of infer-
ence used by potential attackers as given.

A Bayesian perfect equilibrium?* is a pair of functions x¥(8): ® — R and
8(x): R — {0, 1}, such that

(1) 6 € 0O, x(9) € argmax,[u(x, 8) — §(x)w(6)]
(ii) F(6|x) is the revision of F(6) using Bayes’ rule whenever possible
given x and x(-)
(iii) 8(x) = 10) & v- [ozg dF (8]x) + v, [og dF (8]x) > (5)0.

* We give the definition only in the case of pure strategies. It can be shown that equilibria
always involve pure strategies.
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We limit the number of equilibria by restricting out of equilibrium be-
liefs. We say that beliefs F out of equilibrium are plausible’ if [,
dF(0]x) < [4o7 dF (6]x") for any x < x’, where the value x is not taken at
the equilibrium while x' is taken. This plausibility requirement expresses
the idea that the attacker knows that x*(8) is strictly monotonic and
therefore believes that an unused value of x would be associated with a

lower value of 0 than that known to be associated with higher x, in equilib- -

rium.
THEOREM 3. If 6 > 6 and (6, %) satisfy
(a) u(x*(8), 0) ~ ws = u(z, §)
(b) Jo-qy v-dF(6) + [§, dF(0) <0,
then

X(0) = x*(0)  for 8 < x*(%)
xe) = & for 6 € [x*~'(%), 4]
x(0) = x*(0)  for6 > 6

is a (plausible) Bayesidn perfect equilibrium, and conversely. Moreover,
the set of attacked values is A = {6: 6 € ® and § > 6. :

Proof. Available from the authors.

In any plausible Bayesian perfect equilibrium, the conjectures about
values of x that will be attacked are as follows. For x > £ the incumbent
agent believes that an attack will take place. Because of this, the values in
the interval (£, x*(8)) are not chosen by any . Instead, all @ in (x*~1(%), §)
pool at £, the highest value of x, which escapes attack. For 6 > @ the
corresponding x is set at x*(8) where attacks actually do occur.

In the Bayesian perfect equilibrium which maximizes the expected pay- ‘

off over all 6, (b) in Theorem 3 holds with equality (see Fig. 4.2).

PROPOSITION 1. In the Stackelberg signaling equilibrium, there are
some @ for which the payoff is lower than what they would receive in the
Bayesian perfect equilibrium that maximizes. the expected payoff over
all 6.

Proof. There are two cases. Either the SE pooling set, T, is included
in the best BPE pooling set or T contains the best BPE pooling set. This is
because there must be equal weighted mass on each side of 8 for both
pooling sets, as fvdH = 0. :

In the second case (Fig. 4.3), agents 0, 6 € (0, 6-) prefer the best BPE
allocation because they get their first best. '

* This monotonicity restriction is similar to the one found in Kreps and Wilson (1982).
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A

X*~1( X) § 8

'F1G. 4.2. A Bayesian perfect equilibrium.

In the first case (Fig. 4.4), agents 0, § € (6,, 6,) prefer the best BPE
allocation. The reason is as follows. In the BPE, agent 8, is indifferent
between A and B. At B he is attacked; at A he is not. Take 6 € (8, 6,). In
the SE he is attacked. The action ¢ is now closer to his first best than it
was at 6, for agent 6,. Therefore he strictly prefers the action £. =

We have argued above that in the SE the incumbent was able to commit
himself to a given strategy because he was moving first. It is nevertheless
interesting to know where the incentive constraints would be violated in a
SE. We must choose plausible expectations about attack for the values of
x which are not chosen. Suppose (Fig. 4.5) that for x € (x;, x) no attack is
expected and for x € (X, x3) attack is expected.

All those in [fmin, ;] are satisfying incentive constraints since they
obtain their first best and are not attacked. All those in (8;, 6,) do not

8, 8, 9

FIGURE 4.3
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satisfy incentive constraints, because they could choose their first best
and not be attacked (since for x < T, there is no attack).

All those in [6,, 65] do not satisfy incentive constraints; they can move
closer to their first best, for example, to %, and not be attacked.

If 6 = 05 the incentive constraint is satisfied in general strictly (if not one
could improve the SE). For 6 in (6:, 6,), in general a nondegenerate

“interval, the incentive constraint is violated; these values of 6 would

prefer to choose x and avoid attack rather than x*(8) where they are
attacked. For § > 6, the incentive constraints are satisfied at x*(8).

