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1. Introduction
1.1. Structural models and functional estimation
The objective of this chapter is to analyze functional estimation in structural econometric
models. There exist different approaches to structural inference in econometrics and
our presentation may be viewed as a non parametric extension of the basic example of
structural models, namely the static linear simultaneous equations model (SEM). Let us
consider Y a vector of random endogenous variables and Z a vector of exogenous random
variables. A SEM is characterized by a system

B�Y + C�Z = U (1.1)
where B� and C� are matrices that are functions of an unknown “structural” parameter
θ and E [U |Z] = 0. The reduced form is a multivariate regression model

Y = ΠZ + V (1.2)
where Π is the matrix of ordinary regression coefficients. The relation between reduced
and structural form is, in absence of higher moments restrictions, characterized by:

B�Π + C� = 0. (1.3)
The two essential issues of structural modeling, the identification and the overidenti-

fication problems, follow from the consideration of Equation (1.3). The uniqueness of the
solution in θ for given Π defines the identification problem. The existence of a solution (or
restrictions imposed to Π to guarantee the existence) defines the overidentification ques-
tion. The reduced form parameter Π can be estimated by OLS and if a unique solution in
θ exists for any Π, it provides the Indirect Least Square estimate of θ. If the solution does
not exist for any Π, θ can be estimated by a suitable minimization of B�Π̂ +C� where Π̂
is an estimator of Π.
We address in this chapter the issue of functional extension of this construction. The

data generating process (DGP) is described by a stationary ergodic stochastic process
which generates a sequence of observed realizations of a random vector X.
The structural econometric models considered in this chapter are about the station-

ary distribution of X. This distribution is characterized by its cumulative distribution
function (c.d.f.) F while the functional parameter of interest is an element ϕ of some infi-
nite dimensional Hilbert space. The structural econometric model defines the connection
between ϕ and F under the form of a functional equation:

A(ϕ, F ) = 0. (1.4)
This equation extends Equation (1.3) and the definitions of identification (uniqueness

of this solution) and of overidentification (constraints on F such that a solution exists)
are analogous to the SEM case.
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Estimation is also performed in the same line : F can be estimated by the empirical
distribution of the sample or by a more sophisticated estimator (like kernel smoothing)
belonging to the domain of A and ϕ is estimated by solving (1.4) or, in the presence of
overidentification by a minimization of a suitable norm of A(ϕ, F ) after plugging in the
estimator of F .
This framework may be clarified by some remarks.
1. All the variables are treated as random in our model and this construction seems
to differ from the basic econometric models which are based on a distinction be-
tween exogenous or conditioning variables and endogenous variables. Actually this
distinction may be used in our framework. Let X be decomposed into Y and Z
and F into F� ( |Z = z) the conditional c.d.f. of Y given Z = z, and the marginal
c.d.f. of Z, F�. Then, the exogeneity of Z is tantamount to the conjunction of two
conditions.
Firstly, the solution ϕ of (1.4) only depends on F� ( |Z = z) and ϕ is identified by
the conditional model only. Secondly if F� ( |Z = z) and F� are “variations free” in
a given statistical model defined by a family of sampling distributions (intuitively
no restrictions link F� ( |Z = z) and F�), no information on F� ( |Z = z) (and then
on ϕ) is lost by neglecting the estimation of F�. This definition fully encompasses
the usual definition of exogeneity in terms of cuts (see Engle, Hendry and Richard
(1983), Florens and Mouchart (1985)). Extension of that approach to sequential
models and then to sequential or weak exogeneity is straightforward.

2. Our construction does not explicitly involve residuals or other unobservable vari-
ables. As it will be illustrated in the examples below, most of the structural econo-
metric models are formalized by a relationship between observable and unobservable
random elements. A first step in the analysis of these models is to express the re-
lationship between the functional parameters of interest and the DGP, or, in our
terminology, to specify the relation A(ϕ, F ) = 0. We start our presentation at the
second step of this approach and our analysis is devoted to the study of this equation
and to its use for estimation.

3. The overidentification is handled by extending the definition of the parameter in
order to estimate overidentified models. Even if A(ϕ, F ) = 0 does not have a so-
lution for a given F , the parameter ϕ is still defined as the minimum of a norm of
A(ϕ,F ). Then ϕ can be estimated from an estimation of F which does not satisfy
the overidentification constraints. This approach extends the original Generalized
Method of Moments (GMM) treatment of overidentification. Another way to take
into account overidentification constraints consists in estimating F under these con-
straints (the estimator of F is the nearest distribution to the empirical distribution
for which there exists a solution, ϕ, of A(ϕ, F ) = 0). This method extends the new
approach to GMM called the empirical likelihood analysis (see Owen (2001) and
references therein). In this chapter, we remain true to the first approach: actually
if the equation A(ϕ,F ) = 0 has no solution it will be replaced by the first order
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condition of the minimization of a norm of A(ϕ,F ). In that case, this first order
condition defines a functional equation usually still denoted A(ϕ, F ) = 0.

1.2. Notation
In this chapter, X is a random element of a finite or infinite dimensional space X . In most
of the examples, X is a finite dimensional euclidean space (X ⊂ R�) and the distribution
on X, denoted F is assumed to belong to a set F . If F is absolutely continuous, its density
is denoted by f . Usually, X is decomposed into several components, X = (Y, Z,W ) ∈
R� × R� × R�(p + q + r = m) and marginal c.d.f. or probability density function (p.d.f.)
are denoted by F� , F�, F� . and f� , f�, f� respectively. Conditional c.d.f. are denoted
by F� (.|Z = z) or F� (.|z) and conditional density by f� (.|Z = z) or f� (.|z) . The sample
may be an i.i.d. sample of X (denoted in that case (x�)���	


	�) or weakly dependent time
series sample denoted (x�)���	


	 in the dynamic case.
The paper focuses on the estimation of an infinite dimensional parameter denoted

by ϕ, which is an element of a Hilbert space H (mathematical concepts are recalled in
Section 2). In some particular cases, finite dimensional parameters are considered and
this feature is underlined by the notation θ ∈ Θ ⊂ R� for this particular case.
The structural model is expressed by an operator A from H×F into an Hilbert spaceE and defines the equation A(ϕ,F ) = 0. The (possibly local) solution of this equation is

denoted by:
ϕ = Ψ(F ). (1.5)

For statistical discussions, a specific notation for the true value is helpful and F� will
denote the true c.d.f. (associated with the density f� and with true parameter ϕ� (or θ�)).
The estimators of the c.d.f. will be denoted by F� in an i.i.d. setting or F in a dynamic
environment.
The operator A may take various forms. Particular cases are linear operators with

respect to F or to ϕ. The first case will be illustrated in the GMM example but most
of the paper will be devoted to the study of linear operator relatively to ϕ. In that case,
equation A(ϕ, F ) = 0 can be rewritten :

A(ϕ, F ) = Kϕ− r = 0 (1.6)
where K is a linear operator from H to E depending on F and r is an element of E and
is also a function of F . The properties of K are essential and we will present different
examples of integral or differential operators. More generally, A may be non linear either
with respect to F or to ϕ but, as usual in functional analysis, most of the analysis of
non linear operators may be done locally (around the true value typically) and reduces to
the linear case. Game theoretic model or surplus estimation give examples of non linear
models.
The problem of solving Equation (1.4) enters in the class of inverse problems. An

inverse problem consists into the resolution of an equation where the elements of the
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equations are imperfectly known. In the linear case, the equation is Kϕ = r and F is not
exactly known but only estimated. Then, r is also imperfectly known. The econometric
situation is more complex than most of the inverse problems studied in the statistical liter-
ature because K is also only imperfectly known. According to the classification proposed
by Vapnik (1998), the stochastic inverse problems of interest in this chapter are more
often than not characterized by equations with both the operator and the right-hand side
approximately defined. Inverse problems are said to be well posed if a unique solution
exists and depends continuously of the imperfectly known elements of the equation. In
our notation, this means that Ψ in (1.5) exists as a function of F and is continuous. Then,
if F is replaced by F�, the solution ϕ� of A(ϕ�, F�) = 0 exists and the convergence of F�

to F� implies by continuity the convergence of ϕ� to ϕ�. Unfortunately a large class of
inverse problems relevant to econometric applications are not well posed (they are then
said to be ill-posed in the Hadamard sense, see e.g. Kress (1999), Vapnik (1998)).
1.3. Examples
This section presents various examples of inverse problems motivated by structural econo-
metric models. We will start by the GMM example, which is the most familiar to econome-
tricians. Subsequently, we present several examples of linear (w.r.t. ϕ) inverse problems.
The last two examples are devoted to non linear inverse problems.
1.3.1. Generalized Method of Moments (GMM)
Let us assume that X is m dimensional and the parameter of interest θ is also finite
dimensional (θ ∈ Θ ⊂ R�). We consider a function

h : R� ×Θ→ E (1.7)
and the equation connecting θ and F is defined by:

A(θ, F ) = E�(h(X, θ)) = 0 (1.8)
A particular case is given by h(X, θ) = µ(X) − θ where θ is exactly the expectation

of a transformation µ of the data. More generally, θ may be replaced by an infinite
dimensional parameter ϕ but we do not consider here this extension.
The GMM method was introduced by Hansen (1982) and has received numerous ex-

tensions (see Ai and Chen (1999) for the case of an infinite dimensional parameter). GMM
consists in estimating θ by solving an inverse problem linear in F but non linear in θ. It
is usually assumed that θ is identified i.e. that θ is uniquely characterized by Equation
(1.8). Econometric specifications are generally overidentified and a solution to (1.8) only
exists for some particular F , including the true DGP F�, under the hypothesis of correct
specification of the model. The c.d.f F is estimated by the empirical distribution and the
equation (1.8) becomes:

1
n

�∑
���

h(x�, θ) = 0, (1.9)
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which has no solution in general. Overidentification is treated by an extension of the
definition of θ as follows:

θ = argmin
�
‖BE�(h)‖� (1.10)

where B is a linear operator in E and ‖‖ denotes the norm in E . This definition coincides
with (1.8) if F satisfies the overidentification constraints. Following Equation (1.10), the
estimator is:

θ̂� = argmin
�
‖B�

(
1
n

�∑
���

h(x�, θ)
)
‖� (1.11)

where B� is a sequence of operators converging to B. If the number of moment conditions
is finite, B� and B are square matrices.
As θ is finite dimensional, the inverse problem generated by the first order conditions

of (1.10) or (1.11) is well posed and consistency of the estimators follows from standard
regularity conditions. As it will be illustrated in Section 6, an ill-posed inverse problem
arises if the number of moment conditions is infinite and if optimal GMM is used. In finite
dimension, optimal GMM is obtained for a specific weighting matrix, B = Σ�

�
� , where Σ

is the asymptotic variance of √n ( �
�
∑�

���h(x�, θ)) (Σ = V ar(h) in i.i.d. sampling). In
the general case, optimal GMM requires the minimization of ‖g‖� where

Σ �
�g = E�(h) (1.12)

The function g is then the solution of a linear inverse problem. If the dimension of h is not
finite, Equation (1.12) defines an ill-posed inverse problem, which requires a regularization
scheme (see Section 3)
1.3.2. Instrumental variables
Instrumental regression is a possible strategy to perform non parametric estimation when
explanatory variables are endogenous. Let us decompose X into (Y,X,W ) where Y ∈ R,
Z ∈ R�, W ∈ R�. The subvectors Z and W may have elements in common. The
econometrician starts with a relation

Y = ϕ(Z) + U (1.13)
where U is a random term which does not satisfy E(U |Z) = 0. This assumption is
replaced by the more general hypothesis

E(U |W ) = 0 (1.14)
and W is called the set of instrumental variables. Condition (1.14) defines ϕ as the
solution of an integral equation. In terms of density, (1.14) means that

A(ϕ, F ) =
∫

ϕ(z)f�(z|W = w)dz − ∫
yf� (y|W = w)dy = 0 (1.15)
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Using previous notation, the first part of (1.15) is denoted Kϕ and the second part is
equal to r.
This expression is actually linear in ϕ and in F (after multiplication by f�(w)) but the

linearity with respect to the distribution does not play any role. As we will see later, this
problem is essentially nonlinear in F because, even if the denominator can be eliminated in
(1.15), the treatment of overidentification and of regularization will necessarily reintroduce
the denominator.
Instrumental regression introduced in (1.15) can be generalized to local instrumental

regression and to generalized local instrumental regression. These extensions are relevant
in more complex models than (1.13) where in particular the additive form is not preserved
(see for such a treatment, Florens, Heckman, Meghir, and Vytlacil (2002)). For example,
consider the equation

Y = ϕ(Z) + Zε+ U (1.16)
where Z is scalar and ε is a random unobservable heterogeneity component. It can be
proved that, under a set of identification assumptions, ϕ satisfies the equations :

A�(ϕ,F ) = E�
(∂ϕ(Z)

∂Z |W = w
)−

∂
∂W�

E(Y |W = w)
∂

∂W�
E(Z|W = w)

= 0 (1.17)

for any j = 1, ..., r. This equation, linear with respect to ϕ, combines integral and differ-
ential operators.
Instrumental variable estimation and its local extension define ill-posed inverse prob-

lems as it will be seen in Section 5.

1.3.3. Deconvolution
Another classical example of ill-posed inverse problem is given by the deconvolution prob-
lem. Let us assume that X,Y, Z be three scalar random elements such that

Y = X + Z (1.18)
Only Y is observable. The two components X and Z are independent. The density of Z
(the error term) is known and denoted g. The parameter of interest is the density ϕ of
X. Then ϕ is solution of:

A(ϕ, F ) =
∫

ϕ(y)g(x− y)dy − f(x) = 0
(1.19)

= Kϕ− r
This example is comparable to the instrumental variables case but only the r.h.s. r = f
is unknown whereas the operator K is given.
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1.3.4. Regression with many regressors
This example constitutes also a case of linear ill-posed inverse problems. Let us consider
a regression model where the regressors are indexed by τ belonging to an infinite index
set provided with a measure Π. The model says:

Y =
∫

Z(τ)ϕ(τ )Π(dτ ) + U (1.20)

where E(U |(Z(τ ))�) = 0 and ϕ is the parameter of interest and is infinite dimensional.
Examples of regression with many regressors are now common in macroeconomics (see
Stock and Watson (2002) or Forni and Reichlin (1998) for two presentations of this topic).
Let us assume that Y and (Z(τ ))� are observable. Various treatments of (1.20) can

be done and we just consider the following analysis. The conditional moment equation
E(U |(Z(τ))�) = 0 implies an infinite number of conditions for any τ which implies:

E(Z(τ)U) = 0, ∀τ
or equivalently ∫

E�(Z(τ )Z(ρ))ϕ(ρ)Π(dρ)−E�(Y Z(τ )) = 0, ∀τ (1.21)

This equation generalizes to an infinite number of regressors the usual normal equa-
tions of the linear regression. The inverse problem defined in (1.21) is linear in both F and
ϕ but it is ill posed. An intuitive argument to illustrate this issue is to consider the estima-
tion using a finite number of observations of the second moment operator E�(Z(τ)Z(ρ))
which is infinite dimensional. The resulting multicolinearity problem is solved by a ridge
regression. The “infinite matrix” E�(Z(.)Z(.)) is replaced by αI + E�(Z(.)Z(.)) where
I is the identity and α a positive number or by a reduction of the set of regressors to the
first principal components. These two solutions are particular examples of regularization
methods (namely the Tikhonov and the spectral cut-off regularizations), which will be
introduced in Section 3.

1.3.5. Additive models
The nature of the integral equations generated by this example and by the next one is very
different from that of the three previous examples. We consider an additive regression
model:

Y = ϕ(Z) + ψ(W ) + U (1.22)
where E(U |Z,W ) = 0 and X = (Y, Z,W ) is the observable element. The parameters of
interest are the two functions ϕ and ψ. The approach we propose here is the backfitting
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approach (see Hastie and Tibshirani (1990)). Other treatments of additive models have
been considered in the literature (see Pagan and Ullah (1999)). Equation (1.22) implies

E�(Y |Z = z) = ϕ(z) + E�(ψ(W )|Z = z)

E�(Y |W = w) = E�(ϕ(Z)|W = w) + ψ(w) (1.23)
and by substitution

ϕ(z)− E�(E�(ϕ(Z)|W )|Z = z)
= E�(Y |Z = z)− E�(E�(Y |W )|Z = z)

(1.24)

or, in our notations:
(I −K)ϕ = r

where K = E�(E�( . |W )|Z).
An analogous equation characterizes ψ. Actually even if (1.22) is not well specified,

these equations provide the best approximation of the regression of Y given Z and W by
an additive form. Equation (1.24) is a linear integral equation and even if this inverse
problem is ill-posed because K is not one-to-one (ϕ is only determined up to a constant
term), the solution is still continuous and therefore the difficulty is not as important as
that of the previous examples.

1.3.6. Measurement-error models or non parametric analysis of panel data
We denote by η an unobservable random variable for which two measurements are available
Y� and Y�. These measurements are affected by a bias dependent of observable variables
Z� and Z�. More formally:


Y� = η + ϕ(Z�) + U� E(U�|η, Z�, Z�) = 0
Y� = η + ϕ(Z�) + U� E(U�|η, Z�, Z�) = 0

(1.25)

An i.i.d. sample (y��, y��, η�, z��, z��) is drawn but the η� are unobservable. Equivalently
this model may be seen as a two period panel data with individual effects η�.
The parameter of interest is the “bias function” ϕ, identical for the two observations.

In the measurement context, it is natural to assume that the distribution of the observ-
able is independent of the order of the observations, or, equivalently (Y�, Z�, Y�, Z�) is
distributed as (Y�, Z�, Y�, Z�). This assumption is not relevant in a dynamic context.
The model is transformed in order to eliminate the unobservable variable by difference:

Y = ϕ(Z�)− ϕ(Z�) + U (1.26)
where Y = Y�− Y�, U = U�− U�, and E(U |Z�, Z�) = 0.
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This model is similar to an additive model except for the symmetry between the
variables and the fact that, with the notation of (1.22), ϕ and ψ are identical. An
application of this model may be found in Gaspar and Florens (1998) where y�� and y��
are two measurements of the level of the ocean in location i by a satellite radar altimeter,
η� is the true level and ϕ is the “sea state bias” depending on the waves’ height and the
wind speed (Z�� and Z�� are both two dimensional).
The model is treated through the relation:

E(Y |Z� = z�) = ϕ(z�)−E(ϕ(Z�)|Z� = z�) (1.27)
which defines an integral equation Kϕ = r. The exchangeable property between the
variables implies that conditioning on Z� gives the same equation.

1.3.7. Game theoretic model
This example and the next one present economic models formalized by non linear inverse
problems. The analysis of non linear functional equations raises numerous questions:
uniqueness and existence of the solution, asymptotic properties of the estimator, imple-
mentation of the estimation procedure and numerical computation of the solution.
Most of these questions are usually solved locally by a linear approximation of the

non linear problem deduced from a suitable concept of derivative. A strong concept of
derivation (typically Frechet derivative) is needed to deal with the implicit form of the
model which requires the use of the Implicit Function theorem.
The first example of nonlinear inverse problems follows from the strategic behavior of

the players in a game. Let us assume that for each game, each player receives a random
signal or type denoted by ξ and plays an actionX. The signal is generated by a probability
described by its c.d.f. ϕ and the players all adopt a strategy σ dependent on ϕ which
associates X with ξ ,i.e.

X = σ�(ξ) (1.28)
The strategy σ� is determined as an equilibrium of the game (e.g. Nash equilibrium) or
by an approximation of the equilibrium (bounded rationality behavior). The signal ξ is a
private knowledge for the player but is unobservable for the econometrician and the c.d.f.
ϕ is common knowledge for the players but is unknown for the statistician. The strategy
σ� is determined from the rule of the game and by the assumptions on the behavior of the
players. The essential feature of the game theoretic model from a statistical viewpoint is
that the relation between the unobservable and the observable variables depends on the
distribution of the unobservable component. The parameter of interest is the c.d.f. ϕ of
the signals.
Let us restrict our attention to cases where ξ and X are scalar and where σ� is strictly

increasing. Then the c.d.f. F of the observable X is connected with ϕ by:
A(ϕ, F ) = F ◦ σ�− ϕ = 0 (1.29)
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If the signals are i.i.d. across the different players and different games, F can be
estimated by a smooth transformation of the empirical distribution and Equation (1.29)
is solved in ϕ. The complexity of this relation can be illustrated by the auction model.
In the private value first price auction model, ξ is the value of the object and X the bid.
If the number of bidders is N + 1 the strategy function is equal to:

X = ξ −
∫ �

�
ϕ�(u)du
ϕ�(ξ) (1.30)

where [ξ, ξ̄] is the support of ξ and ϕ�(u) = [ϕ(u)]� is the c.d.f. of the maximum private
value among N players.
Model (1.29) may be extended to a non iid setting (depending on exogenous variables)

or to the case where σ� is partially unknown. The analysis of this model has been done
by Guerre, Perrigne and Vuong (2000) in a non parametric context. The framework of
inverse problem is used by Florens, Protopopescu and Richard (1997).

1.3.8. Solution of a differential equation
In several models like the analysis of the consumer surplus, the function of interest is
solution of a differential equation depending on the data generating process.
Consider for example a class of problem where X = (Y,Z,W ) ∈ R� is i.i.d., F is the

c.d.f. of X and the parameter ϕ verifies:
d
dzϕ(z) = m�(z, ϕ(z)) (1.31)

when m� is a regular function depending on F . A first example is
m�(z, w) = E�(Y |Z = z,W = w)) (1.32)

but more complex examples may be constructed in order to take into account the en-
dogeneity of one or two variables. For example Z may be endogenous and m� may be
defined by:

E(Y |W� = w�,W� = w�) = E(m�(Z,W�)|W� = w�,W� = w�) (1.33)
Economic applications can be found in Hausman (1981, 1985) and Hausman and Newey
(1995) and a theoretical treatment of these two problems is given by Vanhems (2000) and
Loubes and Vanhems (2001).