5. AN ExXAMPLE

= 1, b], and let us denote the optimal ¥ as y(+) if

Let®=(0,11,0=4,T = (c
a=0<~6andas z(-)for 6 <6 < b.

.Xs o ’/
Xt R
/: /
X1 e
Xy /
1 1 ! 1 1
Emin 91 8 92 93 94 9max

FIGURE 4.5
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Consider now the following example:

u(x, ) = —(x - 9)%
Uy = —U_, wy =w, w_=0,

F uniform.
The condition implied by the theorem for pooled values is
f(0)5(6) = f0)2(9) for y(8) = 2(6) for ac. 6 € T .1)

lim inf y(8) = lim m£ 2(8), y(3) = z(b). (5.2)
8—a 6—1/2

From the proof of Theorem 2 we have
FAONHO) = £8).
For the uniform distribution
£(6) = f(8)) = 1; x*(8) = 6 and y(9) = 6 s
From lim inf,_,, y(8) = lim inf,_., z(8) we getk =4 — a; fx‘orﬁ y(@3) =
z(b) we get b = | — a. The optimization problem of the principal can then

be reduced to '

I-a

max { - fa”z [y(8) — 612 df — fw (2(0) — 6] db — aw}

subject to y(8) = z<9 + % - a) and (5.2).

Changing variables in the second integral (§ = § — & + a) and using (5.2),
we get

max {~ [ [(y00) - o + (20) =0+ 5~ a) | do — aw}.

{a.y(")}

The first-order conditions are

i
<

0® -0+ (x®) -0+~
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0@ = a2+ (5@ = 3) =2 [* (50~ 0+ 1~ 2) ap = w,

L 2w
a=3 3

w

¥(6) =06+ \/;.

For any w > 0, some area is protected. As w reaches % everything is
protected (see Fig. 5.1)..

It is intuitively clear that as soon as w > 0, the gain of some little
pooling is of the first order and the loss is only of the second order. As w
becomes very large everything is protected since the loss from full protec-
tion is finite. Figure 5.2 gives the comparison of the incumbent’s levels of
utility in the BPE (which is the best for the principal) and in the Stack-
elberg signaling equilibrium, for w = g5. The BPE is calculated by using
- the uniformity of F, so that 6 is the midpoint of the pooled set, and
determining the length of the pooled set from (a) of Theorem 3.

yielding

5/8 e p
3/8 7 7

—BPE
--—-STACKELBERG

1 1 1 1
174 // 172 \\

172-1/8 V372 172+1/8 J3/2

!
3/4

FIGURE 5.1
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Incumbent's
payoff

-1/64f ———— N

T

-6/64 = e

1 I 1 .
174 // 72 \\ 34 1
172-1/8V32  12-v8 J372

FIGURE 5.2

APPENDIX

Characterization of the Stackelberg Signaling Fquilibrium:
' Proof of Theorem

Some further terminology is useful in the arguments below. Given a
strategy s let M be the induced marginal distribution of x.

A subset § C R will be said to be identified if for M-almost every x € S,
H(0]x) is a measure degenerate at a single point. A subset § will be said to
be pooled if for M-almost every x € S, H(|x) is not such a degenerate
measure. The maximal subsets of identified and pooled values are de-

noted I and P, respectively.
All of the distributions and sets of observed values of x described above

are determined by the strategy s. VWhere it is desirable to make this depen-
dence explicit, we subscript the corresponding value by s, for example,
H,, A,, etc. The first step is to show that no pooled value is attacked, i.e.,

M(PNA)=0.
LemMMA |. There can be no atoms of M in P N A.
Proof. Let x be'such an atom. Then for a nonnull subset T C @, Xis an
atom of s(-|6) for 8 € T. Define
7% = {9 € T|6 > 0 and ¥ < x*(0) — &}
TS = {§ € T|6 > 6 and ¥ > x*(0) + ¢}

For ¢ sufficiently small, at least one of T% and T° must be nonnull.
Without loss of generality, assume it is T4 . Take x > ¥ such thatx — X <e




COMPETITION ON MANY FRONTS 263

i x

FIGURE A.1

and that x is not an atom of M. (This is possible because there are at most
a countable number of atoms.) Then modify s to s’ by replacing the atom
at X with an atom of equal mass at x, for all § € T5. Under the strategy
s’ the increased value of x with positive probability, in the direction of
the optimum, will cause [udG, > [udG,. The value of fo Ta
w(6)ds(x|0)dF (#) will not increase because M (A;)y = M(A;). Thus s’ is a
superior strategy to s. The case in which T2 is nonnull is symmetrically
treated (see Fig. A.1).