1.4. Organization of the chapter
Section 2 reviews the basic definitions and properties of operators in Hilbert spaces. The
focus is on compact operators that have the advantage to have a discrete spectrum. We
recall some laws of large numbers and central limit theorems for Hilbert valued random
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elements. Finally, we discuss how to estimate the spectrum of a compact operator and
how to estimate the operators themselves.
Section 3 is devoted to solving integral equation of the first kind. As these equations

are ill-posed, the solution needs to be regularized (or smoothed). We investigate the
properties of the regularized solutions for different types of regularizations.
In Section 4, we show under suitable assumptions, the consistency and asymptotic

normality of regularized solutions.
Section 5 detail three examples: the infinite number of regressors, the deconvolution

and the instrumental variables estimation.
Section 6 has two parts. First, it recalls the main results relative to reproducing

kernels. Reproducing kernel theory is closely related to that of the integral equations
of the first kind. Second, we explain the extension of GMM to a continuum of moment
conditions and how the GMM objective function reduces to the norm of the moment
functions in a specific reproducing kernel Hilbert space. Several examples are provided.
Section 7 tackles the problem of solving integral equation of the second kind. A typical

example of such a problem is the additive model introduced earlier.

2. Spaces and Operators
The purpose of this section is to introduce terminology and to state the main properties
of operators in Hilbert spaces which are used in our econometric applications. Most of
these results can be found in Debnath and Mikusinsky (1999) and Kress (1999).

2.1. Hilbert spaces
We start by recalling some of the basic concepts of analysis. In the sequel, C denotes the
set of complex numbers. A vector space equipped by a norm is called a normed space.
A sequence (ϕ�) of elements in a normed space is called a Cauchy sequence if for every
ε > 0 there exists an integer N (ε) such that

‖ϕ� − ϕ�‖ < ε
for all n, m ≥ N (ε) , i.e, if lim�	��� ‖ϕ� − ϕ�‖ = 0. A space S is complete if every
Cauchy sequence converges to an element in S. A complete normed vector space is called
a Banach space.
Let (E, E ,Π) be a probability space and

L�
� (E, E,Π) =

{
f : E → C measurable s.t. ‖f‖ ≡ (∫ |f |� dΠ)���

<∞
}

, p ≥ 1
L�
� (E, E ,Π) is a Banach space. If we only consider functions valued in R this space is
still a Banach space and is denoted in that case by L� (we drop the subscript C). In
the sequel, we also use the following notation. If E is a subset of R�, then the σ−fieldE will always be the Borel σ−field and will be omitted in the notation L� (R�,Π). If Π
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has a density π with respect to Lebesgue measure, Π will be replaced by π. If the pdf is
uniform, it will be omitted in the notation.
Definition 2.1 (Inner product). Let H be a complex vector space. A mapping 〈, 〉 :
H × H → C is called an inner product in H if for any ϕ, ψ, ξ ∈ H and α, β ∈ C the
following conditions are satisfied:

(a) 〈ϕ,ψ〉 = 〈ψ, ϕ〉 (the bar denotes the complex conjugate),
(b) 〈αϕ+ βψ, ξ〉 = α 〈ϕ, ξ〉+ β 〈ψ, ξ〉 ,
(c) 〈ϕ, ϕ〉 ≥ 0 and 〈ϕ, ϕ〉 = 0⇐⇒ ϕ = 0.
A vector space equipped by an inner product is called an inner product space.
Example. The space C� of ordered N -tuples x = (x�, ..., x�) of complex numbers,with the inner product defined by

〈x, y〉 = �∑
���

x�y�

is an inner product space
Example. The space l� of all sequences (x�, x�, ...) of complex numbers such that∑���� |x�|� < ∞ with the inner product defined by 〈x, y〉 =∑����x�y� for x = (x�, x�, ...)

and y = (y�, y�, ...) is an infinite dimensional inner product space.
Example. The space L�� (E, E,Π) associated with the inner product defined by

〈ϕ, ψ〉 = ∫
ϕψdΠ

is an inner product space. On the other hand, L�� (E, E ,Π) is not a inner product space
if p �= 2.
An inner product satisfies the Cauchy-Schwartz inequality, that is,

|〈ϕ, ψ〉|� ≤ 〈ϕ, ϕ〉 〈ψ, ψ〉
for all ϕ, ψ ∈ H. Remark that 〈ϕ, ϕ〉 is real because 〈ϕ, ϕ〉 = 〈ϕ, ϕ〉. It actually defines a
norm ‖ϕ‖ = 〈ϕ,ϕ〉�	� (this is the norm induced by the inner product 〈, 〉).
Definition 2.2 (Hilbert space). If an inner product space is complete in the induced
norm, it is called a Hilbert space.
A standard theorem in functional analysis guarantees that every inner product space

H can be completed to form a Hilbert space H. Such a Hilbert space is said to be the
completion of H.

Example. C�, l� and L� (R,Π) are Hilbert spaces.
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Example. (Sobolev space) Let Ω = [a, b] be an interval of R. Denote by H̃� (Ω),
m = 1, 2, ..., the space of all complex-valued functions ϕ ∈ C� such that for all |l| ≤ m,
ϕ��� = ∂ �ϕ (τ ) /∂τ � ∈ L� (Ω) . The inner product on H̃� (Ω) is

〈ϕ,ψ〉 = ∫ �

�
�∑
��� ϕ

��� (τ)ψ ��� (τ )dτ .

H̃� (Ω) is an inner product space but it is not a Hilbert space because it is not complete.
The completion of H̃� (Ω) , denoted H� (Ω), is a Hilbert space.
Definition 2.3 (Convergence). A sequence (ϕ�) of vectors in an inner product space
H is called strongly convergent to a vector ϕ ∈ H if ‖ϕ� − ϕ‖ → 0 as n→∞.
Remark that if (ϕ�) converges strongly to ϕ in H then 〈ϕ�, ψ〉 → 〈ϕ, ψ〉 as n → ∞,

for every ψ ∈ H. The converse is false.
Definition 2.4. Let H be an inner product space. A sequence (ϕ�) of nonzero vectors
in H is called an orthogonal sequence if 〈ϕ�, ϕ�〉 = 0 for n �= m. If in addition ‖ϕ�‖ = 1
for all n, it is called orthonormal sequence.

Example. Let π (x) be the pdf of a normal with mean µ and variance σ�. Denote by
φ� the Hermite polynomials of degree j:

φ� (x) = (−1)� �
�	
�

�

π . (2.1)
The functions φ� (x) form an orthogonal system in L� (R, π) .
Any sequence of vectors (ψ�) in an inner product space that is linearly independent,

i.e.,
�∑
���

α�ψ� = 0⇒ α� = 0 ∀j = 1, 2, ...
can be transformed into an orthonormal sequence by the method called Gram-Schmidt
orthonormalization process. This process consists in the following steps. Given (ψ�),
define a sequence (ϕ�) inductively as

ϕ� = ψ�‖ψ�‖ ,
ϕ� = ψ�− 〈ψ�, ϕ�〉ϕ�‖ψ�− 〈ψ�, ϕ�〉ϕ�‖

...
ϕ� = ψ� −∑������ 〈ψ�, ϕ�〉ϕ�∥∥ψ� −∑������ 〈ψ�, ϕ�〉ϕ�∥∥ .

As a result, (ϕ�) is orthonormal and any linear combinations of vectors ϕ�, ..., ϕ� is also
a linear combinations of ψ�, ..., ψ� and vice versa.
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Theorem 2.5 (Pythagorean formula). If ϕ�, ..., ϕ� are orthogonal vectors in an inner
product space, then ∥∥∥∥∥

�∑
���

ϕ�
∥∥∥∥∥
�

=
�∑
���

∥∥ϕ�∥∥� .
From the Pythagorean formula, it can be seen that the α� that minimize∥∥∥∥∥ϕ−

�∑
���

α�ϕ�
∥∥∥∥∥

are such that α� = 〈ϕ, ϕ�〉 . Moreover
�∑
���

∣∣〈ϕ, ϕ�〉∣∣� ≤ ‖ϕ‖� . (2.2)

Hence the series ∑����
∣∣〈ϕ, ϕ�〉∣∣� converges for every ϕ ∈ H. The expansion

ϕ =
�∑
���

〈ϕ,ϕ�〉ϕ� (2.3)

is called a generalized Fourier series of ϕ. In general, we do not know whether the series
in (2.3) is convergent. Below we give a sufficient condition for convergence.
Definition 2.6 (Complete orthonormal sequence ). An orthonormal sequence (ϕ�)
in an inner product space H is said to be complete if for every ϕ ∈ H, we have

ϕ =
�∑
���

〈ϕ,ϕ�〉ϕ�
where the equality means

lim���

∥∥∥∥∥ϕ−
�∑
���

〈ϕ, ϕ�〉ϕ�
∥∥∥∥∥ = 0

where ‖.‖ is the norm in H.
A complete orthonormal sequence (ϕ�) in an inner product space H is an orthonormal

basis in H, that is every ϕ ∈ H has a unique representation ϕ =∑����α�ϕ� where α� ∈ C.
If (ϕ�) is a complete orthonormal sequence in an inner product space H then the set

span {ϕ�, ϕ�, ...} =
{ �∑

���
α�ϕ� : ∀n ∈ N, ∀α�, ..., α� ∈ C

}

is dense in H.
14



Theorem 2.7. An orthonormal sequence (ϕ�) in a Hilbert space H is complete if and
only if 〈ϕ, ϕ�〉 = 0 for all j = 1, 2, ... implies ϕ = 0.
Theorem 2.8 (Parseval’s formula). An orthonormal sequence (ϕ�) in a Hilbert spaceH is complete if and only if

‖ϕ‖� = �∑
���

∣∣〈ϕ,ϕ�〉∣∣� (2.4)

for every ϕ ∈ H.
Definition 2.9 (Separable space). A Hilbert space is called separable if it contains a
complete orthonormal sequence.

Example. A complete orthonormal sequence in L� ([−π, π]) is given by

φ� (x) = e��
√2π , j = ...,−1, 0, 1, ...
Hence, the space L� ([−π, π]) is separable.
Theorem 2.10. Every separable Hilbert space contains a countable dense subset.

2.2. Definitions and basic properties of operators
In the sequel, we denote K : H → E the operator that maps a Hilbert space H (with
norm ‖.‖�) into a Hilbert space E (with norm ‖.‖�).
Definition 2.11. An operator K : H → E is called linear if

K (αϕ+ βψ) = αKϕ+ βKψ
for all ϕ, ψ ∈ H and all α, β ∈ C.
Definition 2.12. (i) The null space ofK : H → E is the setN (K) = {ϕ ∈ H : Kϕ = 0} .

(ii) The range of K : H → E is the set R(K) = {ψ ∈ E : ψ = Kϕ for some ϕ ∈ H} .
(iii) The domain ofK : H→ E is the subset ofH denoted D(K) on which K is defined.
(iv) An operator is called finite dimensional if its range is of finite dimension.

Theorem 2.13. A linear operator is continuous if it is continuous at one element.
Definition 2.14. A linear operatorK : H→ E is called bounded if there exists a positive
number C such that

‖Kϕ‖� ≤ C ‖ϕ‖�
for all ϕ ∈ H.
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Definition 2.15. The norm of a bounded operator K is defined as
‖K‖ ≡ sup�����‖Kϕ‖�

Theorem 2.16. A linear operator is continuous if and only if it is bounded.
Example. The identity operator defined by Iϕ = ϕ for all ϕ ∈ H is bounded with‖I‖ = 1.
Example. Consider the differential operator:

(Dϕ) (x) = dϕ (τ )
dτ = ϕ� (τ )

defined on the spaceE� = {ϕ ∈ L� ([−π, π]) : ϕ� ∈ L� ([−π, π])} with norm ‖ϕ‖ =√∫ 	
�	 |f (τ)|� dτ.

For ϕ� (τ) = sin jτ , j = 1, 2, ..., we have ∥∥ϕ�∥∥ =√∫ 	
�	 |sin (jτ )|� dτ = √π and ∥∥Dϕ�∥∥ =√∫ 	

�	 |j cos (jτ )|� dτ = j√π. Therefore ∥∥Dϕ�∥∥ = j ∥∥ϕ�∥∥ proving that the differential
operator is not bounded.
Theorem 2.17. Each linear operator K from a finite dimensional normed space H into
a normed space E is bounded.
An important class of linear operators are valued in C and they are characterized by

Riesz theorem. From (2.2), we know that for any fixed vector g in an inner product space
H, the formula G (ϕ) = 〈ϕ, g〉 defines a bounded linear functional on H. It turns out that
if H is a Hilbert space, then every bounded linear functional is of this form.
Theorem 2.18 (Riesz). Let H be a Hilbert space. Then for each bounded linear func-
tion G : H→ C there exists a unique element g ∈ H such that

G (ϕ) = 〈ϕ, g〉
for all ϕ ∈ H. The norms of the element g and the linear function F coincide

‖g‖� = ‖G‖
where ‖.‖� is the norm in H and ‖.‖ is the operator norm.
Definition 2.19 (Hilbert space isomorphism). A Hilbert space H� is said to be iso-
metrically isomorphic (congruent) to a Hilbert space H� if there exists a one-to-one linear
mapping J from H� to H� such that

〈J (ϕ) , J (ψ)〉�� = 〈ϕ, ψ〉��

for all ϕ, ψ ∈ H�. Such a mapping J is called a Hilbert space isomorphism (or congruence)
from H� to H�.
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The terminology “congruence” is used by Parzen (1959, 1970).
Theorem 2.20. Let H be a separable Hilbert space.

(a) If H is infinite dimensional, then it is isometrically isomorphic to l�.
(b) If H has a dimension N , then it is isometrically isomorphic to C� .
A consequence of Theorem 2.20 is that two separable Hilbert spaces of same dimensions

(finite or infinite) are isometrically isomorphic.
Theorem 2.21. Let H and E be Hilbert spaces and let K : H → E be a bounded op-
erator. Then there exists a uniquely determined linear operator K � : E → H with the
property

〈Kϕ,ψ〉� = 〈ϕ,K �ψ〉�
for all ϕ ∈ H and ψ ∈ E. Moreover the operator K � is bounded and ‖K‖ = ‖K �‖ . K � is
called the adjoint operator of K.
Riesz Theorem 2.18 implies that, in Hilbert spaces, the adjoint of a bounded operator

always exists.
Example. An important kind of operator is the integral operator. LetH = L�� (R�, π)

and E =L�� (R�, ρ) where π and ρ are pdf. The integral operator K : H→ E is defined as
Kϕ (τ) =

∫
k (τ , s)ϕ (s) π (s) ds. (2.5)

The function k is called kernel of the operator. If k satisfies∫ ∫ |k (τ , s)|�π (s) ρ (τ) dsdτ <∞ (2.6)

(k is said to be a L�−kernel) then K is a bounded operator and

‖K‖ ≤
√∫ ∫ |k (τ , s)|�π (s) ρ (τ) dsdτ .

Indeed for any ϕ ∈ H, we have
‖Kϕ‖�� =

∫ ∣∣∣∣
∫

k (τ , s)ϕ (s) π (s) ds
∣∣∣∣
�
ρ (τ ) dτ

=
∫ |〈k (τ , .) , ϕ (.)〉�|� ρ (τ) dτ

≤ ∫ ‖k (τ , .)‖�� ‖ϕ‖�� ρ (τ ) dτ
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by Cauchy-Schwarz inequality. Hence we have

‖Kϕ‖�� ≤ ‖ϕ‖�� ∫ ‖k (τ , .)‖�� ρ (τ ) dτ
= ‖ϕ‖�� ∫ ∫ |k (τ , s)|�π (s) ρ (τ ) dsdτ .

The upperbound for ‖K‖ follows.
The adjoint K � of the operator K is also an integral operator

K �ψ (s) =
∫

k� (s, τ )ψ (τ) ρ (τ) dτ

with k� (s, τ) = k (τ , s). Indeed, we have

〈Kϕ,ψ〉� =
∫
(Kϕ) (τ)ψ (τ)ρ (τ) dτ

=
∫ (∫

k (τ , s)ϕ (s)π (s) ds
)
ψ (τ )ρ (τ) dτ

=
∫

ϕ (s)
(∫

k (τ , s)ψ (τ)ρ (τ )
)
π (s) ds

=
∫

ϕ (s)
(∫

k� (s, τ)ψ (τ ) ρ (τ )
)
π (s) ds

= 〈ϕ,K �ψ〉� .
Definition 2.22 (Self-adjoint). If K = K � then K is called self-adjoint (or Hermitian).
Remark that if K is a self-adjoint integral operator then k (s, τ ) = k (τ , s).

Theorem 2.23. Let K : H → H be a self-adjoint operator then
‖K‖ = sup

�����

∣∣〈Kϕ,ϕ〉�∣∣ .
Definition 2.24 (Positive operator). An operator K : H→ H is called positive if it
is self-adjoint and 〈Kϕ,ϕ〉� ≥ 0.
Definition 2.25. A sequence (K�) of operators K� : H → E is called pointwise conver-
gent if for every ϕ ∈ H, the sequence K�ϕ converges in ε. A sequence (K�) of bounded
operators converges in norm to a bounded operator K if ‖K� −K‖ → 0 as n→∞.
Definition 2.26 (Compact operator). A linear operator K : H → E is called a com-
pact operator if for every bounded sequence (ϕ�) in H, the sequence (Kϕ�) contains a
convergent subsequence in E .
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Theorem 2.27. Compact linear operators are bounded.
Not every bounded operator is compact. An example is given by the identity operator

on an infinite dimensional space H. Consider an orthonormal sequence (e�) in H. Then
the sequence Ie� = e� does not contain a convergent subsequence.
Theorem 2.28. Finite dimensional operators are compact.
Theorem 2.29. Let the sequence K� : H → E of compact linear operators that are norm
convergent to a linear operator K : H → E , i.e., ‖K� −K‖ → 0 as n → ∞ then K is
compact. Moreover, every compact operator is the limit of a sequence of operators with
finite dimensional range.
Hilbert Schmidt operators are discussed in Dunford and Schwartz (1988, p. 1009),

Dautray and Lyons (1984, Vol 5, p.41, chapter VIII).
Definition 2.30 (Hilbert-Schmidt operator). Let {ϕ�, j = 1, 2, ...} be a complete or-
thonormal set in a Hilbert space H. An operator K : H→ E is said to be a Hilbert-
Schmidt operator if the quantity ‖.‖�� defined by

‖K‖�� =
{ �∑
���

∥∥Kϕ�∥∥��
}���

is finite. The number ‖K‖�� is called the Hilbert-Schmidt norm of K. Moreover
‖K‖ ≤ ‖K‖�� (2.7)

and hence K is bounded.
¿From (2.7), it follows that HS norm convergence implies (operator) norm convergence.

Theorem 2.31. The Hilbert-Schmidt norm is independent of the orthonormal basis used
in its definition.
Theorem 2.32. Every Hilbert-Schmidt operator is compact.
Theorem 2.33. The adjoint of an Hilbert-Schmidt operator is itself a Hilbert-Schmidt
operator and ‖K‖�� = ‖K �‖�� .
Theorem 2.32 implies that Hilbert-Schmidt (HS) operators can be approached by a

sequence of finite dimensional operators.
Example. Let K be the integral operator defined by (2.5) and (2.6), then K is

a Hilbert-Schmidt (HS) operator and its adjoint is also a HS operator. Actually, all
Hilbert-Schmidt operators of L� (R�, π) in L� (R�, ρ) are integral operators. The following
theorem is proved in Dautray and Lions (Vol. 5, p. 45).
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Theorem 2.34. An operator of L� (R�, π) in L� (R�, ρ) is Hilbert-Schmidt if and only if
it admits a kernel representation (2.5) conformable to (2.6). In this case, the kernel k is
unique.

Example. For illustration, we consider the effect of restricting K on a subset of
L�� (R�, π) . Consider K̃ the operator defined by

K̃ : L�� (R�, π̃)→ L�� (R�, ρ̃)
K̃ϕ = Kϕ

for every ϕ ∈ L�� (R�, π̃) , where L�� (R�, π̃) ⊂ L�� (R�, π) and L�� (R�, ρ̃) ⊃ L�� (R�, ρ) .
Assume that K is a HS operator defined by (2.5). Under which conditions is K̃ an HS
operator? Let

K̃ϕ (s) =
∫

k (τ , s)ϕ (s)π (s) ds

=
∫

k (τ , s) π (s)π̃ (s)ϕ (s) π̃ (s) ds

≡ ∫
k̃ (τ , s)ϕ (s) π̃ (s) ds.

Note that ∫ ∣∣∣k̃ (τ , s)∣∣∣� π̃ (s) ρ̃ (τ ) dsdτ
=

∫ |k (τ , s)|� π (s)π̃ (s)
ρ̃ (τ)
ρ (τ)π (s) ρ (τ) dsdτ

< sup
�

∣∣∣∣π (s)π̃ (s)
∣∣∣∣ sup

�

∣∣∣∣ ρ̃ (τ )ρ (τ )
∣∣∣∣
∫ |k (τ , s)|�π (s) ρ (τ) dsdτ .

Hence the HS property is preserved if (a) there is a constant c > 0 such that π (s) ≤ cπ̃ (s)
for all s ∈ R� and (b) there is a constant d such that ρ̃ (τ ) ≤ dρ (τ ) for all τ ∈ R�.

2.3. Spectral decomposition of compact operators
For compact operators, spectral analysis reduces to the analysis of eigenvalues and eigen-
functions. Let K : H → H be a compact linear operator.
Definition 2.35. λ is an eigenvalue of K if there is a nonzero vector φ ∈ H such that
Kφ = λφ. φ is called eigenfunction of K corresponding to λ.
Theorem 2.36. All eigenvalues of a self-adjoint operator are real and eigenfunctions
corresponding to different eigenvalues are orthogonal.
Theorem 2.37. All eigenvalues of a positive operator are nonnegative.
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Theorem 2.38. For every eigenvalue λ of a bounded operator K, we have |λ| ≤ ‖K‖ .
Theorem 2.39. Let K be a self-adjoint compact operator, the set of its eigenvalues (λ�)
is countable and its eigenvectors (φ�) can be orthonormalized. Its largest eigenvalue (in
absolute value) satisfies |λ�| = ‖K‖ . If K has infinitely many eigenvalues |λ�| ≥ |λ�| ≥ ...,
then lim���λ� = 0.
Let K : H → E, K �K and KK � are self-adjoint positive operators on H and E respec-

tively. Hence their eigenvalues are nonnegative by Theorem 2.37.
Definition 2.40. Let H and E be Hilbert spaces, K : H → E be a compact linear
operator and K � : E → H be its adjoint. The square roots of the eigenvalues of the
nonnegative self-adjoint compact operator K �K : H → H are called singular values of K.
The following results (Kress, 1999, Theorem 15.16) apply to operators that are not

necessarily self-adjoint.
Theorem 2.41. Let (λ�) denote the sequence of the nonzero singular values of the com-
pact linear operator K repeated according to their multiplicity. Then there exist or-
thonormal sequences φ� of H and ψ� of E such that

Kφ� = λ�ψ�, K �ψ� = λ�φ� (2.8)
for all j ∈ N. For each ϕ ∈ H we have the singular value decomposition

ϕ =
�∑
���

〈ϕ, φ�〉φ� +Qϕ (2.9)

with the orthogonal projection operator Q : H→ N (K) and

Kϕ =
�∑
���

λ� 〈ϕ, φ�〉ψ�. (2.10)
{λ�, φ�, ψ�} is called singular system of K. Note that λ�� are the eigenvalues of KK �

and K �K associated with the eigenfunctions ψ� and φ� respectively.
Theorem 2.42. Let K be the integral operator defined by (2.5) and assume Condition
(2.6) holds. Let {λ�, φ�, ψ�} be as in (2.8). Then:

(i) The Hilbert Schmidt norm of K can be written as

‖K‖�� =
{∑
���

|λ�|�
}���

=
{∫ ∫ |k (τ , s)|�π (s) ρ (τ) dsdτ}���

where each λ� is repeated according to its multiplicity.
(ii) (Mercer’s formula) k (τ , s) =∑�

���λ�ψ� (τ )φ� (s).
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Example (degenerate operator). Consider an integral operator defined on L� ([a, b])
such that

Kf (τ) = ∫ �

� k (τ , s) f (s) ds
k (τ , s) =∑�

���a� (τ) b� (s) .
Assume that a� and b� belong to L� ([a, b]) for all l. By (2.6), it follows that K is bounded.
As moreover K is finite dimensional, we have K compact by Theorem 2.28. Assume that
the set of functions (a�) is linearly independent. Pose Kφ = λφ, we obtain

�∑
���

a� (τ )
∫

b� (s)φ (s) ds = λφ (τ)

hence φ (τ ) is necessarily of the form ∑�
��� c�a� (τ ). The dimension of the range of K is

therefore n, there are at most n nonzero eigenvalues.
Example. Let H = L� ([0, 1]) and the integral operator Kf (τ ) = ∫ �

� (τ ∧ s) f (s) ds
where τ ∧ s = min(τ , s). It is possible to compute explicitly the eigenvalues and eigen-
functions of K by solving Kφ = λφ ⇐⇒ ∫ �

� sφ (s) ds + τ ∫ �� φ (s) ds = λφ (τ) . Us-
ing two successive differentiations with respect to τ , we obtain a differential equation
φ (τ) = −λφ�� (τ ) with boundary conditions φ (0) = 0 and φ� (1) = 0. Hence the set of
orthonormal eigenvectors is φ� (τ) = √2 sin ((πjτ ) /2) associated with the eigenvalues
λ� = 4/ (π�j�), j = 1, 3, 5, ....We can see that the eigenvalues converge to zero at an
arithmetic rate.

Example. Let π be the pdf of the standard normal distribution and H = L� (R, π) .
Define K be the integral operator with kernel

k (τ , s) = l (τ , s)
π (τ) π (s)

where l (τ , s) is the joint pdf of the bivariate normal N (( 0
0
)
,
( 1 ρ

ρ 1
))

. Then K
is a self-adjoint operator with eigenvalues λ� = ρ� and eigenfunctions the Hermite poly-
nomials φ�, j = 1, 2, ... defined in (2.1). This is an example where the eigenvalues decay
exponentially fast.

2.4. Random element in Hilbert spaces
2.4.1. Definitions
Let H be a real separable Hilbert space with norm ‖‖ induced by the inner product 〈, 〉 .
Let (Ω,F , P ) be a complete probability space. Let X : Ω→H be a Hilbert space-valued
random element (an H-r.e.). X is integrable or has finite expectation E (X) if E (‖X‖) =∫
� ‖X‖ dP <∞, in that case E (X) satisfies E (X) ∈ H and E [〈X,ϕ〉] = 〈E (X) , ϕ〉 for
all ϕ ∈ H. An H-r.e. X is weakly second order if E [〈X,ϕ〉�] < ∞ for all ϕ ∈ H. For a
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weakly second order H-r.e. X with expectation E (X) , we define the covariance operator
K as

K : H → H
Kϕ = E [〈X − E (X) , ϕ〉 (X −E (X))]

for all ϕ ∈ H. Note that var 〈X,ϕ〉 = 〈Kϕ,ϕ〉 .
Example. Let H = L� ([0, 1]) with ‖g‖ = [∫ �

� g (τ)� dτ
]���
and X = h (τ , Y ) where Y

is a random variable and h (., Y ) ∈ L� ([0, 1]) with probability one. Assume E (h (τ , Y )) =
0, then the covariance operator takes the form:

Kϕ (τ) = E [〈h (., Y ) , ϕ〉 h (τ , Y )]
= E

[(∫
h (s, Y )ϕ (s) ds

)
h (τ , Y )

]

=
∫

E [h (τ , Y ) h (s, Y )]ϕ (s) ds
≡ ∫

k (τ , s)ϕ (s) ds.

If moreover, h (τ , Y ) = I {Y ≤ τ} − F (τ ) then k (τ , s) = F (τ ∧ s)− F (τ)F (s) .
Definition 2.43. An H-r.e. Y has a Gaussian distribution on H if for all ϕ ∈ H the
real-valued r.v. 〈ϕ, Y 〉 has a Gaussian distribution on R.
Definition 2.44 (strong mixing). Let {X���, i = ...,−1, 0, 1, ...;n ≥ 1} be an array ofH-r.e., defined on the probability space (Ω,F , P ) and define A���

��� = σ (X���, a ≤ i ≤ b)
for all −∞ ≤ a ≤ b ≤ +∞, and n ≥ 1. The array {X���} is called a strong or α−mixing
array of H-r.e. if lim���α (j) = 0 where

α (j) = sup
���
sup
�
sup���

[|P (A ∩B)− P (A)P (B)| : A ∈ A���
����, B ∈ A����

�����
]
.

2.4.2. Central limit theorem for mixing processes
Wewant to study the asymptotic properties of Z� = n����∑�

���X��� where {X��� : 1 ≤ 1 ≤ n}
is an array of H-r.e.. Weak and strong laws of large numbers for near epoch dependent
(NED) processes can be found in Chen and White (1996). Here we provide sufficient
conditions for the weak convergence of processes to be denoted ⇒ (see Davidson, 1994,
for a definition). Weak convergence is stronger than the standard central limit theorem
(CLT) as illustrated by a simple example. Let (X�) an iid sequence of zero mean weakly
second order elements of H. Then for any Z in H, 〈X�, Z〉 is an iid zero mean sequence
of C with finite variance 〈KZ,Z〉. Then standard CLT implies the asymptotic normality
of �

��

∑�

��� 〈X�, Z〉 . The weak convergence of �
��

∑�

���X� to a Gaussian process N (0, K)
in H requires an extra assumption, namely E ‖X�‖� < ∞. Weak convergence theorems
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for NED processes that might have trending mean (hence are not covariance stationary)
are provided by Chen and White (1998). Here, we report results for mixing processes
proved by Politis and Romano (1994). See also van der Vaart and Wellner (1996) for iid
sequences.
Theorem 2.45. Let {X��� : 1 ≤ 1 ≤ n} be a double array of stationary mixing H-r.e.
with zero mean such that, for all n, ‖X���‖ < B with probability one, and ∑�

��� j�α (j) ≤
Km� for all 1 ≤ m ≤ n and n, and some r < 3/2. Assume, for any integer l ≥ 1,
that (X���, ..., X���), regarded as a r.e. of H�, converges in distribution to (X�, ...,X�), say.
Moreover, assume E [〈X���, X���〉]→ E [〈X�, X�〉] as n→∞ and

lim
���

�∑
���

E [〈X���,X���〉] = �∑
���

E [〈X�, X�〉] <∞.

Let Z� = n����∑�

���X���. For any ϕ ∈ H, let σ���� denote the variance of 〈Z�, ϕ〉 . Assume

σ���� →
��� σ�� ≡ V ar (〈X�, ϕ〉) + 2 �∑

���
cov (〈X�, ϕ〉 , 〈X���, ϕ〉) . (2.11)

Then Z� converges weakly to a Gaussian process N (0, K) in H, with zero mean and
covariance operator K satisfying 〈Kϕ,ϕ〉 = σ�� for each ϕ ∈ H.
In the special case when the X��� = X� form a stationary sequence, the conditions

simplify considerably:
Theorem 2.46. Assume X�, X�, ...is a stationary sequence of H-r.e. with mean µ and
mixing coefficient α. Let Z� = n����∑�

��� (X� − µ).
(i)If E

(‖X�‖���) <∞ for some δ > 0, and ∑
� [α (j)]

������� <∞
(ii) or if X�,X�, ...is iid and E ‖X�‖� <∞
Then Z� converges weakly to a Gaussian process G ∼ N (0,K) in H. The distribu-

tion of G is determined by the distribution of its marginals 〈G,ϕ〉 which are N (0, σ��)
distributed for every ϕ ∈ H where σ�� is defined in (2.11).
Let {e�} be a complete orthonormal basis of H then ‖X�‖� =∑�

��� 〈X�, e�〉� hence, in
the iid case, it suffices to check that E ‖X�‖� =∑�

���E [〈X�, e�〉�] <∞.
The following theorem is stated in more general terms in Chen and White (1992).

Theorem 2.47. Let A� be a random bounded linear operator from H to H and A �= 0
be a nonrandom bounded linear operator from H to H. If ‖A� − A‖ → 0 in probability
as n→∞ and Y� ⇒ Y ∼ N (0, K) in H. Then A�Y� ⇒ AY ∼ N (0, AKA�).
In Theorem 2.47, the boundedness of A is crucial. In most of our applications, A will

not be bounded and we will not be able to apply Theorem 2.47. Instead we will have to
check the Liapunov condition (Davidson 1994) “by hand”.
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Theorem 2.48. Let the array {X���} be independent with zero mean and variance se-
quence {σ����} satisfying ∑�

���σ���� = 1. Then ∑�

���X���
�→N (0, 1) if

lim
���

�∑
���

E
[|X���|���] = 0 (Liapunov condition)

for some δ > 0.

2.5. Estimation of an operator and its adjoint
2.5.1. The estimator of the adjoint of an operator and the adjoint of the esti-

mator of an operator
Let K : H → E and K̂� be an estimator of K. In general the adjoint of K̂�,

(
K̂�

)
�,

differs from the estimator of the adjoint (̂K �)� for the spaces H and E . That is, we do
not have 〈

K̂�ϕ, ψ
〉
� =

〈
ϕ, (̂K �)�ψ

〉
� . (2.12)

First we will discuss cases where Equality (2.12) holds. Then, we will turn to cases where
it does not hold. In the latter case, we will show that we can define two Hilbert spacesE� and H� for which 〈

K̂�ϕ, ψ
〉
�� =

〈
ϕ, (̂K �)�ψ

〉
�� . (2.13)

Assume H = L� (R	, π) and E = L� (R
, ρ) where π and ρ are two pdf given a priori.
Define

Kϕ (w) =
∫

k (w, z)ϕ (z)π (z) dz (2.14)

for some function k (w, z). This definition of K is quite general as we do not impose any
continuity of k (w, z). We have

〈Kϕ,ψ〉� =
∫ ∫

k (w, z)ϕ (z)π (z) dzψ (w) ρ (w) dw

=
∫

ϕ (z)
(∫

k (w, z)ψ (w) ρ (w) dw
)
π (z) dz.

Hence the kernel of K � is k� (z, w) = k (w, z) .

K �ψ (z) =
∫

k (w, z)ψ (w) ρ (w) dw. (2.15)
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Assume that K and K � are estimated K̂� and (̂K �)� obtained by replacing k by k� in
(2.14) and (2.15) respectively. Then it is easy to check that (̂K �)� =

(
K̂�

)� for the spaces
of reference H and E .
There are cases where it is natural to define the spaces of reference as a function of

unknown pdfs. This typically happens when K is a conditional expectation operator.
Let (Z,W ) ∈ R	 × R
 be a r.v. with distribution F��� , let F�, and F� be the marginal
distributions of Z and W respectively. The corresponding pdfs are denoted f��� , f�, and
f� . Define

H = L� (R	, f�) ≡ L�
�,E = L� (R
, f�) ≡ L�
� .

Let K be the conditional expectation operator:
K : L�

� → L�
�

ϕ → E [ϕ (Z) |W ] . (2.16)
Its adjoint is also a conditional expectation operator:

K � : L�
� → L�

�

ψ → E [ψ (W ) |Z] .
Indeed, we have

〈ϕ,K �ψ〉� = 〈Kϕ,ψ〉� .
Using the notation of (2.15), K is an integral operator with kernel

k (w, z) = f��� (z, w)
f� (z) f� (w)

and π = f�. K � has for kernel k� (z, w) = k (w, z) but is defined in a different space
(ρ = f�). By Theorem 2.34, a sufficient condition for K and K � be compact is∫ ∫ [ f��� (z, w)

f� (z) f� (w)
]�

f� (z) f� (w) dzdw <∞.

Let f̂��� , f̂� (z), and f̂� (w) be nonparametric estimators of f��� , f� (z), and f� (w)
obtained either by kernel or sieves estimators. Assume that K and K � are estimated by
replacing the unknown pdfs by their estimators, that is:

K̂�ϕ (w) =
∫ f̂��� (z, w)

f̂� (z) ϕ (z) dz,

(̂K �)�ψ (z) =
∫ f̂��� (z, w)

f̂� (w) ψ (w) dw.
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Then we have (̂K �)� �= (
K̂�

)� for H = L�
� and E = L�

� . However, we have (̂K �)� =(
K̂�

)� for H� and E� defined by H� = L�(R	, f̂�
)
and E� = L�(R
, f̂�

)
.

It is important for our estimation procedure to make sense that (2.13) holds. To achieve
this, we need also to estimate the spaces H, E, that is, to replace the inner products on
these spaces by estimated inner products. The new spaces H� and E� depend on the
sample size and on the estimation procedure. Another approach consists in definingH = L� (R	, π) and E = L� (R
, ρ) where π and ρ are known and satisfy: There exist
c, c� > 0 such that f� (z) ≤ cπ (z) and f� (w) ≥ c�ρ (w) . Then

K �ψ (z) =
∫ f��� (z, w)

f� (w)
ρ (w)
π (z)ψ (w) dw�= E [ψ (W ) |Z = z] .

In that case, (̂K �)� =
(
K̂�

)� forH and E but the choice of π and ρ require some knowledge
on the support and the tails of the distributions of W and Z.
An alternative solution to estimating K and K � is to estimate the spectrum of K and

to apply Mercer’s formula. Let H = L�
� and E = L�

� . The singular system {λ�, φ�, ψ�
}

of K satisfies
λ� = sup�� ���

E [φ� (Z)ψ� (W )] , j = 1, 2... (2.17)

subject to ∥∥φ�
∥∥� = 1, 〈φ�, φ�

〉
� = 0, l = 1, 2, ..., j − 1, ∥∥ψ�

∥∥� = 1, 〈ψ�, ψ�
〉
� = 0, l =

1, 2, ..., j − 1. Assume the econometrician observes a sample {w�, z� : i = 1, ..., n}. To
estimate {λ�, φ�, ψ�

}, one can either estimate (2.17) by replacing the expectation by the
sample mean or by replacing the joint pdf by a nonparametric estimator.
The first approach was adopted by Darolles, Florens, and Renault (1998). Let

H� =
{
ϕ : R	 → R,

∫
ϕ (z)� dF̂� (z) <∞}

,

E� =
{
ψ : R
 → R,

∫
ψ (w)� dF̂� (w) <∞}

where F̂� and F̂� are the empirical distributions of Z andW that is ‖ϕ‖��� = �
�
∑�

���ϕ (z�)�
and ‖ψ‖��� = �

�
∑�

���ψ (w�)� . Darolles, Florens, and Renault (1998) propose to estimate{λ�, φ�, ψ�
} by solving

λ̂� = sup	�� �
	��

1
n

�∑
���

[
φ̂� (z�) ψ̂� (w�)

]
, j = 1, 2... (2.18)

subject to
∥∥∥φ̂�

∥∥∥�� = 1,
〈
φ̂�, φ̂�

〉
�� = 0, l = 1, 2, ..., j − 1, ∥∥∥ψ̂�

∥∥∥�� = 1,〈ψ̂�, ψ̂�

〉
�� = 0,
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l = 1, 2, ..., j − 1 where φ̂� and ψ̂� are elements of increasing dimensional spaces

φ̂� (z) =
�∑

���
α�a� (z) ,

ψ̂� (w) =
�∑

���
β�b� (w)

for some basis {a�} and {b�}. By Mercer’s formula (2.10), K can be estimated by
K̂�ϕ (w) = ∑ λ̂�

(∫
φ̂� (z)ϕ (z) dF̂�

)
ψ̂� (w)

(̂K �)�ψ (z) = ∑ λ̂�

(∫
ψ̂� (w)ψ (w) dF̂�

)
φ̂� (z) .

Hence (̂K �)� =
(
K̂�

)� for H� and E�.
The second approach consists in replacing f��� by a nonparametric estimator f̂��� .

Darolles, Florens, and Gourieroux (2000) use a kernel estimator, whereas Chen, Hansen
and Scheinkman (1998) use B-spline wavelets. LetH� = L�(R	, f̂�

)
and E� = L�(R
, f̂�

)
where f̂� and f̂� are the marginals of f̂��� . (2.17) can be replaced

λ̂� = sup�� ���

∫
φ� (z)ψ� (w) f̂��� (z, w) dzdw, j = 1, 2... (2.19)

subject to ∥∥φ�
∥∥�� = 1, 〈φ�, φ�

〉
�� = 0, l = 1, 2, ..., j − 1, ∥∥ψ�

∥∥�� = 1, 〈ψ�, ψ�
〉
�� = 0,

l = 1, 2, ..., j−1. Denote {λ̂�, φ̂�, ψ̂�

}
the resulting estimators of {λ�, φ�, ψ�

}. By Mercer’s
formula, K can be approached by

K̂�ϕ (w) = ∑ λ̂�

(∫
φ̂� (z)ϕ (z) f̂� (z) dz

)
ψ̂� (w)

(̂K �)�ψ (z) = ∑ λ̂�

(∫
ψ̂� (w)ψ (w) f̂� (w) dw

)
φ̂� (z) .

Hence (̂K �)� =
(
K̂�

)� for H� and E�. Note that in the three articles mentioned above,
Z = X��� and W = X� where {X�} is a Markov process. These papers are mainly
concerned with estimation. When the data are the discrete observations of a diffusion
process, the nonparametric estimations of a single eigenvalue-eigenfunction pair and of
the marginal distribution are enough to recover a nonparametric estimate of the diffusion
coefficient. The techniques described here can also be used for testing the reversibility of
the process {X�} , see Darolles, Florens, and Gourieroux (2000).
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2.5.2. Computation of eigenvalues and eigenfunctions of finite dimensional op-
erators

We take a different perspective from before. Here, we assume that we have some estimators
ofK andK �, denoted K̂� and K̂ �� such that (̂K �)� =

(
K̂�

)� ≡ K̂ ��. The aim is to calculate
the singular values of K̂�. Assume that K̂� and K̂ �� have finite range and satisfy

K̂�ϕ =
��∑
���

a� (ϕ) ε� (2.20)

K̂ ��ψ =
��∑
���

b� (ψ) η� (2.21)

where ε� ∈ E, η � ∈ H, a� (ϕ) is linear in ϕ and b� (ψ) is linear in ψ. Moreover the {ε�} and{η �} are assumed to be linearly independent. We have
K̂ ��K̂�ϕ =

��∑
���

b�
( ��∑

����
a�� (ϕ) ε��

)
η �

=
��∑

������
a�� (ϕ) b� (ε��) η �. (2.22)

Examples:
1 - Covariance operator

Kϕ (τ �) =
∫

E [h (τ �, X)h (τ �, X)]ϕ (τ �) dτ �

K̂�ϕ (τ �) =
∫ (

1
n

�∑
���

h (τ �, x�) h (τ �, x�)
)

ϕ (τ �) dτ �

=
�∑

���
a� (ϕ) ε�

with
a� (ϕ) = 1n

∫
h (τ �, x�)ϕ (τ �) dτ � and ε� = h (τ �, x�) .

Note that in this case, the rate of convergence of K̂ ��K̂� is parametric:
∥∥∥K̂ ��K̂� −K �K

∥∥∥ =
O (1/√n) .
2 - Conditional expectation

Kϕ (w) = E [ϕ (Z) |W = w] .
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The kernel estimator with kernel ω and bandwidth c� is given by

K̂�ϕ (w) =
∑�

���ϕ (z�)ω
(�

�
�
�

��
)

∑�
���ω

(�
�
�
�

��
)

=
�∑

���
a� (ϕ) ε�

where

a� (ϕ) = ϕ (z�) and ε� =

 ω

(�
�
�
�

��
)

∑�
���ω

(�
�
�
�

��
)

 .

In this case, the rate of convergence of K̂ ��K̂� is nonparametric. See Subsection 4.1.
Now we calculate the eigenvalues and eigenfunctions of K̂ ��K̂� by solving

K̂ ��K̂�φ = λ�φ.
Hence φ is necessarily of the form: φ =∑

� β �η�. Replacing in (2.22), we have

λ�β � =
��∑

�� ����
β�a��

(η�) b� (ε��) . (2.23)

Denote β̂= [β �, ..., β��] the solution of (2.23). Solving (2.23) is equivalent to finding the
L� nonzero eigenvalues λ̂

�
�, ..., λ̂

�
�� and eigenvectors β̂ �, ...,β̂�� of an L� × L�−matrix C

with principle element

c��� =
��∑
����

a��
(η�) b� (ε��) .