LEMMA 2. M(PNA)=0.

Proof. By the above, we know that M is nonatomic on P N A. Assume
that M(P N A) is positive. Consider the joint distribution G(4, x) re-
stricted to x € P N A, denoted by G(8, x). Let H'(|x) be the conditional
distribution of 8, defined from G*, on P N A. Let C¢ = {6, x)e® x (PN
A) || x ~ x*8)| < &}. If, for all & > 0, GI(C*) = M(P N A), then H'(6]x)
would be degenerate at § = x*~!(x) for each x € P N A. This would
contradict the fact that they are pooled values (see Fig. A. 2).

FIGURE A.2
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Thus there exists £ > 0 and n > 0 such that M(P N A) — G{C% > n. It
follows that either there exists subsets T C®and V. C PN A such that
foreach0 € T,, v E V., v>x*#) + ¢, and G (T, x V,) >0, or else
there are T_ and V_ with v < x*(8) — ¢ and G(T- x V_) > 0. Without loss
of generality we can consider the former case. Following a method siritilar
to that used in the preliminary lemma above, replace s by the strategy s’
that assigns a point mass of s(V.|6) at a given ¥ € V. arbitrarily close to
inf, x € V, for every § € T, and such that s'(V, N {x|x > x}|8) = 0. As
above, this improves the efficiency of the strategy s with respect to [udG
while not increasing A because ¥ is already an attacked value and there-
fore not increasing [o [4, wdG. =

We then show that for identified values, the incumbent is choosing the
action that maximizes u(x, ).

LeMMA 3. For M-almost every x € I, H(0|x) is a point mass concen-
trated at 0 = x*~(x).

Proof. Let ¢(x) be the value of § € @ corresponding to the observa-
tion of x € I. Let ® C @ X [ be its graph, that is,

® = {6, 0)|6 = ¢(x), x € I}.

Let X* = {(0, x)|x = x*(0), § € ©}. We want to show that G(P\X*) = 0.

We follow the same procedure as in Lemma 2 above. If G(®\X*) > 0,
then there must be an & > 0 such that G(P\N,(X*)) > 0. We then can find
T contained in either ®_ or ®, and V C [ such that G(T x V) N
(P\N (X *)) > 0 and either (0, x) € (T x V) implies x > x*@) + g or (4, x)
€ T X Vimplies x < x*() — &. Thus there are four possible cases, as T X
V is above or below X* and to the right or left of 6. In any case, a superior
strategy, s, can be found by assigning all the mass in T X V to a single
point x € [ which is selected arbitrarily close to the extreme of V closer to
X* (for example, see Fig. A.3).

This change creates a pooled value, x, such that H.(T|x) = | and
Mq({xh) > 0. - '

HTCO_,x¢EA,,andif TC 6., xE Ay . In either case, however, A, =
Ay and f@ fAJ, wdG, = [¢ fAJ, wdG,y . Thus the change is beneficial because
[fudG is increased. =

We next show in the optimal strategy all unattacked pooled values are
on the margin of being attacked. :

LEMMA 4. For M-almost every x € P,  vdH = 0.

Proof. (1) Assume that there is a nonnull subset V C P with x > x*(g)
for all x € V and such that fvdH(Glx) < 0 for almost every x € V. We can
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find a further nonnull subset V' C V such that JvdH (6]x) < & < 0 for
almost every x € V', Rewrite the last expression as

v-HO®_|x) + v H(®.|]x) < § < 0.

Since x > x*(8) we know that x > x*(@) for all § € ©_. We improve the
strategy s by introducing a small randomization which assigns a point
mass at x*(8) to 8§ € O©_, decreases H(®_|x) slightly for x € V', and
otherwise does not change s. This change improves the efficiency of the
choice of x with respect to fudG and, as its does not cause JvdH = 0to be
violated for any x where it was satisfied under s, it does not increase A or
Jo f4 wdG. Hence s was not optimal.

(2) Now consider the complementary case where JvdH <0 forx e v,

and x < x*(é) forall x € V. As above, let V' be a nonnull subset of V with ‘

JvdH < & <0forall x € V' and let T C O, be such that G(T x V') > 0.