The eigenfunctions of K̂ ��K̂� are

φ̂� =
��∑
���

β̂�
�η �� j = 1, ...L�

associated with λ̂
�
�, ..., λ̂

�
��.

{
φ̂� : j = 1, .., L�

}
need to be orthonormalized. The estima-

tors of the singular values are λ̂� =
√

λ̂
�
� .
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3. Regularized solutions of integral equations of the first kind
This section discusses the property of the integral equations (also called Fredholm equa-
tions) of the first kind that is Kϕ = r where K is an integral compact operator. Solving
in ϕ such an equation is ill-posed because (a) the solution might not exist, (b) when it
exists, it may not be unique, (c) the solution is not continuous in r. For these reasons, a
regularized solution (that will be continuous in r) needs to be implemented.
3.1. Ill-posed problems
Definition 3.1. Let K : H → E be an operator from a Hilbert space H into a Hilbert
space E . The equation

Kϕ = r, ϕ ∈ H (3.1)
is said to be well-posed if

(i) N (K) = {0} (uniqueness), r ∈ K (H) (existence)
(ii) K�� : K (H)→H is continuous.
The condition N (K) = {0} is necessary and sufficient to guarantee that, for r ∈

K (U), the equation Kϕ = r has a unique solution ϕ. In the case of compact operators,
this identification condition is characterized by the positivity of all the singular values.
Proposition 3.2. (Criterion for identification) Let K : H → E be a compact operator.
It is injective, that is N (K) = {0} , if and only if all its singular values are nonzero.
Proof. (i) N (K �K) = {0} ⇒ N (K) = {0} because N (K) ⊂ N (K �K) . (ii) Now
assume N (K) = {0} . If one singular value λ� were zero, φ� would belong to N (K)
because Kφ� = 0ψ� = 0.
The singular value decompositions (2.8) to (2.10) give some insight about the solvabil-

ity issue. A necessary condition to get solvability in H (existence of the solution) that is
r ∈ R (K) = K (H), is

�∑
���

〈r, ψ�〉�
λ�� <∞ (3.2)

because
�∑
���

〈r, ψ�〉�
λ�� =

�∑
���

〈Kϕ,ψ�〉�
λ��

=
�∑
���

〈ϕ, φ�〉�
≤ ‖ϕ‖� .

More generally, we define:
31



Definition 3.3. Let {λ�, φ�, ψ�} be the singular system of the compact operator K. For
all β ≥ 0, we denote

Φ� =
{
ϕ ∈ H such that

�∑
���

〈ϕ, φ�〉�
λ��� <∞

}
(3.3)

and symmetrically:

Ψ� =
{
ψ ∈ E such that

�∑
���

〈ψ, ψ�〉�
λ��� <∞

}
. (3.4)

Φ� and Ψ� are called β−regularity spaces of the operators K and K � respectively.
Then β ≤ β � ⇒ Ψ� ⊃ Ψ�� and Φ� ⊃ Φ�� and a necessary condition for solvability is

r ∈ Ψ�. Note however that the maintained assumption of injectivity of K implies that all
the spaces Φ� are dense in H. To see this, let us denote by Φ̃ the vectorial space spanned
by {φ�} and Φ̃ its closure. Since (i) Φ̃ ⊂ Φ� ⊂ H for all β, (ii) Φ̃ = H (by N (K) = {0}),
we can conclude that Φ� = H.
Proposition 3.4. Φ� = R (K �)
Proof. (i) Φ� ⊃ R (K �) since

�∑
���

〈K �ψ, φ�〉�
λ�� =

�∑
���

〈ψ,Kφ�〉�
λ�� =

�∑
���

〈ψ, φ�〉� = ‖ψ‖� <∞.

(ii) We want to show that Φ� ⊂ R (K �). Let ϕ ∈ Φ�. Let ψ =∑�
���

〈ϕ, φ�〉
λ� ψ�. Then

ψ ∈ E and K �ψ = ϕ by (2.9) and N (K) = {0} . Hence ϕ ∈ R (K �) .
More generally it can be shown that

Φ� = R [
(K �K)

�
�
]

(See Loubes and Vanhems (2003)).
The relation between the Φ� spaces and the reproducing kernel Hilbert space may be

deduced from this property and is studied in Section 6.Loubes and Vanhems (2003) also
characterize the relation between Φ� spaces and smoothness properties.
Consider now r ∈ Ψ�. If β ≥ 1, the function ϕ = ∑�

���

〈r, ψ�〉
λ� φ� is a well-defined

element of Φ��� and

Kϕ =
�∑
���

〈r, ψ�〉ψ�
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coincides with r if and only if r ∈ (N (K �))� . Indeed for all ψ ∈ E , we can write by
analogy with (2.9) :

ψ =
�∑
���

〈ψ,ψ�〉ψ� +Rψ (3.5)

where R is the orthogonal projector E → N (K �). Note also that because (N (K �))� is
the closure of R (K), the condition r ∈ (N (K �))� is necessary for solvability. We have
then shown:
Proposition 3.5 (Criterion for solvability). Let K : H → E be a compact operator
with singular system {λ�, φ�, ψ�} . The equation

Kϕ = r, ϕ ∈ H (3.6)
is solvable if and only if r belongs to (N (K �))� ∩ Ψ� for some β ≥ 1. In this case, a
solution is given by

ϕ =
�∑
���

〈r, ψ�〉
λ� φ� (3.7)

and belongs to Φ���.
In the particular case β = 1, Proposition 3.5 is known as Picard’s theorem.
Proposition 3.5 clearly demonstrates the ill-posed nature of the equation Kϕ = r. If

we perturb the right-hand side r by r� = r+ δψ�, we obtain the solution ϕ� = ϕ+ δφ�/λ�.
Hence, the ratio ∥∥ϕ� − ϕ∥∥ /∥∥r� − r∥∥ = 1/λ� can be made arbitrary large due to the fact
that the singular values tend to zero. Since the influence of measurement errors in r is
controlled by the rate of this convergence, Kress (1999, p. 280) says that the equation
is “mildly ill-posed” if the singular values decay slowly to zero and that it is “severely
ill-posed” if they decay rapidly. Actually, the critical property is the relative decay rate
of the sequence 〈r, ψ�〉 with respect to the decay of the sequence λ�. To see this, note that
the solution ϕ has to be determined from its Fourier coefficients by solving the equations

λ� 〈ϕ, φ�〉 = 〈r, ψ�〉 , for all j.
Then, we may expect high instability of the solution ϕ if λ� goes to zero faster than〈ϕ, φ�〉 , that is if ϕ /∈ Φ� (or equivalently r /∈ Ψ�). More generally, the higher the
coefficient β such that r ∈ Ψ� � the better the estimation. Note that it is not hopeless that
r ∈ Ψ� as R (KK �) ⊂ Ψ� (since R (K �) ⊂ Φ� and R (K) ⊂ Ψ�). Indeed, we have

ϕ ∈ R (K �)⇐⇒ r = Kϕ ∈ R (KK �)⇒ r ∈ Ψ�.
The condition r ∈ Ψ� (and ϕ ∈ Φ�) is fulfilled as soon as ϕ ∈ R (K �) .
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Generally speaking, rather than trying to control the estimation error ∥∥ϕ� − ϕ∥∥ re-
sulting from a measurement error ∥∥r� − r∥∥ by restricting a priori the set of solutions of
interest, we will focus on regularization schemes to control the effect of 1/λ� in the so-
lution formula (3.7). In this framework, the set of solutions of interest will be tightly
related to the decreasing family of subsets Φ�, β ≥ 0 that characterizes the relevant rate
of instability. Moreover as we will consider measurement errors originating not only from
r but also from the operator K itself, we must reinforce the common stability properties
of regularization schemes. This is the reason why we will refer to these schemes as second
order regularization.

3.2. Second order regularization schemes
According to Kress (1999, Theorem 15.21), a regularized solution for Equation (3.1) with
K injective compact operator (N (K) = {0}) is a family of operators R� : E → H, α > 0,
defined by

R�r =
�∑
���

1
λ� q (α, λ�)

〈r, ψ�〉φ� (3.8)

where q is a real function defined on R�

� × (0, ‖K‖) such that there exists c (α) > 0, which
satisfies for all λ ∈ (0, ‖K‖) :

|q (α, λ)| ≤ c (α)λ, and (3.9)
lim
��

� q (α, λ) = 1. (3.10)
Condition (3.9) insures that the operator R� is bounded and satisfies ‖R�‖ ≤ c (α) .

Let ϕ� = R�r and ϕ be defined in (3.7), the regularization bias ϕ− ϕ� is

ϕ− ϕ� =
�∑
���
[1− q (α, λ�)] 〈ϕ, φ�〉φ� (3.11)

Condition (3.10) implies that the regularization bias vanishes asymptotically. R� has the
advantage over K�� to be bounded because q (α, λ�) converges to zero at least as fast as
λ�. We will reinforce the stability condition by assuming that it goes to zero even faster.
Definition 3.6. The family of operators R� defined by (3.8) is a second order regular-
ization if q is a real function defined on R�

� × (0, ‖K‖) such that there exists d (α) > 0
which satisfies for all λ ∈ (0, ‖K‖) :

|q (α, λ)| ≤ d (α)λ� (3.12)
lim
��

	 q (α, λ) = 1.
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In the following, we will always normalize the exponent of the regularization parameter
α such that αd (α) has a positive finite limit when α goes to zero. As shown in Subsection
3.5 below, second order regularization will be well-suited to deal with the case where a
measurement error affects K also (and not just r). It allows to define a bounded operator
A� such that

R� = A�K �. (3.13)
Note that (3.13) leaves unconstrained the values of A� on the space R (K �)� = N (K) .
However, since following Kress (1999, Theorem 15.21), we maintain in this subsection the
identification assumption N (K) = {0}, A� is uniquely defined as

A�ϕ =
�∑
���

1
λ�� q (α, λ

�) 〈ϕ, ϕ�〉ϕ� (3.14)

for all ϕ ∈ H. Note that as q is real, A� is self-adjoint. Then by (3.12), A� is a bounded
operator from H into H with

‖A�‖ ≤ d (α) . (3.15)
It is one-to-one in the particular case where the regularization weights q (α, λ�) are nonzero
for all j ≥ 1.
It is worthwhile to notice that our notion of second order regularization is conformable

to another approach of regularization in terms of penalization. The idea (see e.g. Vapnik
(1998)) is to find a solution for (3.6) as an element ϕ minimizing a certain functional:

R(ϕ) = D� (r,Kϕ) + αW (ϕ) (3.16)
where D is some metric in the space E and W is a functional defined on H such that the
sets

ξ� = {ϕ : W (ϕ) ≤ c} , c ≥ 0,
are all compact. Typically, the role of α is to penalize large values of ϕ in order to enforce
the stability of the solution. With α = 0, the problem of minimization of (3.16) would be
equivalent to the solution of equation (3.6) and therefore would also be ill-posed.
Then, when using an euclidean metric D, the minimizer ϕ of (3.16) will be of the form

(3.13). This is also closely related to the concept of generalized inverse as
lim
��

	A� = (K �K)��

and
lim
��

	R� = (K �K)��K �
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is the Moore Penrose generalized inverse. However, (K �K)�� is also nonstable since its
eigenvalues 1/λ�� diverge. Therefore the notion of generalized inverse, or equivalently the
problem (3.13) without penalization, cannot be used directly for estimation purpose. It
will be better suited for the application of reproducing kernels, see Section 6.
Below, we show that the most common regularization schemes fulfill not only the

conditions (3.9), and (3.10), but also the second order requirement (3.12). We characterize
these schemes through the definitions of the weights q (α, λ�) in the regularization (3.8).
The first regularization method was proposed by A.N. Tikhonov in 1963 and corresponds
to the minimization of (3.16) with canonical norms.

Example (Tikhonov regularization).
q (α, λ) = λ�

α + λ� .
Then:

|q (α, λ)| = λ�
α + λ� ≤ λ�

α
and d (α) = 1/α.

Example (Landweber-Fridman).
q (α, λ) = 1− (1− cλ�)���

for some c chosen in the interval (0, 1/ ‖K‖�) . It is easy to check that for α ≤ 1 :
0 ≤ q (α, λ) ≤ cλ�

α
that is d (α) = c/α.

Example (Spectral cut-off).
q (α, λ) = I {λ ≥ √α} = { 1 if λ ≥ √α

0 otherwise .
The advantage of spectral cut-off over Tikhonov regularization is that there is no bias for
the largest eigenvalues. However, its bias is larger than that obtained with Tikhonov for
the smallest eigenvalues. This regularization is not second order. Therefore, we introduce
a new regularization scheme closed to spectral cut-off and that is second order.

Example (Extended Spectral cut-off).
q (α, λ) = I {λ ≥ √α}+ λ�

α I {λ < √α} = { ��

� if λ < √α
1 otherwise .

This new regularization scheme maintain the advantage of the spectral cut-off (zero bias
for large eigenvalues) while getting a smaller bias for the smallest eigenvalues. Actually
this bias, equal to (α− λ�) /α, is similar to Tikhonov bias α/ (α + λ�) . Note that

0 ≤ q (α, λ) ≤ λ�
α
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and d (α) = 1/α.
Remark that for all the examples but the spectral cut-off, we have

0 < q (α, λ) ≤ 1 for all (α, λ) ,
which implies that A� is one-to-one for all α. This is the reason why we will consider
in the remaining of the section the extended spectral cut-off rather than the common
one. Actually, even though this assumption could be relaxed, it will be better suited to
consider only regularizations schemes that satisfies R� = A�K � with A� bounded and
one-to-one.
The practical implementation of these various regularization schemes is discussed be-

low.

3.3. Implementation
Assume K̂� and K̂ �

� are finite dimensional and denote
{
λ̂�, φ̂�,ψ̂� : j = 1, ..., L�

}
the sin-

gular values of K̂� obtained by the method discussed in Section 2.5.2. We investigate
various regularized solutions of the equation:

Kϕ = r
with K : H → E, ϕ ∈ H, r ∈ E .

The Tikhonov regularization is based on
(α�I +K �K)ϕ�� = K �r ⇔

ϕ�� =
�∑
���

λ�
λ�� + α�

〈r, ψ�〉φ�

for a penalization term α� and λ� =
√

λ�� . Replacing the singular values by their estimates,
we obtain

ϕ̂� =
��∑
���

λ̂�
λ̂
�

� + α�

〈
r, ψ̂�

〉
φ̂�

When K̂� and K̂ �

� can be written as in (2.20) and (2.21), one can avoid the estimation of
the singular values by solving the equation(

α�I + K̂ �

�K̂�

)
ϕ = K̂ �

�r ⇔
α�ϕ+

��∑
������

a�� (ϕ) b� (ε��) η� =
��∑
���

b� (r) η � (3.17)

1) First we compute a� (ϕ) :
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Apply a� to (3.17):

α�a� (ϕ) +
��∑

������
a�� (ϕ) b� (ε��) a� (η�) =

��∑
���

b� (r) a� (η�) (3.18)

(3.18) can be rewritten as
(α�I + A) a = b

where a = [ a� (ϕ) a� (ϕ) · · · a�� (ϕ) ]� , A is the L� × L�−matrix with principal
element

A���� =
��∑
���

b� (ε��) a� (η �)

and

b =



∑
� b� (r) a� (η �)...∑
� b� (r) a�� (η�)


 .

2) From (3.17), we have

ϕ̂� = 1
α�

[ ��∑
���

b� (r) η � −
��∑

������
a�� (ϕ) b� (ε��) η �

]
.

Landweber-Fridman regularization
Let c be a constant so that 0 < c < 1/ ‖K‖	 and α such that 1α is integer.

ϕ
 =
�∑
���

1
λ� q(α, λ�)

〈r, ψ�
〉φ�

with

q (α, λ�) = 1− (1− cλ	
�
)�


= cλ	
�

�
��∑
���

(1− cλ	
�
)� .
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Thus,

ϕ
 = c
�
��∑
���

�∑
���

λ� (1− cλ	
�
)� 〈r, ψ�

〉φ�

= c
�
��∑
���

�∑
���

λ	
�
(1− cλ	

�
)� 〈ϕ, φ�〉φ�

= c
�
��∑
���
(I − cK �K)�K �Kϕ.

The implementation of this regularization requires to estimate K first and to select
c second. In some cases, ‖K‖ is known a priori. For example, if K is the conditional
expectation operator (see (2.16)), ‖K‖ = 1.
For a given c and regularization parameter α�, the estimator of ϕ is

ϕ̂� = c
�
���∑
���

(
I − cK̂ ��K̂�

)�

K̂ ��r̂�.

ϕ̂� can be computed recursively by
ϕ̂��� =

(
I − cK̂ ��K̂�

)
ϕ̂����� + cK̂ ��r̂�, l = 1, 2, ..., 1/α� − 1.

starting with ϕ̂��� = cK̂ ��r̂�. This scheme is known as the Landweber-Fridman iteration
(see Kress, 1999, p. 287). Whereas Tikhonov requires the inversion of a L�×L�−matrix,
Landweber-Fridman is an iterative method.

The extended spectral cut-off regularization is given by

ϕ
� =
∑

�����
�

1
λ�

〈r, ψ�
〉φ� + ∑

�����
�

λ�
α�

〈r, ψ�
〉φ�

for some threshold α�. The estimator is

ϕ̂� = ∑
������
�

1
λ̂�

〈
r̂�, ψ̂�

〉
φ̂� + ∑

������
�

λ̂�
α�

〈
r̂�, ψ̂�

〉
φ̂�.

3.4. Regularization bias
In this subsection, we focus on the control of the bias associated with the regularized
solution ϕ
 = R
r = R
Kϕ :

‖ϕ
− ϕ‖ = ‖(R
K − I)ϕ‖ .
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More precisely, we would like to characterize the decay rate of ‖ϕ
− ϕ‖ when α goes to
zero. First, it is important to realize that the norm of bounded operators does not help
in this respect. Indeed, we have

‖(R
K − I)ϕ‖ ≤ ‖R
K − I‖ ‖ϕ‖
but ‖R
K − I‖ does not converge toward zero when α goes to zero. To see this (see also
Kress, 1999, Theorem 15.6), suppose for a moment that for some ᾱ > 0 :

‖R�
K − I‖ ≤ 12 .
Then ∥∥K��r∥∥ ≤ ∥∥K��r −R�
KK��r∥∥+ ‖R�
r‖

≤ 1
2
∥∥K��r∥∥+ ‖R�
‖ ‖r‖

⇒ ∥∥K��r∥∥ ≤ 2 ‖R�
‖ ‖r‖
which would imply that the operator K�� is bounded with ‖K��‖ ≤ 2 ‖R�
‖ . Since we
know that it is not the case, there is no hope to get some convergence results about‖ϕ
− ϕ‖ which would be uniform on the unit sphere. Therefore we must consider some
specific sets U of functions ϕ to solve the equation:

Kϕ = r, ϕ ∈ U .
As already announced, we do not consider the case of regularization by compacity and
we prefer to focus on specific sets U = Φ�, β > 0 of functions ϕ characterized through
the rate of convergence of their Fourier coefficients. From (3.11), we know that

‖ϕ− ϕ
‖	 = �∑
���
[1− q (α, λ�)]	 〈ϕ, φ�〉	 . (3.19)

Since for ϕ ∈ Φ�,
�∑
���

〈ϕ, φ�〉	
λ	�
�

<∞,

the bias (3.19) will be controlled on Φ� if the function
λ→ [1− q (α, λ)]	λ	� (3.20)

is upper bounded uniformly on [0, ‖K‖] by a function of α going to zero with α. Note
that, since

lim��� [1− q (α, λ)]	λ	� = 0,
lim
�� [1− q (α, λ)]	λ	� = 0,

we may expect that the maximum of (3.20) is reached for a positive value λ
�� which goes
to zero with α. We confine our attention to the regularization schemes defined below.
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Definition 3.7. A regularization scheme q (α, λ) is geometrically unbiased if, for all β ∈
(0, 2) and α positive in a neighborhood of zero,

λ
�� ≡ arg max��������� [1− q (α, λ)]	λ	� ∈ R�
�

satisfies

lim
��
λ	

��

α ∈ R�
�
, (3.21)

lim
�� [1− q (α, λ
��)]	 ∈ R�
�
. (3.22)

Remark that if lim
��λ	

��/α = γ > 0, one may expect that

lim
�� q (α, λ
��) ∈ (0, 1) , (3.23)
that is (3.22), since lim
�� q (α, λ) = 1 for all λ and lim��� q (α, λ) = 0 for all α. Ac-
tually, it is easy to check that the regularization schemes considered previously are all
geometrically unbiased except for the spectral cut-off.

Example (Tikhonov regularization - continued)

λ
�� = argmax� α	

(α + λ	)	λ	�

gives for all β ∈ (0, 2) :
λ	

�� = αβ

2− β .

Then
λ	

��

α = β
2− β ∈ R�

�

and
1− q (α, λ
��) = α

α+ 
�
	��
= 1− β

2 ∈ R�
�
.

In other words, the functions of α defined in (3.21) and (3.22) are positive constant and
then coincide identically with their limits when α goes to zero.

Example (Landweber-Fridman - continued)
λ
�� = argmax� [1− cλ	]	
λ	�
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gives

λ
�� = β
c
[
β + 2α

]��
.

Then, we have

lim
��
λ	

��

α = lim
��
β
c [αβ + 2]

�� = β
2c ∈ R�

�

and
lim
�� [1− q (α, λ
��)]	 = lim
��

[
1− β

β + 	



]	


= lim
��exp
[ 2
α ln

(
1− β

β + 	



)]
= exp (−β) ∈ R�

�
.

Example (Extended Spectral cut-off - continued)

λ
�� = argmax�
[
1− λ	

α
]	

I {λ < √α}λ	�

gives
λ	

�� = αβ

β + 2 .
Then,

λ	

��

α = β
β + 2 ∈ R�

�

and
1− q (α, λ
��) = 1− β

β + 2 =
2

β + 2 ∈ R�
�

for all β ∈ (0, 2) . In this case too, the functions of α defined in (3.21) and (3.22) are
positive constant.
Geometrically unbiased regularization schemes allow one to get geometric rates of

convergence of the regularization:
Proposition 3.8. Let K : H → E be an injective compact operator. Let us assume that
the solution ϕ of Kϕ = r is in the β−regularity space of operator K, for some β ∈ (0, 2).
Then, if ϕ
 is defined by a second order geometrically unbiased regularization scheme, we
have

‖ϕ
− ϕ‖	 = O (α�) .
42



Proof. To see this, just note that
‖ϕ− ϕ
‖	

α� =
�∑
���

[1− q (α, λ�)]	 〈ϕ, φ�〉	
α�

≤ �∑
���
[1− q (α, λ
��)]	 λ

	�

��

α�
〈ϕ, φ�〉	

λ	�
�

But, by Assumptions (3.19) and (3.20), the function

α → [1− q (α, λ
��)]	 λ
	�

��

α�
admits a finite upper bound c.
Then

‖ϕ− ϕ
‖	
α� ≤ c

�∑
���

〈ϕ, φ�〉	
λ	�
�

< +∞
for ϕ ∈ Φ�.
In other words, while the solvability criterion of Kϕ = r imposes r ∈ Ψ� for some

γ ≥ 1, we will get a geometric rate of decay of the regularization bias as soon as r ∈ Ψ�

for some γ > 1. Note that the upper bound β = 2 of the rate of decay is just a matter
of normalization of the parameter α of regularization. By (3.19), ‖ϕ
− ϕ‖	 cannot go to
zero faster than [1− q (α, λ)]	 (for a given λ), that is α	.
Finally, note that Vanhems and Loubes (2003) give conditions on regularization schemes

such that the reciprocal of (3.8) is verified. They show in particular that, for Tikhonov
regularization Φ� is exactly the set of function ϕ such that

‖ϕ− ϕ
‖	
α� ≤ c

�∑
���

〈ϕ, φ�〉	
λ	�
�

< +∞.

3.5. Estimation bias
Regularization schemes have precisely been introduced because the right hand side r of
the inverse problem Kϕ = r is generally unknown and replaced by an estimator. Let us
denote by r̂� an estimator computed from an observed sample of size n. As announced
in the introduction, a number of relevant inverse problems in econometrics are even more
complicated since the operator K itself is unknown.
Actually, in order to apply a regularization scheme, we may need not only an estimator

of K but also of its adjoint K � and of its singular system {λ�, φ�, ψ� : j = 1, 2, ...}. In this
subsection, we consider such estimators K̂�, K̂ �� and

{
λ̂�, φ̂�,ψ̂� : j = 1, ..., L�

}
as given.

We also maintain the identification assumption, so that the equation Kϕ = r defines
without ambiguity a true unknown value ϕ�.
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If ϕ
 = A
K �r is the chosen regularized solution, the proposed estimator ϕ̂� of ϕ� is
defined by

ϕ̂� = Â
�K̂ ��r̂�. (3.24)
Note that the definition of this estimator involves two decisions: First, we need to select a
sequence (α�) of regularization parameters so that lim���α� = 0 (possibly in a stochastic
sense in the case of a data-driven regularization) in order to get a consistent estimator
of ϕ�. Second, for a given α�, we estimate the second order regularization scheme A
�K �
by Â
�K̂ ��. Generally speaking, Â
� is defined from (3.14) where the singular values are
replaced by their estimators and the inner products 〈ϕ, φ�〉 are replaced by some empirical
counterpart (see Subsection 2.5.1). Yet, we will show later (in Subsection 3.3) that in some
cases, the estimation of the regularized solution does not involve the estimators λ̂� but
only the estimators K̂� and K̂ ��.
In any case, the resulting estimator bias ϕ̂� − ϕ� has two components:

ϕ̂� − ϕ� = ϕ̂� − ϕ
� + ϕ
� − ϕ�. (3.25)
While the second component ϕ
� − ϕ� defines the regularization bias characterized in
the previous subsection 3.4, the first component ϕ̂� − ϕ
� is the bias corresponding to
the estimation of the regularized solution of ϕ
�. The goal of this subsection is to point
out a set of statistical assumptions about the estimators K̂�, K̂ ��, and r̂� that allow to
upper bound (asymptotically) the specific estimation bias magnitude ∥∥ϕ̂� − ϕ
�

∥∥ when
the regularization bias ∥∥ϕ
� − ϕ�

∥∥ is controlled.
Proposition 3.9 (Estimation bias). If ϕ
 = A
K �r is the regularized solution where
A
 is a second order regularization scheme conformable to (3.14)-(3.15) and ϕ̂� = Â��K̂ �

�r̂�,
then ∥∥ϕ̂� − ϕ��

∥∥ (3.26)
≤ d (α�)

∥∥∥K̂ �
�r̂� − K̂ �

�K̂�ϕ�

∥∥∥+ ∥∥∥(Â��K̂ �
�K̂� −A��K �K

)
ϕ�

∥∥∥
If, in addition, a regularization scheme is said to be smooth when∥∥∥(Â��K̂ �

�K̂� − A��K �K
)
ϕ�

∥∥∥
≤ d (α�)

∥∥∥K̂ �
�K̂� −K �K

∥∥∥∥∥ϕ�� − ϕ�

∥∥ (1 + ε�) (3.27)

with ε� = O
(∥∥∥K̂ �

�K̂� −K �K
∥∥∥) , then both the Tikhonov and Landweber-Fridman

regularization schemes are smooth. In the Tikhonov case, ε� = 0 identically.
Proof.

ϕ̂� − ϕ�� = Â��K̂ �
�r̂� − A��K �r

= Â��K̂ �
�

(
r̂� − K̂�ϕ�

)
+ Â��K̂ �

�K̂�ϕ�− A��K �Kϕ�
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Thus,
∥∥ϕ̂� − ϕ��

∥∥ ≤ d (α�)
∥∥∥K̂ �

�r̂� − K̂ �
�K̂�ϕ�

∥∥∥+ ∥∥∥Â��K̂ �
�K̂�ϕ�− A��K �Kϕ�

∥∥∥ .
• Case of Tikhonov regularization:

Â��K̂ �
�K̂�ϕ�−A��K �Kϕ� (3.28)

= Â��

(
K̂ �

�K̂� −K �K
)
ϕ� +

(
Â�� − A��

)
K �Kϕ�.

Since, in this case,
A� = (αI +K �K)�� ,

the identity
B��− C�� = B��(C −B)C��

gives
Â�� − A�� = Â��

(
K �K − K̂ �

�K̂�

)
A��

and thus, (
Â�� − A��

)
K �Kϕ� = Â��

(
K �K − K̂ �

�K�

)
A��K �Kϕ� (3.29)

= Â��

(
K �K − K̂ �

�K̂�

)
ϕ��.

(3.28) and (3.29) together give
Â��K̂ �

�K̂�ϕ�− A��K �Kϕ�

= Â��

(
K̂ �

�K̂� −K �K
) (ϕ�− ϕ��

) ,
which shows that Tikhonov regularization is smooth with ε� = 0.

• Case of Landweber-Fridman regularization:
In this case,

ϕ� =
�∑
���

[
1− (1− cλ��)���] < ϕ�, ϕ� > ϕ�

=
[
I − (I − cK �K)���

]
ϕ�.
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Thus,
Â��K̂ �

�K̂�ϕ�− A��K �Kϕ�

=
[
(I − cK �K)���� − (

I − cK̂ �
�K̂�

)����]ϕ�[
I − (

I − cK̂ �
�K̂�

)���� (I − cK �K)�����
]
(I − cK �K)���� ϕ�[

I − (
I − cK̂ �

�K̂�

)���� (I − cK �K)�����
] (ϕ�− ϕ��

) .
Then, a Taylor expansion gives:∥∥∥∥I − (

I − cK̂ �
�K̂�

)���� (I − cK �K)�����
∥∥∥∥

=
∥∥∥∥ c
α�

(
K̂ �

�K̂� −K �K
)∥∥∥∥ (1 + ε�)

with ε� = O
(∥∥∥K̂ �

�K̂� −K �K
∥∥∥).

The result follows with d(α) = c/α.
Note that a similar result has not been derived for a spectral cut off regularization. In

that case, the threshold introduces a lack of smoothness which precludes a similar Taylor
expansion based argument.
The result of Proposition 3.9 jointly with (3.25) shows that two ingredients matter in

controlling the estimation bias ‖ϕ̂� − ϕ�‖ . First, the choice of a sequence of regularization
parameters α� will govern the speed of convergence to zero of the regularization bias∥∥ϕ�� − ϕ�

∥∥ (for ϕ� in a given Φ�) and the speed of convergence to infinity of d (α�).
Second, nonparametric estimation of K and r will determine the rate of convergence of∥∥∥K̂ �

�r̂� − K̂ �
�K̂�ϕ�

∥∥∥ and ∥∥∥K̂ �
�K̂� −K �K

∥∥∥ .

4. Asymptotic properties of solutions of integral equations of the
first kind 4

4.1. Consistency
Let ϕ� be the solution of Kϕ = r. By abuse of notation, we denote X� = O (c�) for
positive sequences {X�} and {c�}, if the sequence X�/c� is upper bounded.
We maintain the following assumptions:

A1. K̂�, r̂� are consistent estimators of K and r.
A2.

∥∥∥K̂ �
�K̂� −K �K

∥∥∥ = O
( �
��

)
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A3.
∥∥∥K̂ �

�r̂� − K̂ �
�K̂�ϕ�

∥∥∥ = O
( �

��

)
As before ϕ� = A�K �r is the regularized solution where A� is a second order regular-

ization scheme and ϕ̂� = Â��K̂ �
�r̂�. Proposition 4.1 below follows directly from Proposi-

tion 3.9 and Definition 3.6 (with the associated normalization rule αd(α) = O(1)):
Proposition 4.1. When applying a smooth regularization scheme, we get:

‖ϕ̂� − ϕ�‖
= O

( 1
α�b� +

( 1
α�a� + 1

)∥∥ϕ�� − ϕ�

∥∥) .

Discussion on the rate of convergence:
The general idea is that the fastest possible rate of convergence in probability of‖ϕ̂� − ϕ�‖ to zero should be the rate of convergence of the regularization bias ∥∥ϕ�� − ϕ�

∥∥.
Proposition 4.1 shows that these two rates of convergence will precisely coincide when the
rate of convergence to zero of the regularization parameter α� is chosen sufficiently slow
with respect to both the rate of convergence a� of the sequence of approximations of the
true operator and the rate of convergence b� of the estimator of the right-hand side of
the operator equation. This is actually a common strategy when both the operator and
the right-hand side of the inverse problem have to be estimated (see e.g. Vapnik (1998),
corollary p. 299).
To get this, it is first obvious that α�b� must go to infinity at least as fast as∥∥ϕ�� − ϕ�

∥∥��. For ϕ� ∈ Φ�, 0 < β < 2, this means that:
α��b�� ≥ α���

that is α� ≥ b� ���
�� . To get the fastest possible rate of convergence under this con-

straint, we will choose:
α� = b� ���

�� .
Then, the rate of convergence of ‖ϕ̂� − ϕ�‖ and ∥∥ϕ�� − ϕ�

∥∥ will coincide if and only
if a�b� ���

�� is bounded away from zero. With this way to define optimality, we have thus
proved:
Proposition 4.2. Consider a smooth regularization scheme, with estimators of K and
r conformable to Assumptions A1, A2, A3, and a�b� ���

�� bounded away from zero. For
ϕ� ∈ Φ�, 0 < β < 2, the optimal choice of the regularization parameter is α� = b� ���

�� ,
and then,

‖ϕ̂� − ϕ�‖ = O
(
b�

�
��

��

)
.
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Note that the only condition about the estimator of the operator K �K is that its rate
of convergence a� is sufficiently fast to be greater than b ���

�� . But, under this condition,
the rate of convergence of ϕ̂� does not depend upon the accuracy of the estimator of
K �K. Of course, the more regular the unknown function ϕ� is, the larger β is and the
easier it will be to meet the required condition. Closer is β to its upper bound 2, closer is
the rate of convergence of ϕ̂� to the parametric rate. Generally speaking, the condition
will involve the relative bandwidth sizes in the nonparametric estimation of K �K and
K �r. Note that if, as it is generally the case for a convenient bandwidth choice (see e.g.
subsection 5.4), b� is the parametric rate (b� = √n), a� must be at least n������. For β
not too small, this condition will fulfilled by optimal nonparametric rates. For instance,
the optimal unidimensional nonparametric rate n���� will work as soon as β ≥ 1/2.
4.2. Asymptotic normality
Asymptotic normality of

ϕ̂� − ϕ� = ϕ̂� − ϕ�� + ϕ�� − ϕ�

= Â��K̂ �
�r̂� − A��K �Kϕ� + ϕ�� − ϕ�

can be deduced from a functional central limit theorem applied to K̂ �
�r̂� − K̂ �

�K̂�ϕ�.
Therefore, we must reinforce Assumption A3 by assuming a weak convergence in H:

Assumption WC:
b�

(
K̂ �

�r̂� − K̂ �
�K̂�ϕ�

)⇒N (0,Σ) in H.
According to (3.26), (3.28), and (3.29), we have in the case of Tikhonov regularization:

b� (ϕ̂� − ϕ�) = b�Â��

[
K̂ �

�r̂� − K̂ �
�K̂�ϕ�

]
(4.1)

+b�Â��

[
K̂ �

�K̂� −K �K
] (ϕ�− ϕ��

) (4.2)
while an additional term corresponding ε� in (3.27) should be added for general regular-
ization schemes. The term (4.1) can be rewritten as

Â��ξ + Â�� (ξ� − ξ)
where ξ denotes the random variable N (0,Σ) in H and

ξ� = b�
(
K̂ �

�r� − K̂ �
�K̂�ϕ�

)
.

By definition: 〈
Â��ξ, g

〉
∥∥∥Σ���Â��g

∥∥∥
�→ N (0, 1)
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for all g ∈ H. Then, we may hope to get a standardized normal asymptotic probability
distribution for

〈b� (ϕ̂� − ϕ�) , g〉∥∥∥Σ���Â��g
∥∥∥

for vectors g conformable to the following assumption:
Assumption G ∥∥∥Â��g

∥∥∥∥∥∥Σ���Â��g
∥∥∥ = O (1) .

Indeed, we have in this case:
∣

∣

∣

〈

Â�� (ξ� − ξ) , g
〉∣

∣

∣

∥

∥

∥Σ���Â��g
∥

∥

∥

≤ ‖ξ� − ξ‖ ∥∥∥Â��g
∥

∥

∥

∥

∥

∥Σ���Â��g
∥

∥

∥

which converges to zero in probability because ‖ξ� − ξ‖ �→ 0 by WC. We are then able to
show:
Proposition 4.3. Consider a Tikhonov regularization. Suppose Assumptions A1, A2,
A3, and WC hold and ϕ� ∈ Φ�, 0 < β < 2, with b�α���

� →
��� 0, we have for any g

conformable to G:
〈b� (ϕ̂� − ϕ�) , g〉
∥

∥

∥Σ���Â��g
∥

∥

∥

�→N (0, 1) .
Proof. ¿From the proof of Proposition 3.9, we have:

〈b� (ϕ̂� − ϕ��

) , g〉

=
〈

Â��ξ, g
〉

+
〈

Â�� (ξ� − ξ) , g
〉

+
〈

b�Â��

[

K̂ �
�K̂� −K �K

]

(ϕ�− ϕ��

) , g
〉

(4.3)
in the case of Tikhonov regularization. We already took care of the terms in ξ and ξ�, it
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remains to deal with the bias term corresponding to (4.3):
b�
〈

Â��

(

K̂ �
�K̂� −K �K

)

(ϕ�− ϕ��

) , g
〉

∥

∥

∥Σ���Â��g
∥

∥

∥

≤ b�
〈(

K̂ �
�K̂� −K �K

)

(ϕ�− ϕ��

) , Â��g
〉

∥

∥

∥Σ���Â��g
∥

∥

∥

≤ b�
∥

∥

∥K̂ �
�K̂� −K �K

∥

∥

∥

∥

∥ϕ�− ϕ��

∥

∥

∥

∥

∥Â��g
∥

∥

∥

∥

∥

∥Σ���Â��g
∥

∥

∥

= O
(

b�α����
a�

)

.

Discussion of Proposition 4.3.
(i) It is worth noticing that Proposition 4.3 does not deliver in general a weak con-

vergence result for b� (ϕ̂� − ϕ�) because it does not hold for all g ∈ H. However, the
condition G is not so restrictive. It just amounts to assume that the multiplication by
Σ�

�� does not modify the rate of convergence of Â��g.
(ii) We remark that for g = K �Kh, Â��g and Σ�

��Â��g converge respectively to h and
Σ�

��h. Moreover, if g �= 0, Σ�
��h = Σ�

�� (K �K)	�g �= 0. Therefore, in this case, not only
the condition G is fulfilled but we get asymptotic normality with rate of convergence b�,
that is typically root n. This result is conformable to the theory of asymptotic efficiency
of inverse estimators as recently developed by Van Rooij, Ruymgaart and Van Zwet
(2000). They show that there is a dense linear submanifold of functionals for which the
estimators are asymptotically normal at the root n rate with optimal variance (in the
sense of minimum variance in the class of the moment estimators). We do get optimal
variance in Proposition 4.3 in this case since (using heuristic notations as if we were in
finite dimension) the asymptotic variance is:

lim�
�g�A��ΣA��

= g� (K �K)	�Σ(K �K)	�g.
Moreover, we get this result in particular for any nonzero g in R (K �K) while we

know that R (K �) is dense in H (identification condition). Generally speaking, Van
Rooij, Ruymgaart and Van Zwet (2000) stress that the inner products do not converge
weakly for every vector g in H at the same rate, if they converge at all.
(iii) The condition b�α���� → 0 imposes a convergence to zero of the regularization

coefficient α� faster than the optimal rate α� = b	������� . This condition is needed to
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show that the regularization bias multiplied by b� converges to zero. A fortiori, the
estimation bias term vanishes asymptotically.
The results of Proposition 4.3 are established under strong assumptions: convergence

in H and restriction on g. An alternative method consists in establishing the normality
of ϕ̂� by the Liapunov condition (Davidson, 1994), see the example on deconvolution in
Section 5 below.

5. Applications
A well-known example is that of the kernel estimator of the density. Indeed, the estimation
of the pdf f of a random variable X can be seen as solving an integral equation of the
first kind

Kf (x) =
∫

��

	�
I (u ≤ x) f (u) du = F (x) (5.1)

where F is the cdf of X. Applying the Tikhonov regularization to (5.1), one obtains a
kernel estimator of f . This example is detailed in Hardle and Linton (1994) and in Vapnik
(1998) and will not be discussed further.
This section review the standard example of the Ridge regression and less standard

examples such as the regression with an infinity of regressors, the deconvolution and the
instrumental variable estimation.

5.1. Ridge regression
The Tikhonov regularization discussed in Section 3 can be seen as an extension of the
well-known ridge regression. The ridge regression was introduced by Hoerl and Kennard
(1970). It was initially motivated by the fact that in presence of nearly multicollinearity
of the regressors, the least squares estimator may vary dramatically as the result of a
small perturbation in the data. The ridge estimator may also have a lower risk than the
conventional least squares estimator. For a review of this method, see Judge, Griffiths,
Hill, Lutkepohl, and Lee (1980) and for a discussion in the context of inverse problems,
see Ruymgaart (2001).
Consider the linear model (the notation of this paragraph are specific and corresponds

of general notations of linear models).
y = Xβ + ε

where y and ε are n × 1−random vectors, X is a n × q matrix of regressors of full rank,
and β is an unknown q × 1−vector of parameters. The classical least-squares estimator
of β is

β̂ = (X �X)	�X �y.
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There exists an orthogonal transformation such that X �X = P �DP with

D =






λ� 0
. . .

0 λ�







λ� > 0 and P �P = I�. Using the mean square error as measure of the risk, we get

E
∥

∥

∥β̂ − β
∥

∥

∥

�
= E

∥

∥

∥(X �X)	� (X � (Xβ + ε)− β)
∥

∥

∥

�

= E
∥

∥

∥(X �X)	�X �ε
∥

∥

∥

�

= E
(

ε�X (X �X)	�X �ε
)

= σ�trace
(

X (X �X)	�X �
)

= σ�trace
(

(X �X)	�
)

= σ�trace (P �D	�P )

= σ�
�

∑

���

1
λ� .

If some of the columns of X are closely collinear, the eigenvalues may be very small and
the risk very large.
A solution is to use the ridge regression estimator:

β̂� = (aI +X �X)	�X �y, a > 0.

or

β̂� =
(

α + 1nX �X
)

	� 1
nX �y, a > 0.

where α = �
� corresponds to the regularization parameter introduced in the othersections.

β̂� may have a lower risk that β̂ but it is no longer unbiased. We have
β� = Eβ̂�

= (aI +X �X)	�X �Xβ.
Using the fact that A	�−B	� = A	� [B − A]B	�. The bias can be rewritten as

β�− β = (aI +X �X)	�X �Xβ − (X �X)	�X �Xβ
= a (aI +X �X)	�β.
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The risk becomes
E
∥

∥

∥β̂�− β
∥

∥

∥

�
= E

∥

∥

∥β̂� − β�

∥

∥

∥

�
+ ‖β� − β‖�

= E
∥

∥

∥(aI +X �X)	�X �ε
∥

∥

∥

�
+ a�

∥

∥

∥(aI +X �X)	�β
∥

∥

∥

�

= E
(

ε�X (aI +X �X)	�X �ε
)

+ a�
∥

∥

∥(aI +X �X)	�β
∥

∥

∥

�

= σ�trace
(

(aI +X �X)	�X �X
)

+ a�
∥

∥

∥(aI +X �X)	�β
∥

∥

∥

�

= σ�
�

∑

���

λ�
(a+ λ�)� + a�

�
∑

���

(

(Pβ)�
)
�

(a + λ�)� .