- For arbitrary & > 0, partition V' into Ve and V¢, such that x, > x_ for
x+ € V4, x. € V& and such that M(V2) < &. Then modify the strategy s
by setting, for 8 € T:

s'(Ve]9) = 0

s(ve_le))

S(Ve|8) forx e ve,

5" (x]8) = s(x|6) x <I +

This improves fudG because x*(8) > x for (6. x) € T x V'. For &
sufficiently small and x € Ve, [udH, is still nonpositive, and thus still
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avoids attack. Forv € Ve, fvdH,. < [vdH,. Thus s’ improves [udG and
does not increase the probability of attack for any §. =

Let T/ = {6 € O_|s(1|9) > 0}.
Let T; = {6 € O_|s(P|6) > 0}.

LEMMA 5. There exist 6. € ©_ such that if T; and T; are nonnull,
then § € Ty implies 8 = 8_ and € T; implies 0 = §_.

Proof. If the lemma were false, there would exist nonnull sets Tp C Tz
and T; C T; , and a« > O such that § € Tpand §' € T; imply § < ' — «
almost everywhere.

From the previous lemmas we know that, almost everywhere, for § €
T;, s(-|6) has an atom at x*(8). Moreover there is no other 8 € ® that has
an atom at this value.

Consider the distribution of x given 6 € Tp,

) [TP 5(x|0)dF(6)
w(x|Tp) = TR T)

As 0 € Tp is pooled with positive probability, there is a u nonnull set,
P, of pooled values. By Lemma 4 all pooled values have fvdH = 0,
hence, for all x € P, H(®.|x) > 0. ,

There are now two cases according to whether or not w(P.) > 0, where

P. = P' N {x]x = x*(9), for all 6 € T}.

(see Fig. A.4).

Let us consider first the case where u(Py) > 0. In this instance, G will
assign positive mass to the rectangle R, = Tp X P... '
An improvement in s can be made by assigning some of the mass in R
to X'*, removing the same amount of mass from X * N {(6, x)|6 € T;}, and

“distributing it over R} = T; X P. in such a way that M is unchanged.

Because « is concave in x and u,, > 0 we know that [ [udG is improved,
and at the same time A and f ® f 4 wdG are invariant.

In the case u(P.) = 0, G will assign zero mass to R.. There will exist
6 € T, such that G will assign positive mass to R = Tp X (P’ N {x|x <
x*(6)}) (see Fig. A.5).

As R_ consists almost surely of pooled values, and [vdH = 0 for
all pooled values, G must assign positive mass to the rectangle X =
{6, 0|6 € O, x < x*()}. An improvement can be made, by virtue of
convexxty, by pooling some of the mass in K with values of 8 in T; such
that § > 4. This would allow an increase in x toward X* with positive
probability. =
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On the right of 8 the situation is much the same, and we omit the proof.
Define
T/ =1{6€0.[s()o) > 6}
T; ={6 € 0.|s(P|g) > 6.
LEmMMA 6. There exists 8, such that if T} and T; are nonnull, then
0 €.T} implies 6 = 0, , and 6 € T} implies § = 8, .
Thus we have Fig. A.6.

FIGURE A.5S




268 GREEN AND LAFFONT

FIGURE A.6
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6, 6]

[x*(6.), x*(8.)].

LEMMA 7. G(Tx P) = F(T).

IfG(T x P) < F(T), then either G(T x (x*(64), %)) >0 or G(T X (— =,

x*(6_))) > 0. In either case, the strategy can be improved by moving the
corresponding mass toward T x {x*(.)} or T x {x*(6_)}.

T
P =

We now show that on T, s is nonstochastic and monotonic increasing

over Tp and Tf.

LEMMAS. LetA={6,x)ETXP|6>8,x>x¥0)}and B = {(0, x) €
T X PIB <6,x< x*(G)} Then G(A) = G(B) = 0.