There is the usual trade-off between the variance (decreasing in a) and the bias (increasing
in a). For each β and σ�, there is a value of a for which the risk of β̂� is smaller than
that of β̂. When q is finite, the inverse of X �X is still continuous and the regularization
is not absolutely necessary, however, when the number of regressors is infinite, some kind
of regularization needs to be implemented as the risk of β̂

E
∥

∥

∥β̂ − β
∥

∥

∥

�
= σ�

�
∑

���

1
λ�

is no longer bounded.

5.2. Regression with an infinity of regressors
Consider the following model

Y =
∫

Z (τ )ϕ (τ) π (dτ) + U (5.2)

where Z is exogenous, π is a known measure (possibly with finite support). One observes
(y�, z� (τ ))��������� .First approach: Ridge regression
(5.2) can be rewritten as







y�...
y�





 =






∫ z� (τ)ϕ (τ )π (dτ )...
∫ z� (τ)ϕ (τ )π (dτ )





+






u�...
u�







or equivalently
y = Kϕ+ u
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where the operator K is defined in the following manner
K : L� (π)→ R�

Kϕ =






∫ z� (τ)ϕ (τ )π (dτ )...
∫ z� (τ )ϕ (τ) π (dτ )





 .

As it is usual in the regression, the error term u is omitted and we solve
Kϕ = y

using a regularized inverse
ϕ� = (K �K + αI)	�K �y. (5.3)

As an exercise, we compute K � and K �K. To compute K �, we solve
〈Kϕ,ψ〉 = 〈ϕ,K �ψ〉

for ψ = (ψ�, ..., ψ�) and we obtain

(K �y) (τ ) = 1
n

�
∑

���
y�z� (τ) ,

K �Kϕ (τ ) =
∫ 1

n
�
∑

���
z� (τ ) z� (s)ϕ (s) π (ds) .

The properties of the estimator (5.3) are further discussed in Van Rooij, Ruymgaart and
Van Zwet (2000).

Second approach: moment conditions
Alternatively, (5.2) can be rewritten as

E [Y − 〈Z, ϕ〉 |Z (τ )] = 0 for all τ in the support of π
Replacing the conditional moments by unconditional moments, we have

E [Y Z (τ )− 〈Z,ϕ〉Z (τ )] = 0⇐⇒
∫

E [Z (τ)Z (s)]ϕ (s) π (ds) = E [Y Z (τ )]⇐⇒
Tϕ = r. (5.4)

The operator T can be estimated by T̂�, the operator with kernel 1n
∑�

��� z� (τ) z� (s) and
r� can be estimated by r̂� (τ ) = 1n

∑�
���y�z� (τ) . Hence (5.4) becomes

T̂�ϕ = r̂� (5.5)
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which is equal to
K �Kϕ = K �y.

If one preconditions (5.5) by applying the operator T̂ ��, one gets the solution
ϕ̂� =

(

αI + T̂ ��T̂�
)

T̂ �� r̂� (5.6)
which differs from the solution (5.3). When α goes to zero at an appropriate rate of con-
vergence (different in both cases), the solutions of (5.3) and (5.6) will be asymptotically
equivalent. Actually the preconditioning by an operator in the Tikhonov regularization
has for purpose to construct an operator which is positive self-adjoint. Because T̂� = K �K
is already positive self-adjoint, there is no reason to precondition here. Sometimes precon-
ditioning more than necessary has for aim to facilitate the calculations (see Ruymgaart,
2001).
Using the results of Section 4, we can establish the asymptotic normality of ϕ̂� defined

in (5.6).
Assuming that
A1 - u� has mean zero and variance σ� and is uncorrelated with z� (τ ) for all τ
A2 - u�z� (.) is an iid process of L� (π) .
A3 - E ‖u�z� (.)‖� < ∞.
we have
(i)

∥

∥

∥T̂ �
� − T �∥

∥

∥ = O
(

���
)

(ii) √n
(

T̂�r̂� − T̂ �
�ϕ�

) ⇒ N (0,Σ) in L� (π) .
(i) is straightforward. (ii) follows from

r̂� − T̂�ϕ� = 1
n

�
∑

���
y�z� (τ)− ∫ 1

n
�
∑

���
z� (τ) z� (s)ϕ� (s) π (ds)

= 1
n

�
∑

���
u�z� (τ) .

We have a� = √n and b� = √n, hence if β > 0, the condition of Proposition ?? are
satisfied. Under Assumptions A1 to A3, we have

1√n
�
∑

���
u�z� (τ)⇒ N (0, σ�T )

in L� (π) by Theorem 2.46.Hence
√n

(

T̂�r̂� − T̂ �
�ϕ�

) ⇒ N (0, σ�T �) .
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Let us rewrite Condition G in terms of the eigenvalues λ� and eigenfunctions φ� of T :
∥

∥

∥(T �+ α�I)	�g
∥

∥

∥

�

∥

∥T ��� (T �+ α�I)	�g∥∥
� = O (1)

⇔
∑�

���
〈� �

��〉�
(�����)�

∑�
���

�
��〈� �

��〉�
(�����)�

= O (1) .

Obviously the condition G will not be satisfied for all g in L� (π) .
By Proposition 4.2., assuming that ϕ� ∈ Φ�, 0 < β < 2 and √nα�� → 0, we have for g

conformable with Condition G,
〈√n (ϕ̂� − ϕ�) , g〉

∥

∥T ��� (T �+ α�I)	�g∥∥
�→ N (0, 1) .

The asymptotic variance is given by
∥

∥T 	�
��g∥∥

�
=

�
∑

���

〈g, φ�〉
�

λ� .

Whenever it is finite, that is whenever g ∈ R (T 	�
��), 〈(ϕ̂� − ϕ�) , g〉 converges at the

parametric rate.
We can relate Model (5.2) to the regression with a very large number of regressors

considered by Stock and Watson (1998) and Forni and Reichlin (1998). Their objective is
to forecast a single time series using many explanatory variables. To do so, they extract
common factors to the dependent variable y and the independent variables Z. These
factors are estimated by the first l eigenvectors of the matrix Z �Z. A forecast of y is
obtained by regressing y on these eigenvectors. This approach consists in applying a
spectral cut-off regularization scheme instead of the Tikhonov regularization discussed
above.
5.3. Deconvolution
This example is detailed in Carrasco and Florens (2002a). Assume we observe iid realiza-
tions y�, ..., y� of a random variable Y with unknown pdf h, where Y satisfies

Y = X + Z
where X and Z are independent random variables with pdf ϕ and g respectively. The
aim is to give an estimator of ϕ assuming g is known. This problem consists in solving in
ϕ the equation:

h (y) =
∫

g (y − x)ϕ (x) dx. (5.7)
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(5.7) is an integral equation of the first kind where the operator K defined by (Kϕ) (y) =
∫ g (y − x)ϕ (x) dx has a known kernel and need not be estimated. Note that K is not a
compact operator with respect to Lebesgue measure and hence has a continuous spectrum.
The most common approach to solving (5.7) is to use a kernel estimator, this method was
pioneered by Carroll and Hall (1988) and Stefanski and Carroll (1990). It is essentially
equivalent to inverting Equation (5.7) by means of the continuous spectrum of K, see
Carroll, Van Rooij, and Ruymgaart (1991). In a related paper, Van Rooij and Ruymgaart
(1991) propose a regularized inverse to a convolution problem of the type (5.7) where g
has for support the circle. They invert the operator K using its continuous spectrum.
Our approach is different. Instead of working with respect to Lebesgue measure, we define
two spaces of reference, L�

�� (R) and L�
�� (R), as:

L�
�� (R) =

{

φ (x) such that
∫

φ (x)�π� (x) dx <∞}

,

L�
�� (R) =

{

ψ (y) such that
∫

ψ (y)�π� (y) dy <∞}

.
We choose π� and π� so that K is a Hilbert-Schmidt operator from L�

�� (R) to L�
�� (R),

that is the following condition is satisfied
∫ ∫ (π� (y) g (y − x)

π� (y)π� (x)
)
�

π� (y)π� (x) dxdy <∞.
As a result K has a discrete spectrum for these spaces of reference. Let {λ	, φ	, ψ	

} denote
its singular value decomposition. Equation (5.7) can be approximated by a well-posed
problem using Tikhonov regularization

(α
I +K �K)ϕ� = K �h.
Hence we have

ϕ� (x) =
�
∑

	��

1
α
 + λ�	

〈K �h, φ	〉φ	 (x)

=
�
∑

	��

1
α
 + λ�	

〈h,Kφ	〉φ	 (x)

=
�
∑

	��

λ	
α
 + λ�	

〈h, ψ	
〉φ	 (x)

=
�
∑

	��

λ	
α
 + λ�	E

[ψ	 (Y�) π� (Y�)]φ	 (x) .

The estimator of ϕ is obtained by replacing the expectation by a sample mean:
ϕ̂
 = 1n



∑

���

�
∑

	��

λ	
α
 + λ�	 ψ	 (y�)π� (y�)φ	 (x) .

57



Note that we avoided estimating h by a kernel estimator. In some cases, ψ	 and φ	 are
known. For instance, if Z ∼ N (0, σ�), π� (y) = φ (y/τ ) and π� (x) = φ (x/√τ �+ σ�)
then ψ	 and φ	 are Hermite polynomials associated with λ	 = ρ	. When ψ	 and φ	 are
unknown, they can be estimated via simulations. As one can do as many simulations as
one wishes, the error due to the estimation of ψ	 and φ	 can be considered negligeable.
Using the results of Section 3, one can establish the rate of convergence of ‖ϕ̂
 − ϕ�‖ .

Assume that ϕ� ∈ Φ�, 0 < β < 2, that is
�
∑

	��

〈ϕ, φ	〉
�

λ��	 <∞.

We have ∥∥ϕ� − ϕ�
∥

∥ = O
(

α���



)

and ∥∥ϕ̂
 − ϕ�
∥

∥ = O (1/ (α
√n)) as here b
 = √n. For
an optimal choice of α
 = Cn�

�������, ‖ϕ̂
 − ϕ�‖� is O (n�
�������). The mean integrated

square error (MISE) defined as E ‖ϕ̂
 − ϕ�‖� has the same rate of convergence. Fan (1993)
provides the optimal rate of convergence for a minimax criterion on a Lipschitz class of
functions. The optimal rate of the MISE when the error term is normally distributed is
only (lnn)�� when ϕ is twice differentiable. On the contrary, here we get an arithmetic
rate of convergence. The condition ϕ� ∈ Φ� has for effect to reduce the class of admissible
functions and hence to improve the rate of convergence. Which type of restriction does
ϕ� ∈ Φ� impose? In Carrasco and Florens (2002a), it is shown that ϕ� ∈ Φ� is satisfied if

∫ ∣

∣

∣

∣

ψ�� (t)
ψ	 (t)

∣

∣

∣

∣

dt <∞ (5.8)

where ψ�� and ψ	 denote the characteristic functions of ϕ� and g respectively. This condi-
tion can be interpreted as the noise is “smaller” than the signal. Consider for example the
case where ϕ� and g are normal. Condition 5.8 is equivalent to the fact that the variance
of g is smaller than that of ϕ�. Note that the condition ϕ� ∈ Φ� relates ϕ� and g while
one usually imposes restrictions on ϕ� independently of those on g.

5.4. Instrumental variables
This example is detailed in Darolles, Florens and Renault (2002).
An economic relationship between a response variable Y and a vector Z of explanatory

variables is often represented by an equation:
Y = ϕ (Z) + U , (5.9)

where the function ϕ(.) should define the relationship of interest while U is an error term.
The relationship (5.9) does not characterize the function ϕ if the residual term is not
constrained. This difficulty is solved if it is assumed that E[U | Z] = 0, or if equivalently
ϕ (Z) = E[Y | Z]. However in numerous structural econometric models, the conditional
expectation function is not the parameter of interest. The structural parameter is a
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relation between Y and Z where some of the Z components are endogenous. This is the
case in various situations: simultaneous equations, error-in-variables models, treatment
model with endogenous selection etc.
The first question is to add assumptions to Equation (5.9) in order to characterize ϕ.

Two general strategies exist in the literature, at least for linear models. The first one
consists in introducing some hypotheses on the joint distribution of U and Z (for example
on the variance matrix). The second one consists in increasing the vector of observables
from (Y, Z) to (Y, Z,W ), where W designates instrumental variables. The first approach
was essentially followed in the error-in-variables models and some similarities exist with
the instrumental model analysis (see e.g. Malinvaud (1970, ch. 9), Florens, Mouchart,
Richard (1974) or Florens, Mouchart, Richard (1987) for the linear case). Instrumental
variable analysis was proposed by Reiersol (1941), Reiersol (1945) and extended by Theil
(1953), Basmann (1957) and Sargan (1958).
However, even in the instrumental variables framework, a definition of the functional

parameter of interest remains ambiguous in the general nonlinear case. Three possible
definitions of ϕ have been proposed (see Florens, Heckman, Meghir and Vytlacil (2002) for
a general comparison between these three concepts and their extensions to more general
treatment models).
i) The first one replaces E[U | Z] = 0 by E[U | W ] = 0, or equivalently it defines ϕ as
the solution of

E[Y − ϕ (Z) | W ] = 0. (5.10)
This definition was the foundation of the analysis of simultaneity in linear models or

parametric nonlinear models (see Amemiya (1974)), but its extension to the nonparamet-
ric case raises new difficulties. The focus of this subsection is to show how to address this
issue in the framework of ill-posed inverse problems (see for previous attempts, Newey
and Powell (2000), quoted in Pagan and Ullah (1999));
ii) A second approach is now called control function approach and was systematized by
Newey, Powell, and Vella (1999). This technique was previously developed in specific
models (e.g. Mills ratio correction in some selection models for example). The starting
point is to compute E[Y | Z,W ] which satisfies:

E[Y | Z,W ] = ϕ (Z) + h(Z,W ), (5.11)
where h(Z,W ) = E[U | Z,W ]. Equation (5.11) does not characterize ϕ. However we
can assume that there exists a function V (the control function) of (Z,W ) (typically
Z − E[Z | W ]) which captures all the endogeneity of Z in the sense that E[U | W,V ] =
E[U | V ] = h̃ (V ). This implies that (5.11) may be rewritten as

E[Y | Z,W ] = ϕ (Z) + h̃(V ), (5.12)
and, under some conditions, ϕ may be identified from (5.12), up to an additive constant
term. This model is an additive model where the V are not observed but are estimated.
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These models are considered in Section 7.5.
iii) A third definition follows from the literature on treatment model (see e.g. Imbens,
Angrist (1994), Heckman, Ichimura, Smith, Todd (1998) and Heckman, Vytlacil (2000)).
We simplify extremely this analysis by considering Z andW as scalar. Local instrument is
defined by ���� ���

�� / �������
�� , and the function of interest ϕ is assumed to be characterized

by the relation:
���� ���

��
�������

��
= E

[∂ϕ
∂Z | W]

. (5.13)

Let us summarize the arguments which justify Equation (5.13)
Equation (5.9) is extended to a non separable model

Y = ϕ (Z) + Zε+ U (5.14)
where ε and U are two random noises.
First we assume that

E(U |W ) = E (ε|W ) = 0
This assumption extends the instrumental variable assumption but is not sufficient to
identify the parameter of interest ϕ. From (5.14) we get:

E (Y |W = w) =
∫

[ϕ (z) + zr (z, w)] f� (z|w) dz
where f� (.|.) denote the conditional density of Z givenW and r (z, w) = E (ε|Z = z,W = w) .
Then

∂
∂wE (Y |W = w) =

∫

ϕ (z) ∂
∂wf� (z|w) dz + ∫

z ∂
∂wr (z, w) f� (z|w) dz

+
∫

zr (z, w) ∂
∂wf� (z|w) dz.

We assume that the order of integration and derivative may commute (in particular the
boundary of the distribution of Z given W = w does not depends on w).
Let us now introduce the assumption that V = Z −E (Z|W ) is independent of W. In

terms of density, this assumption implies that f� (z|w) = f̃ (z −m (w)) where m (w) =
E (Z|W = w) and f̃ is the density of v. Then:

∂
∂wE (Y |W = w) = −∂m (w)

∂w
∫

ϕ (z) ∂
∂z f� (z|w) dz

+
∫

z ∂
∂wr (z, w) f� (z|w) dz

− ∂m (w)
∂w

∫

zr (z, w) ∂
∂z f� (z|w) dz

60



An integration by part of the first and the third integrations gives
∂
∂wE (Y |W = w) = ∂m (w)

∂w
∫ ∂

∂zϕ(z)f� (z|w) dz
+

∫

z
( ∂r
∂w +

∂m
∂w

∂r
∂z

)

f� (z|w) dz
+ ∂m (w)

∂w
∫

r (z, w) f� (z|w) dz
The last integral is zero under E (ε|w) = 0. Finally we need to assume that the second in-
tegral is zero. This is true in particular if there exists r̃ such that r (z, w) = r̃ (z −m (w)) .
Hence, Equation (5.13) is verified.
These three concepts are identical in the linear normal case but differ in general.

We concentrate our presentation on this chapter on the pure instrumental variable cases
defined by equation (5.10).
For a general approach of Equation (5.10) in terms of inverse problems, we introduce

the following notations:
K : L�

�(Z)→ L�
�(W ) ϕ→ Kϕ = E[ϕ (Z) | W ],

K � : L�
�(W )→ L�

�(Z) ψ → K �ψ = E[ψ (W ) | Z].
All these spaces are defined relatively to the true (unknown) DGP.

These two linear operators satisfy:
〈ϕ (Z) , ψ (W )〉 = E[ϕ (Z)ψ (W )] = 〈Kϕ (W ) , ψ (W )〉��� �� � = 〈ϕ (Z) , K �ψ (Z)〉��� ���,
and then K � is the adjoint operator of K, and reciprocally. Using these notations, the
unknown instrumental regression ϕ corresponds to any solution of the functional equation:

A(ϕ, F ) = Kϕ− r = 0, (5.15)
where r (W ) = E[Y |W ].
In order to illustrate this construction and the central role played by the adjoint

operator K �, we consider first the example where Z is discrete, namely Z is binary. In
that case a function ϕ(Z) is characterized by two numbers ϕ(0) and ϕ(1) and L�

� is
isomorphic to R�. Equation (5.10) becomes

ϕ (0) Prob (Z = 0|W = w) + ϕ (1) Prob (Z = 1|W = w) = E (Y |W = w)
The instruments W need to take at least two values in order to identify ϕ (0) and

ϕ (1) from this equation. In general ϕ is overidentified and overidentification is solved by
replacing (5.15) by

K �Kϕ = K �r
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or, in the binary case, by
ϕ (0)E (Prob (Z = 0|W ) |Z) + ϕ (1)E (Prob (Z = 1|W ) |Z) = E (E (Y |W ) |Z) .
In the latter case, we get two equations which have in general a unique solution.
This model can be extended by considering Z = (Z�, Z�) where Z� is discrete (Z� ∈ {0, 1})

and Z� be exogenous (i.e. W = (W�, Z�)). In this extended binary model, ϕ is character-
ized by two functions ϕ(0, z�) and ϕ(1, z�) solutions of
ϕ(0, z�)E (Prob (Z� = 0|W ) |Z� = z�, Z� = z�) + ϕ (1, z�)E (Prob (Z� = 1|W ) |Z� = z�, Z� = z�)

= E (E (Y |W ) |Z� = z�, Z� = z�) for z� = 0, 1

The properties of the estimator based on the previous equation are considered in Flo-
rens and Malavolti (2002). In this case, no regularization is needed because K �K has a
continuous inverse (since the dimension is finite in the pure binary case and K �K is not
compact in the extended binary model).
We can also illustrate our approach in the case where the Hilbert spaces are not

necessarily L� spaces. Consider the following semi parametric case. The function ϕ is
constrained to be an element of

X =
{

ϕ/ϕ =
�
∑

���
β �ε�

}

where (ε�)��������� is a vector of fixed functions in L�
� (Z) . Then, X is a finite dimensional

Hilbert space. However we keep the space E equal to L�
� (W ).The model is then partially

parametric but the relation between Z and W is treated non parametrically. In this
case it can be easily shown that K � transforms any function of L�

� (W ) into its best
approximation in L� sense by a function of X . Indeed:
If ψ ∈ L�

� (W ) , ∀j ∈ {1, ...L}
E (ε	ψ) = 〈Kε	, ψ〉 = 〈ε	, K �ψ〉 .