- Proof. Weshow G(A) = 0, as the proof for B is s completely analogous.
IfG(A)>0,then G(A') >0, where A’ = {(6, x) € T X P|g < 8, x > x*(6)}.
This is because fvdH = 0 for all x € P. But then the strategy could be
improved by moving a positive mass in A’ and A downward toward X*, in
such a way as to maintain fvdH = 0 (see Fig. A.7). =

LemMMa 9. On T, s is almost surely nonstochastic and monotonic non-
decreasing over Ty and T} .
Proof. Let us consider 5. If s is stochastic or if s is nonstochastic but

decreasing over the nondegenerate part of the domain, then there exist §
€ T, and X € P and rectangles C; and C, such that

kel

(6, x) € C, implies 6 < § and x > .
0, x) € C, implies 6 > 0 and x < -
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and with G(Cy) and G(C,) > 0. For any & > 0, we can find subrectangles
of Ci and C,, denoted D, and D,, with positive mass and such . that ¢
exceeds their diameters (see Fig. A.8).

- Let these rectangles be given by the products

Dy = [6u, 012] X [x11, x13]

Dy = [0, 0] X [x31, x20).

Leta = (x;p + x))/2 ~ (xp + x21)/2 be the distance between the centers
of D; and D, in their x-coordinate, denoted respectively x, and X7.

x?
t
I
|

FIGURE A.8
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Consider a pair of distributions on D; and D, with equal mass and
dominated by G. Denote them by ¢, and ¢s,. Let G = G — (y; + ).

We consider a modification of the strategy that will be shown to be
beneficial. It involves moving the distribution ¢, downward and ¢, up-
ward, and leaving the residual G unchanged. This modification is now
described in three steps. _

Step 1. Concentrate the distributions ¢, and s, on the segments {(4, x)
€ Dyjx = x;} and {(8, x) € D,|x = x,}, respectively. This will result in a
loss of at most 2y(Dy) - €/2 - &,, where &, = Ssupg.gep, |- Let the
resulting distributions be denoted ;4 and yy; they are just the marginal
distributions of ¢, and s over ©.

Step 2. Translate the resulting distributions downward and upward, re-
spectively, by the distance «. This changes the utility by

[ L e = v + [ 0,52 + Ercn] .

0

Note, however, that x; — x2 = a, so thatforeach £, x; — £ = x, + a — £.
Therefore the change in utility can be written

fxz “:1[(2 40 o = f:, u (8, ,r)leZ(;] dx.

X1

For each x € [x;, x;] the bracketed expression can be bounded above by

Yi(D(02 — O1p)ups.
where ug, = {inf 1 (8, x): 0 € [0y, 62] and x € [xa1, x22)}.

Thus the change in utility from the translations defined in this step is
bounded below by

af (D)6 — Bi2)uy,.

Step 3. Redistribute the mass which has not been shifted to the interval
{611, x2), (B12, x2)] in such a way that its marginal distribution over x
duplicates the marginal distribution of the original D,. Likewise for the
other segment and D,. As in Step 1, since these involve movements of at
most &/2, the loss is bounded by (D) - /2 - &,.

Clearly, as ¢ can be taken arbitrarily small, the gain obtained in Step 2
can be made to outweigh the potential losses in Steps 1 and 3. =
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LEMMA 10. On T; and T}, s is strictly increasing.

Proof.  Suppose, to the contrary, that s is constant, X, over a nonde-
generate subinterval T C T'; . Then s must also be concentrated at x over
a subinterval T} C T} . This strategy can be improved upon following a
method analogous to that used in the last lemma, in Steps 1 and 2:

First observe that if s is optimal then the level of x cannot be advanta-
geously varied.

Thus

fmﬂ; uilx, 6)dF(8) = 0.

Because u,o > 0, we can find a pair of subintervals of equal mass, T; CT;
and T} C T/ such that

lux, 0)] > |udx, 6] foroe 7,6 €T

Then, by changing s to have slightly lower common value of T LU T;‘ the
payoff can be improved. =

Proof of Theorem 1. Condition (1) follows from Lemmas 3,5,6.
Conditions (2), (3) follow from Lemma 10.
To prove (4), we use Lemma 4 to write

o | dF @) + v, jo‘ dF(6lx) =0  forx € P.

From Lemma 9 we know that s is almost surely nonstochastic, and that
F(8|x) is concentrated on two values, 8§ = v~!(x) and § = z~'(x). From
Lemma 10, y and z are increasing. Therefore the two integrals in the last
equation are almost everywhere the densities J(8)/¥(6) and £(§)/7(8).
This completes the proof of (4). .
Part (5) follows from the monotonicity guaranteed in Lemma 9 and the
domains of definition of y and z proven in parts (2) and (3). =
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