Moreover, K �ψ ∈ X =⇒ K �ψ =
�
∑

���
α�ε�, therefore

〈

ε	,
�
∑

���
α�ε�

〉

= E (ψε	)

⇔ �
∑

���
α�E (ε	ε�) = E (ψε	) .
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The function ϕ defined as the solution of Kϕ = r is in general overidentified but
the equation K �Kϕ = K �r has always a unique solution. The finite dimension of X
implies that (K �K)�� is a finite dimensional linear operator and is then continuous. No
regularization is required.
Now we introduce an assumption which is only a regularity condition when Z and W

have no element in common. However, this assumption cannot be satisfied if there are
some elements in common between Z and W . Extensions to this latter case are discussed
in Darolles, Florens and Renault (2002).
Assumption A.1: The joint distribution of (Z,W ) is dominated by the product of its
marginal distributions, and its density is square integrable w.r.t. the product of margins.
Assumption A.1 ensures that K and K � are Hilbert Schmidt operators, and is a

sufficient condition of the compactness of K, K �, K K � and K � K. (see Lancaster
(1968), Darolles, Florens, Renault (1998)) and theorem 2.34..
Under Assumption A1, the instrumental regression ϕ is identifiable if and only if 0

is not an eigenvalue of K �K. Then, for sake of expositional simplicity, we consider the
statistical issue of estimation of this instrumental regression ϕ in the i.i.d. context:
Assumption A.2: The data (y�, z�, w�) i = 1, · · ·n, are i.i.d samples of (Y,Z,W ).
We estimate the joint distribution F of (Y, Z,W ) using a kernel smoothing of the

empirical distribution. In the applications, the bandwidths differ, but they have all the
same speed represented by the notation c�.
For economic applications, one may be interested either by the unknown function

ϕ(Z) itself, or only by its moments, including covariances with some known functions.
These moments may for instance be useful for testing economic statements about scale
economies, elasticities of substitutions, and so on.
For such tests, one will only need the empirical counterparts of these moments and

their asymptotic probability distribution. An important advantage of the instrumental
variable approach is to allow to estimate the covariance between ϕ(Z) and g(Z) for a
large class of functions. Actually the identification assumption amounts to ensure that
the range R(K �) is dense in L�

�(Z) and for any g in this range:
∃ψ ∈ L�

�(W ), g(Z) = E[ψ (W ) | Z],
and then Cov[ϕ(Z), g(Z)] = Cov[ϕ(Z), E[ψ (W ) | Z]] = Cov[ϕ(Z), ψ (W )] = Cov[E[ϕ(Z) |
W ], ψ (W )] = Cov[Y, ψ (W )], can be estimated with standard parametric techniques. For
instance, if E[g(Z)] = 0, the empirical counterpart of Cov[Y, ψ (W )], i.e.:

1
n

�
∑

���

Y�ψ (W�) ,

is a root-n consistent estimator of Cov[ϕ(Z), g(Z)], and:
√n

[

1
n

�
∑

���

Y�ψ (W�)− Cov[ϕ(Z), g(Z)]
]

�→N (0, V ar[Y ψ (W )]),
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where V ar[Y ψ (W )] will also be estimated by its sample counterpart. However in practice
this analysis has very limited interest because even if g is given, ψ is not known and must
be estimated by solving the integral equation g(Z) = E[ψ(W ) | Z], where the conditional
distribution of W given Z is also estimated.
Therefore, the real problem of interest is to estimate Cov[ϕ(Z), g(Z)], or 〈ϕ, g〉 by

replacing ϕ by an estimator. This estimator will be constructed by solving a regularized
version of the empirical counterpart of (5.15) where K and r are replaced by their estima-
tors.. In the case of kernel smoothing, the necessity of a regularization appears obviously.
Using the notation of 2.5.2, the equation

K̂�ϕ = r̂�
becomes

�
∑

���

ϕ (z�)ω
(w − w�

c�
)

�
∑

���

ω
(w − w�

c�
)

=

�
∑

���

y�ω
(w − w�

c�
)

�
∑

���

ω
(w − w�

c�
)

.

The function ϕ is not identified by this equation except the value ϕ (z�) equal to y�.
This solution does not define a consistent estimate. The regularized Tikhonov solution is
the solution of:

α�ϕ (z) +

�
∑��� � �z − z�

c� �
�

∑��� 	
��� �������� ��
∑��� �������� ��

∑��� � �z − z�
c� � =

�
∑��� � �z − z�

c� �
�

∑��� ���������� ��
∑��� �������� ��

∑��� � �z − z�
c� � .

This functional equation may be solved in two steps. First, the z variable is fixed to the
values z� and the system becomes an n×n linear system, which can be solved in order to
obtain the ϕ (z�) . Second, the previous expression gives a value of ϕ (z) for any value of
z.
If n is very large this inversion method may be difficult to apply and may be replaced

by a Landweber Friedman resolution. A first expression of ϕ (z) may be for instance the
estimated conditional expectation E (E (Y |W ) |Z) and this estimator will be modified a
finite number of times by the formula

ϕ̂��� = (

I − cK̂ �
�K̂�

)

ϕ̂����� + cK̂ �
�r̂�

(see Section 3.3).
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Even if this assumption is relatively strong in a non linear context we simplify our
analysis by assuming:

Assumption A.3: The error term is homoskedastic, that is:
V ar (U |W ) = 0

In order to check the asymptotic properties of the estimator of ϕ, it is necessary to
study to properties of the estimators of K and of r. Under regularity conditions such as
the compactness of the joint distribution support and the smoothness of the density (see
Darolles et al. (2002)), estimation by boundary kernels gives the following results:

i)
∥

∥

∥K̂ �
�K̂� −K �K

∥

∥

∥

� ∼ O
(

�
�
���� + (c�)��

)

where ρ is the order of the kernel and p the
dimension of Z.

ii)
∥

∥

∥K̂ �
�r̂� − K̂ �

�K̂�ϕ
∥

∥

∥

� ∼ O ( �
� + (c�)��)

iii) A suitable choice of c� implies√n
(

K̂ �
�r̂� − K̂ �

�K̂�ϕ
)

=⇒ N (0, σ�K �K)

This convergence is a weak convergence in L�
� (Z) (see Section 2.4).

Using results developed Section 4 and in Darolles et al. (2002) it can be deduced that:
a) If α� → 0, ������� → 0, �������� ∼ O (1) the regularized estimator ϕ̂� converge in proba-

bility to ϕ in L� norm.
b) If ϕ ∈ Φ� (0 < β ≤ 2) , the optimal choices of α� and c� are:

α� = k�n� ���
c� = k�n� ���

and, if ρ is chosen such that ��� ≤ �
��� , we obtain the following bound of the rate of

convergence
‖ϕ̂� − ϕ‖ ∼ O

(

n� ��	�)

c) Let us assume that α is kept constant. In that case the linear operators
(αI +K �

� K� )�� and (αI +K �K)�� are bounded and, using a functional version of the
Slutsky theorem (see Chen, White (1992) and, section (2.4)), it is immediately checked
that: √n(ϕ̂
 − ϕ− b�
) =⇒ N (0,Ω), (5.16)
where

b�
 = α [(αI +K �
K
)�− (αI +K �K)�]ϕ,
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and
Ω = σ�(αI +K �K)�K �K(αI +K �K)�.

Some comments may illustrate this first result:
i) The convergence obtained in (5.16) is still a functional distributional convergence in
the Hilbert space L�

�(Z), which in particular implies the convergence of inner product√n〈ϕ̂
 − ϕ− b�
, g〉 to univariate normal distribution N (0, 〈g,Ωg〉).
ii) The convergence of ϕ̂
 involves two bias terms. The first bias is ϕ

�
− ϕ. This term is

due to the regularization and does not decrease if α is constant. The second one, ϕ̂
−ϕ
�follows from the estimation error of K. This bias decreases to zero when n increases, but

at a lower speed than √n.
iii) The asymptotic variance in (5.16) can be seen as the generalization of the two stage
least squares asymptotic variance. An intuitive (but not correct) interpretation of this
result could be the following: if α is small, the asymptotic variance is approximately
σ�(K �K)�, which is the functional extension of σ�(E(ZW �)E(WW �)�E(WZ �))�.

d) Let us now consider the case where α → 0. For any δ ∈ Φ� (β ≥ 1), if α
 is optimal
(= k�n

�
�� )and if c
 = k�n( �

���	) (ε > 0) , we have
√ν
 (δ) 〈ϕ̂
 − ϕ, δ〉 −B
 =⇒ N (0, σ�)

where the speed of convergence is equal to
ν
 (δ) = n

∥

∥K (α
I +K �K)
� δ∥∥

� ≥ O
(

n
��
�
�

)

and the bias B
 is equal to √ν
 (δ) 〈ϕ
�
− ϕ, δ〉 , which in general does not vanish. If δ

= 1 for example, this bias is O (nα�

) and diverges.

The notion of Φ� space gives a rigorous content to the concept of weak or strong
instruments. Indeed any ϕ is identified by Equation (5.15) if λ� are not zero for any j
and ϕ̂
 is then a consistent estimator. The speed of convergence may be bounded is ϕ is
in a Φ� space with β > 0. This means that the rate of decline of the Fourier coefficients
of ϕ in the basis of φ� is faster than the rate of decline of the λ�

� (which measures the
dependence). In order to have an asymptotic normality we need to assume that β > 1. In
that case if ϕ ∈ Φ� we have weak asymptotic normality in the vector space Φ�. Then a
natural definition of strong instruments is to assume β ≥ 1. This may have two equivalent
interpretations. Given Z andW , the set of instrumental regression for whichW is a strong
instrument is Φ� or given Z and ϕ, any set of instruments is strong if ϕ is an element of
the set Φ� defined using this instruments.
We may complete this short presentation by two final remarks. First the optimal choice

of c
 and α
 implies that the speed of convergence and the asymptotic distribution are not
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affected by the fact that K is not known and is estimated. The accuracy of the estimation
is governed by the estimation of the right hand side term K �r. Secondly the usual “curse
of dimensionality” of nonparametric estimation appears in a complex way. The dimension
of Z appears in many places but the dimension of W is less explicit. The value and
the rate of decline of the λ� depend on the dimension of W : given Z, the reduction of
the number of instruments reduces the λ� and affects negatively the properties of the
estimator.

6. Reproducing kernel and GMM in Hilbert spaces
6.1. Reproducing kernel
Models based on reproducing kernels are the foundation for penalized likelihood esti-
mation and regularization methods (Wahba, 2000). However it has been little used in
econometrics so far. The theory of reproducing kernels becomes very useful when the
econometrician has an infinity of moment conditions and want to exploit all of them in
an efficient way. For illustration, let θ ∈ R be the parameter of interest and consider
an L× 1−vector h that gives L moment conditions satisfying E�� (h (θ)) = 0 ⇒ θ = θ�.
Let h
 (θ) be the sample estimate of E�� (h (θ)). The (optimal) generalized method of
moments (GMM) estimator of θ is the minimizer of h
 (θ)�Σ

�h
 (θ) where Σ is the co-
variance matrix of h. h
 (θ)�Σ

�h
 (θ) can be rewritten as ∥∥Σ
���h
 (θ)∥∥

�
and coincides

with the norm of h
 (θ) in a particular space called the reproducing kernel Hilbert space
(RKHS). When h is finite dimensional, the computation of the GMM objective function
does not raise any particular difficulty, however when h is infinite dimensional (for in-
stance is a function) then the theory of RKHS becomes very handy. A second motivation
for the introduction of the RKHS of a self-adjoint operator K is the following. Let T be
such that K = TT � then the RKHS of K corresponds to the 1−regularity space of T
(denoted Φ� in Section 3.1).

6.1.1. Definitions and basic properties of RKHS
This section presents the theory of reproducing kernels, as described in Aronszajn (1950)
and Parzen (1959, 1970). Let L�� (π) = {ϕ : I ⊂ R� → C : ∫� |ϕ (s)|�π (s) ds <∞} where
π is a pdf (π may have a discrete or continuous support) and denote ‖.‖ and 〈, 〉 the norm
and inner product on L�� (π).
Definition 6.1. A space H (K) of complex-valued functions defined on a set I ⊂ R� is
said to be a reproducing kernel Hilbert space H (K) associated with the integral operator
K : L�	 (π)→ L�	 (π) with kernel k (t, s) if the three following conditions hold

(i) it is a Hilbert space (with inner product denoted 〈, 〉
),
(ii) for every s ∈ I, k (t, s) as a function of t belongs to H (K) ,
(iii) (reproducing property) for every s ∈ I and ϕ ∈ H (K), ϕ (s) = 〈ϕ (.) , k (., s)〉
 .
The kernel k is then called reproducing kernel.
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The following properties are listed in Aronszajn (1950):
1 - If the RK k exists, it is unique.
2 - A Hilbert space H of functions defined on I ⊂ R� is a RKHS if and only if all

functionals ϕ→ ϕ (s) for all ϕ ∈ H, s ∈ I, are bounded.
3 - K is a self-adjoint positive operator on L�	 (π).
4 - To a self-adjoint positive operatorK on I, there corresponds a unique RKHSH (K)

of complex-valued functions.
5 - Every sequence of functions {ϕ�} which converges weakly to ϕ in H (K) (that is〈ϕ�, g〉 → 〈ϕ, g〉 for all g ∈ H (K)) converges also pointwise, that is lim ϕ� (s) = ϕ (s) .
Note that (2) is a consequence of Riesz theorem 2.18: there exists a representor k

such that for all ϕ ∈ H
ϕ (t) = 〈ϕ, k�〉
 .

Let k� = k (t, .) so that 〈k�, k�〉
 = k (t, s). (5) follows from the reproducing property.
Indeed, 〈ϕ� (t)− ϕ (t) , k (t, s)〉
 = ϕ� (s)− ϕ (s) .

Example (finite dimensional case). Let I = {1, 2, ..., L} , let Σ be a positive
definite L × L matrix with principal element σ���. Σ defines an inner product on R� :〈ϕ, ψ〉� = ϕ�Σ�

�ψ. Let (σ�, ..., σ�) be the columns of Σ. Let ϕ = (ϕ (1) , ..., ϕ (L))
�, then

we have the reproducing property
〈ϕ, σ�〉� = ϕ (t) , τ = 1, ..., L

because ϕΣΣ�
� = ϕ. Now we diagonalize Σ, Σ = PDP � where P is the m ×m matrix

with (t, j) element φ� (t) (φ� are the orthonormal eigenvectors of Σ) and D is the diagonal
matrix with diagonal element λ� (the eigenvalues of Σ). The (t, s)th element of Σ can be
rewritten as

σ (t, s) =
	
∑

�
�
λ�φ� (t)φ� (s) .

We have

〈ϕ, ψ〉� = ϕ�Σ�
�ψ =

	
∑

�
�

1
λ�

〈ϕ, φ�〉 〈ψ, φ�〉

where 〈, 〉 is the euclidean inner product.
From this small example, we see that the norm in a RKHS can be characterized by the

spectral decomposition of an operator. Let K be a positive self-adjoint Hilbert Schmidt
operator with spectrum {φ�, λ� : j = 1, 2, ...}. By contrast to Section 3.1, we do not
assume that N (K) = 0. In order to write series involving 1/λ�, we use the convention
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1/0 = 0. It turns out that H (K) coincides with the 1/2-regularization space of the
operator K :

H (K) =
{

ϕ : ϕ ∈ L� (π) and
�
∑

�
�

∣

∣

〈ϕ, φ�〉∣∣�
λ� <∞

}

= Φ��� (K) .

We can check that
(i) H (K) is a Hilbert space with inner product

〈ϕ, ψ〉
 = �
∑

�
�

〈ϕ, φ�〉 〈ψ, φ�〉
λ�

and norm

‖ϕ‖�
 = �
∑

�
�

∣

∣

〈ϕ, φ�〉∣∣�
λ� .

(ii) k (., t) belongs to H (K)
(iii) 〈ϕ, k(., t)〉
 = ϕ (t) .

Proof. (ii) follows from Mercer’s formula (Theorem 2.42 (iii)) that is k (t, s) =
∑�

�
�λ�φ� (t)φ� (s). Hence ‖k (., t)‖�
 =∑�
�
�

∣

∣

〈φ�, k (., t)〉∣∣� /λ� =∑�
�
�

∣

∣λ�φ� (t)∣∣� /λ� =
∑�

�
�λ�φ� (t)φ� (t) = k (t, t) <∞. For (iii), we use again Mercer’s formula. 〈ϕ (.) , k (., t)〉
 =
∑�

�
�
〈φ�, k (., t)〉 〈ϕ, φ�〉 /λ� =∑�

�
�
〈ϕ, φ�〉Kφ� (t) /λ� =∑�

�
�
〈ϕ, φ�〉φ� (t) = ϕ (t) .

There is a link between calculating a norm in a RKHS and solving an integral equation
Kϕ = ψ. We follow Nashed and Wahba (1974) to enlighten this link. We have

Kϕ =
�
∑

�
�
λ� 〈ϕ, φ�〉φ�.

Define K ��� the square root of K:

K ���ϕ =
�
∑

�
�

√λ� 〈ϕ, φ�〉φ�.

Note that N (K) = N (K ���), H (K) = K ��� (L�	 (π)) . Define K�
��� = (K ���)�

�
where

()�� is a generalized inverse. First we explain what we mean by generalized inverse.
Consider solving in ϕ the integral equation Kϕ = ψ. The study of the properties of this
equation has been the object of Section 3.1. We know that the solution will exist only if
ψ ∈ R (K)⊕R (K)� = Ψ�⊕N (K) . When the solution exists, it is not unique because
for any solution ϕ, one can find another solution ϕ + ϕ� where ϕ� ∈ N (K). In Section
3.1, we just assumed N (K) = 0. Another way to solve the non uniqueness issue is by
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considering only the solution with minimal variance, this solution is called generalized
inverse and takes the form:

K�
�ψ =

�
∑

�
�

1
λ�

〈ψ, φ�〉φ�.

Similarly, the generalized inverse of K ��� takes the form:

K�
���ψ =

�
∑

�
�

1
√λ�

〈ψ, φ�〉φ�.

From Nashed and Wahba (1974), we have the relations
‖ϕ‖�
 = inf {‖p‖ : p ∈ L�	 (π) and ϕ = K ���p} ,〈ϕ, ψ〉
 = 〈K�

���ϕ,K�
���ψ〉 , for all ϕ, ψ ∈ H (K) . (6.1)

The following result follows from Proposition 3.4.
Proposition 6.2. Let T : E →L�	 (π) be an operator such that K = TT � then

H (K) = R (K ���) = R (T �) = Φ� (T ) .
Note that T � : L�	 (π) → E and K ��� : L�	 (π) → L�	 (π) are not equal because they

take their values in different spaces.

6.1.2. RKHS for covariance operators of stochastic processes
In the previous section, we have seen how to characterize H (K) using the spectral de-
composition of K. When K is known to be the covariance kernel of a stochastic pro-
cess, then H (K) admits a simple representation. The main results of this section come
from Parzen (1959). Consider a random element (r.e.). {h (t) , t ∈ I ⊂ R�} defined on
a probability space (Ω,F , P ) and observed for all values of t. Assume h (t) is a sec-
ond order random function that is E (|h (t)|�) = ∫

� |h (t)|� dP < ∞ for every t ∈ I.
Let L� (Ω,F , P ) be the set of all r.v. U such that E |U |� = ∫

� |U |� dP < ∞. De-
fine the inner product 〈U, V 〉������ �� � between any two r.v. U and V of L� (Ω,F , P )
by 〈U, V 〉�� ���� ��� = E (UV ) = ∫

�UV dP. Let L� (h (t) , t ∈ I) be the Hilbert space
spanned by the r.e. {h (t) , t ∈ I}. Define K the covariance operator with kernel k (t, s) =
E
(

h (t)h (s)
)

. The following theorem implies that any symmetric nonnegative kernel can
be written as a covariance kernel of a particular process.
Theorem 6.3. K is a covariance operator of a r.e. if and only if K is a positive self-
adjoint operator.
The following theorem can be found in Parzen (1959) for real-valued functions. The

complex case is treated in Saitoh (1997).
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Theorem 6.4. Let {h (t) , t ∈ I} be a r.e. with mean zero and covariance kernel k. Then
(i) L� (h (t) , t ∈ I) is isometrically isomorphic or congruent to the RKHS H (K) . De-

note J this congruence.
(ii) For every function ϕ in H (K) , J (ϕ) satisfies
〈J (ϕ) , h (t)〉�� ���� �� � = E

(

J (ϕ) h (t)
)

= 〈ϕ, k (., t)〉
 = ϕ (t) , for all t ∈ I (6.2)
where J (ϕ) is unique in L� (h (t) , t ∈ I) and has mean zero and variance such that

‖ϕ‖�
 = ‖J (ϕ)‖��� ���� �� � = E (|J (ϕ)|�) .
Note that, by (6.2), the congruence is such that J (k (., t)) = h (t). The r.v. U ∈

L� (h (t) , t ∈ I) corresponding to ϕ ∈ H (K) is denoted below as 〈ϕ, h〉
 (or J (ϕ)). As
L� (h (t) , t ∈ I) and H (K) are isometric, we have by Definition 2.19

cov [〈ϕ, h〉
 , 〈ψ, h〉
] = E
[

J (ϕ)J (ψ)
]

= 〈ϕ, ψ〉

for every ϕ, ψ ∈ H (K) . Note that 〈ϕ, h〉
 is not a correct notation because h =
∑

�
〈h, φ�〉φ� a.s. does not belong toH (K). If it were the case, we should have∑�

〈h, φ�〉� /λ� <∞ a.s.. Unfortunately 〈h, φ�〉 are independent with mean 0 and variance 〈Kφ�, φ�〉 = λ�.
Hence, E

[

∑

�
〈h, φ�〉� /λ�

]

=∞ and by Kolmogorov’s theorem∑

�
〈h, φ�〉� /λ� =∞ with

nonzero probability. The r.v. J (ϕ) itself is well-defined, only the notation 〈ϕ, h〉
 is not
adequate; as Kailath (1971) explains, it should be regarded only as a mnemonic for finding
J (ϕ) in a closed form. The rest of this section is devoted on the calculation of ‖ϕ‖
.
Note that the result (6.2) is valid when t is multidimensional, t ∈ R�. In the next section,
h (t) will be a moment function indexed by an arbitrary index parameter t.
Assume that the kernel k on I × I can be represented as

k (s, t) =
∫

h (s, x) h (t, x)P (dx) (6.3)
where P is a probability measure and {h (s, .) , s ∈ I} is a family of functions on L� (Ω,F , P ) .
By Theorem 6.4, H (K) consists of functions ϕ on I of the form

ϕ (t) =
∫

ψ (x)h (t, x)P (dx) (6.4)
for some unique ψ in L� (h (t, .) , t ∈ I) , the subspace of L� (Ω,F , P ) spanned by {h (t, .) , t ∈ I}.
The RKHS norm of ϕ is given by

‖ϕ‖�
 = ‖ψ‖������� �� � .
When calculating ‖ϕ‖�
 in practice, one looks for the solutions of (6.4). If there are several,
it is not always obvious to see which one is spanned by {h (t, .) , t ∈ I}. However, the
right solution ψ is the solution with minimum norm (Parzen, 1970).

71



Theorem 6.4 can be reinterpreted in terms of range. Let T and T � be
T : L� (π)→ L� (h (t, .) , t ∈ I)
ϕ → Tϕ (x) =

∫

ϕ (t) h (t, x)π (t) dt.
and

T � : L� (h (t, .) , t ∈ I)→ L� (π)
ψ → T �ψ (s) =

∫

ψ (x)h (s, x)P (dx) .
To check that T � is indeed the dual of T, it suffices to check 〈Tϕ, ψ〉�� ���� ��� = 〈ϕ, T �ψ〉�� ���for ϕ ∈ L� (π) and ψ (x) = h (t, x) as h (t, .) spans L� (h (t, .) , t ∈ I) . Using the fact that
K = T �T and Proposition 6.2, we have H (K) = R (T �), which gives Equation (6.4).

Example. Let k (t, s) = t ∧ s. k can be rewritten as
k (t, s) =

∫
�

�
(t− x)�� (s− x)�� du

with
(s− x)�� =

{ 1 if x < s
0 if x ≥ s .

It follows that H (K) consists of functions ϕ of the form:
ϕ (t) =

∫
�

�
ψ (x) (t− x)�� dx =

∫ �

�
ψ (x) dx, 0 ≤ t ≤ 1

⇒ ψ (t) = ϕ� (t) .
Hence, we have

‖ϕ‖�
 = ∫
�

�
|ψ (x)|� dx = ∫

�

�
|ϕ� (x)|� dx.

Example. Let k be defined as in (6.3) with h (t, x) = e���. Assume P admits for pdf
f�� (x) positive everywhere. To compute Λ one needs to solve

ϕ (t) =
∫

ψ (x) e����P (dx)
=

∫

ψ (x) e����f�� (x) dx.
By the Fourier Inversion formula, we have

ψ (x) = 1
2π

1
f�� (x)

∫

e���ϕ (t) dt.
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6.2. GMM in Hilbert spaces
First introduced by Hansen (1982), the Generalized Method of Moments (GMM) became
the cornerstone of modern structural econometrics. In Hansen, the number of moment
conditions is supposed to be finite. The method proposed in this section permits to deal
with moment functions that take their values in a finite or infinite dimensional Hilbert
space. It was initially proposed by Carrasco and Florens (2000) and further developed in
Carrasco and Florens (2001) and Carrasco, Chernov, Florens, and Ghysels (2001).

6.2.1. Definition and examples
Let {x� : i = 1, 2, ..., n} be an iid sample of a random vector X ∈ R�. The case where X
is a time-series will be discussed later. The distribution of X is indexed by a parameter
θ ∈ Θ ⊂ R�. Denote E� the expectation with respect to this distribution. The unknown
parameter θ is identified from the function h (X; θ) (called moment function) defined on
R� ×Θ, so that the following is true.

Identification Assumption
E�� (h (X; θ)) = 0⇒ θ = θ�. (6.5)

It is assumed that h (X; θ) takes its values in a Hilbert space H with inner product 〈., .〉
and norm ‖.‖ . When f = (f�, ..., f�) and g = (g�, ..., g�) are vectors of functions of H,we use the convention that 〈f, g�〉 denotes the L×L−matrix with (l,m) element 〈f�, g�〉 .
Let B� : H → H be a sequence of random bounded linear operators and

ĥ� (θ) = 1n
�
∑

���
h (x�; θ) .

We define the GMM estimator associated with B� as
θ̂� (B�) = argmin��	

∥

∥

∥B�ĥ� (θ)
∥

∥

∥ . (6.6)
Such an estimator will be in general suboptimal; we will discuss the optimal choice of B�

later. Below, we give four examples that can be handled by the method discussed in this
section. They illustrate the versatility of the method as it can deal with a finite number of
moments (Example 1), a continuum (Examples 2 and 3) and a countable infinite sequence
(Example 4).

Example 1 (Traditional GMM). Let h (x; θ) be a vector of R
, B� be a L ×
L−matrix and ‖.‖ denote the Euclidean norm. The objective function to minimize is

∥

∥

∥B�ĥ� (θ)
∥

∥

∥

�

= ĥ� (θ)�B �
�B�ĥ� (θ)

and corresponds to the usual GMM quadratic form ĥ� (θ)�W�ĥ� (θ) with weighting matrix
W� = B �

�B�.
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Example 2 (Continuous time process). Suppose we observe independent repli-
cations of a continuous time process

X � (t) = G (θ, t) + u� (t) , 0 ≤ t ≤ T , i = 1, 2, ..., n (6.7)
where G is a known function and u� = {u� (t) : 0 ≤ t ≤ T} is a zero mean Gaussian
process with continuous covariance function k (t, s) = E [u (t) u (s)], t, s ∈ [0, T ] . Denote
X � = {X � (t) : 0 ≤ t ≤ T}, G (θ) = {G (θ, t) : 0 ≤ t ≤ T} , and H = L� ([0, T ]). The
unknown parameter θ is identified from the moment of the function

h (X �; θ) = X � −G (θ) .
Assume h (X �; θ) ∈ L� ([0, T ]) with probability one. Candidates for B� are arbitrary
bounded operators on L� ([0, T ]) including the identity. For B�f = f , we have

∥

∥

∥B�ĥ� (θ)
∥

∥

∥

�

=
∫ �

�
ĥ� (θ)� dt.

Estimation of Model (6.7) is discussed in Kutoyants (1984).
Example 3 (Characteristic function). Denote ψ� (t) = E� [e����] the characteris-

tic function of X. Inference can be based on
h (t, X; θ) = e���� − ψ� (t) , t ∈ R
.

Note that contrary to the former examples, h (t,X; θ) is complex valued and |h (t, X; θ)| ≤
∣

∣e����∣∣ + |ψ� (t)| ≤ 2. Let Π be a probability measure on R
 and H = L�
�
(R
,Π). As

h (., X; θ) is bounded, it belongs to L�
�
(R
,Π) for any Π. Feuerverger and McDunnough

(1981) and more recently Singleton (2001) show that an efficient estimator of θ is ob-
tained from h (., X; θ) by solving an empirical counterpart of ∫ Eh (t, X; θ)ω (t) dt = 0
for an adequate weighting function ω which turns out to be a function of the pdf of X.
This efficient estimator is not implementable as the pdf of X is unknown. They suggest
estimating θ by GMM using moments obtained from a discrete grid t = t�, t�, ..., t
. An
alternative strategy put forward in this section is to use the full continuum of moment
conditions by considering a moment function h as an element of L�

�
(R
,Π) .

Example 4 (Conditional moment restrictions). Let X = (Y, Z) . For a known
function ρ ∈ R, we have the conditional moment restrictions

E�� [ρ (Y, Z, θ) |Z] = 0.
Hence for any function g (Z), we can construct unconditional moment restrictions

E�� [ρ (Y, Z, θ) g (Z)] = 0.
Chamberlain (1987) shows that the semiparametric efficiency bound can be approached
by a GMM estimator based on a sequence of moment conditions using as instruments
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the power function of Z : 1, Z, Z �, ..., Z
 for a large L. Let π be the Poisson probability
measure π (l) = e��/l! and H = L� (N,π) = {f : N→ R :∑�

���g (l)π (l) <∞} . Let
h (l,X; θ) = ρ (Y, Z, θ)Z �, l = 1, 2, ...

If h (l,X; θ) is bounded with probability one, then h (., X; θ) ∈ L� (N,π) with probability
one. Instead of using an increasing sequence of moments as suggested by Chamberlain, it
is possible to handle h (., X; θ) as a function. The efficiency of the GMM estimator based
on the countable infinity of moments {h (l, X; θ) : l ∈ N} will be discussed later.
6.2.2. Asymptotic properties
Let H = L�

� (I,Π) = {f : I → C : ∫� |f (t)|�Π (dt) <∞} where I is a subset of R
 for
some L ≥ 1 and Π is a probability measure. This choice ofH is consistent with Examples 1
to 4. Under some weak assumptions, √nĥ� (θ�) converges to a Gaussian process N (0, K)
in H where K denotes the covariance operator of h (X; θ�) . K is defined by

K : H → H
f → Kf (s) = 〈f, k (., t)〉 = ∫

�
k (t, s) f (s)Π (ds)

where the kernel k of K satisfies k (t, s) = E�� [h (t,X; θ�) h (s,X; θ�)
]

and k (t, s) =
k (s, t). Assume moreover thatK is a Hilbert Schmidt operator and hence admits a discrete
spectrum. Suppose that B� converges to a bounded linear operator B defined on H
and that θ� is the unique minimizer of ∥∥BE��h (X; θ)∥∥ then θ̂� (B�) is consistent and
asymptotically normal. The following result is proved in Carrasco and Florens (2000).
Proposition 6.5. Under Assumptions 1 to 11 of Carrasco and Florens (2000), we have

√n
(

θ̂� (B�)− θ�
) 
→N (0, V )

with
V = 〈BE�� (∇�h) , BE�� (∇�h)�〉�

�

× 〈BE�� (∇�h) , (BKB�)BE�� (∇�h)�〉
× 〈BE�� (∇�h) , BE�� (∇�h)�〉�

�

where B � is the adjoint of B.

6.2.3. Optimal choice of the weighting operator
Carrasco and Florens (2000) show that the asymptotic variance V given in Proposi-
tion 6.5 is minimal for B = K�

���. In that case, the asymptotic covariance becomes
〈K�

���E�� (∇�h) ,K�
���E �� (∇�h)〉�

�
.
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Example 1 (continued). K is the L×L−covariance matrix of h (X; θ) . Let K� be
the matrix �

�
∑�

���h
(

x�; θ̂
�)

h
(

x�; θ̂
�)�

where θ̂
�
is a consistent first step estimator of θ.

K� is a consistent estimator of K. Then the objective function becomes
〈

K�
���

� ĥ� (θ) , K�
���

� ĥ� (θ)
〉

= ĥ� (θ)�K�
�

� ĥ� (θ)
which delivers the optimal GMM estimator.
When H is infinite dimensional, we have seen in Section 3.1 that the inverse of K,

K�
�, is not bounded. Similarly K�

��� = (K ���)
�
�
is not bounded on H and its domain

has been shown in Subsection 6.1.1 to be the subset of H which coincides with the RKHS
associated with K and denoted H (K) .
To estimate the covariance operator K, we need a first step estimator θ̂

�
that is√n−consistent. It may be obtained by letting B� equal the identity in (6.6). Let K� be

the operator with kernel

k� (t, s) = 1n
�
∑

���
h
(

t, x�; θ̂
�)

h
(

s, x�; θ̂
�)

.

Then K� is a consistent estimator of K and ‖K� −K‖ = O (1/√n) . As K�
�f is not

continuous in f , we estimate K�
� by the Tykhonov regularized inverse of K� :

(K��� )�� = (α�I +K �
�
)��K�

for some penalization term α� ≥ 0. If α� > 0, (K��� )��f is continuous in f but is
a biased estimator of K��f. There is a trade-off between the stability of the solution
and its bias. Hence, we will let α� decrease to zero at an appropriate rate. We define
(K��� )���� = ((K��� )��)�

��
.

The optimal GMM estimator is given by
θ̂� = argmin�	


∥

∥

∥(K��� )���� ĥ� (θ)
∥

∥

∥ .
Interestingly, the optimal GMM estimator minimizes the norm of ĥ� (θ) in the RKHS
associated with K��� . Under certain regularity conditions, we have

∥

∥

∥(K��� )���� ĥ� (θ)
∥

∥

∥

�→ ∥

∥E�� (h (θ))∥∥ .
A condition for applying this method is that E�� (h (θ)) ∈ H (K) . This condition can be
verified using results from 6.1.1.
Proposition 6.6. Under the regularity conditions of Carrasco and Florens (2000, Theo-
rem 8), we have√n

(

θ̂� − θ�
) �→ N (

0, 〈E�� (∇�h (θ�)) , E�� (∇�h (θ�))�〉��
)

as n and nα���
� →∞ and α� → 0.
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The stronger condition nα�� →∞ of Carrasco and Florens (2000) has been relaxed into
nα���→∞ in Carrasco, Chernov, Florens, and Ghysels (2001). Proposition 6.6 does not
indicate how to select α� in practice. A data-driven method is desirable. Carrasco and
Florens (2001) propose to select the α� that minimizes the mean square error (MSE) of
the GMM estimator θ̂�. As θ̂� is consistent for any value of α�, it is necessary to compute
a higher order MSE.

6.2.4. Implementation
There are two equivalent ways to compute the objective function

∥

∥

∥(K��� )���� ĥ� (θ)
∥

∥

∥

�
, (6.8)

1) using the spectral decomposition of K�,or
2) using a simplified formula that involves only vectors and matrices.
The first method discussed in Carrasco and Florens (2000) requires calculating the

eigenvalues and eigenfunctions of K� using the method described in 2.5.2. Let φ̂� denote
the orthonormalized eigenfunctions of K� and λ̂� the corresponding eigenvalues. The
objective function in Equation (6.8) becomes

�
∑

���
λ̂�

λ̂
�
� + α�

∣

∣

∣

〈

ĥ� (θ) , φ̂�
〉∣

∣

∣

�
.

The second method is more attractive by its simplicity. Carrasco and al. (2001) show
that (6.8) can be rewritten as

v (θ)
�
[I� − C [α�I� + C �]C] v (θ)

where C is a n × n−matrix with (i, j) element c��, I� is the n × n identity matrix and
v (θ) = (v� (θ) , ..., v� (θ))� with

v� (θ) =
∫

h
(

t, x�; θ̂�
)

�
ĥ� (t; θ) Π (dt)

c�� = 1
n
∫

h
(

t, x�; θ̂�
)

�
h
(

t, x�; θ̂�
)

Π (dt) .

Note that the dimension of C is the same whether h ∈ R or h ∈ R
�.

6.2.5. Asymptotic Efficiency
Assume that the pdf of X, f�, is differentiable with respect to θ. Let L� (h) be the closure
of the subspace of L� (Ω,F , P ) spanned by {h (t, X�; θ�) : t ∈ I}.
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Proposition 6.7. Under certain regularity conditions, the GMM estimator based on{h (t, x�; θ) : t ∈ I} is asymptotically as efficient as the MLE if and only if
∇� ln f� (x�; θ�) ∈ L� (h) .

This result is proved in Carrasco and Florens (2002) in a more general setting whereX�
is Markov of order L. A similar efficiency result can be found in Hansen (1985), Tauchen
(1997) and Gallant and Long (1997).

Example 2 (continued). Let K be the covariance operator of {u (t)} and H (K) the
RKHS associated with K. Kutoyants (1984) shows that if G (θ) ∈ H (K) , the likelihood
ratio of the measure induced by X (t) with respect to the measure induced by u (t) equals

LR (θ) =
�
∏

���
exp

{

〈G (θ) , x�〉 − 12 ‖G (θ)‖
�
}

where 〈G,X〉 has been defined in Subsection 6.1.2 and denotes the element of L� (X (t) : 0 ≤ t ≤ T )
under the mapping J�� of the function G (θ) (J is defined in Theorem 6.4). The score
function with respect to θ is

∇� ln (LR (θ)) =
〈

∇�G (θ) , 1n
�
∑

���
(x� −G (θ))

〉


.

For θ = θ� and a single observation, the score is equal to
〈∇�G (θ�) , u〉

which is an element of L� (u (t) : 0 ≤ t ≤ T ) = L� (h (X (t) ; θ�) : 0 ≤ t ≤ T ) . Hence, by
Proposition 6.7, the GMM estimator based on h (X; θ�) is asymptotically efficient. This
efficiency result is corroborated by the following. The GMM objective function is

‖h (x; θ)‖� =
〈

1
n

�
∑

���
(x� −G (θ)) , 1n

�
∑

���
(x� −G (θ))

〉


.

The first order derivative equals to

∇� ‖h (x; θ)‖� = 2
〈

∇�G (θ) , 1n
�
∑

���
(x� −G (θ))

〉



= 2∇� ln (LR (θ)) .
Therefore, the GMM estimator coincides with the MLE in this particular case as they are
solutions of the same equation.

Example 3 (continued). Under minor conditions on the distribution of X�, the
closure of the linear span of {h (t,X�; θ�) : t ∈ R

�} contains all functions of L� (X) =
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{g : E�� [g (X)�] <∞} and hence the score ∇� ln f� (X�; θ�) itself. Therefore the GMM
estimator is efficient. Another way to prove efficiency is to calculate explicitly the asymp-
totic covariance of θ̂�. To simplify, assume that θ is scalar. By Theorem 6.4, we have

∥

∥E�� (∇�h (θ�))∥∥
�
 =

∥

∥

∥E�� (∇�h (θ�))
∥

∥

∥

�
 = E |U |�

where U satisfies
E�� [Uh (t; θ�)

]

= E�� (∇�h (t; θ�)) for all t ∈ R
�

which is equivalent to
E�� [U (X)

(

e���� − ψ�� (t)
)]

= −∇�ψ�� (t) for all t ∈ R�. (6.9)
As U has mean zero, U has also mean zero and we can replace (6.9) by

E��
[

U (X)e����
]

= −∇�ψ�� (t) for all t ∈ R� ⇔
∫

U (x)e����f�� (x) dx = −∇�ψ�� (t) for all t ∈ R
� ⇔

U (x)f�� (x) = − 12π
∫

e	����∇�ψ�� (t) dt. (6.10)
The last equivalence follows from the Fourier inversion formula. Assuming that we can
exchange the integration and derivation in the right hand side of (6.10), we obtain

U (x)f�� (x) = −∇�f�� (x)⇔
U (x) = −∇� ln f�� (x) .

Hence E�� |U |
 = E�� [(∇� ln f�� (X))
] . And the asymptotic variance of θ̂� coincides with
the Cramer Rao efficiency bound even if, contrary to Example 3, θ̂� differs from the MLE.

Example 4 (continued). As in the previous example, we intend to calculate the
asymptotic covariance of θ̂� using Theorem 6.4. We need to find U the p−vector of r.v.
such that

E�� [Uρ (Y,Z; θ�)Z ] = E�� [∇�ρ (Y, Z; θ�)Z ] for all l ∈ N,⇔
E�� [E�� [Uρ (Y, Z; θ�) |Z]Z ] = E�� [E�� [∇�ρ (Y,Z; θ�) |Z]Z ] for all l ∈ N(6.11)

(6.11) is equivalent to
E�� [Uρ (Y, Z; θ�) |Z] = E �� [∇�ρ (Y,Z; θ�) |Z] . (6.12)

by the completeness of polynomials (Sansone, 1959) under some mild conditions on the
distribution of Y . A solution is

U� = E�� [∇�ρ (Y, Z; θ�) |Z]E�� [ρ (Y,Z; θ�)
 |Z]	�

ρ (Y, Z; θ�) .
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We have to check that this solution has minimal norm among all the solutions. Consider
an arbitrary solution U = U� + U�. U solution of (6.12) implies

E�� [U�ρ (Y,Z; θ�) |Z] = 0.
Hence E�� (UU �) = E�� (U�U �

�) + E�� (U�U �
�) and is minimal for U� = 0. Then

∥

∥E�� (∇�h (θ�))∥∥



�

= E�� (U�U �
�)

= E��
{

E �� [∇�ρ (Y,Z; θ�) |Z]E�� [ρ (Y, Z; θ�)
 |Z]	�

E�� [∇�ρ (Y, Z; θ�) |Z]�} .
Its inverse coincides with the semi-parametric efficiency bound derived by Chamberlain
(1987).
Note that in Examples 2 and 3, the GMM estimator reaches the Cramer Rao efficiency

bound asymptotically while in Example 4, it reaches the semi-parametric efficiency bound.

6.2.6. Extension to time series
So far, the data were assumed to be iid. Now we relax this assumption. Let {x�, ..., x�} be
the observations of a time series {X�} that satisfies some mixing conditions. Inference will
be based on moment functions {h (τ ,X�; θ�)} indexed by a real, possibly multidimensional,
index τ . {h (τ ,X�; θ�)} are in general autocorrelated, except in some special cases, an
example of which will be discussed below.

Example 5 (Conditional characteristic function). Let Y� be a (scalar) Markov
process and assume that the conditional characteristic function (CF) of Y��� given Y�,
ψ� (τ |Y�) ≡ E� [exp (iτY���) |Y�] , is known. The following conditional moment condition
holds

E� [e������ − ψ� (τ |Y�) |Y�
] = 0.

Denote X� = (Y�, Y���)�. Let g (Y�) be an instrument so that
h (τ ,X�; θ) = (e������ − ψ� (τ |Y�)) g (Y�)

satisfies the identification condition (6.5). {h (τ ,X�; θ)} is a martingale difference se-
quence and is therefore uncorrelated. The use of the conditional CF is very popular in
finance. Assume that {Y�, t = 1, 2, ..., T} is a discretely sampled diffusion process, then Y�

is Markov. While the conditional likelihood of Y��� given Y� does not have a closed form
expression, the conditional CF of affine diffusions is known. Hence GMM can replace
MLE to estimate these models where MLE is difficult to implement. For an adequate
choice of the instrument g (Y�), the GMM estimator is asymptotically as efficient as the
MLE. The conditional CF has been recently applied to the estimation of diffusions by
Singleton (2001), Chacko and Viceira (2001), and Carrasco et al. (2001). The first three
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papers use GMM based on a finite grid of values for τ , whereas the last paper advocates
using the full continuum of moments which permits to achieve efficiency asymptotically.

Example 6 (Joint characteristic function). Assume Y� is not Markov. In that
case, the conditional CF is usually unknown. On the other hand, the joint characteristic
function may be calculated explicitly (for instance when Y� is an ARMA process with sta-
ble error, see Knight and Yu, 2002; or Y� is the growth rate of a stochastic volatility model,
see Jiang and Knight, 2000) or may be estimated via simulations (this technique is devel-
oped in Carrasco et al., 2001). Denote ψ� (τ ) ≡ E� [exp (τ �Y� + τ 
Y���+ ...+ τ ���Y���)]
with τ = (τ �, ..., τ�)� , the joint CF of X� ≡ (Y�, Y���, ..., Y���)� for some integer L ≥ 1.
Assume that L is large enough for

h (τ ,X�; θ) = e�� ��� − ψ� (τ)
to identify the parameter θ. Here {h (τ ,X�; θ)} are autocorrelated. Knight and Yu esti-
mate various models by minimizing the following norm of h (τ ,X�; θ) :

∫

(

1
T

�
∑

���
e�� ��� − ψ� (τ )

)




e	� ��dτ.

This is equivalent to minimizing
∥

∥

∥B �

�
∑�

���h (τ ,X�; θ)
∥

∥

∥




with B = e	� ���
. This choice of
B is suboptimal but has the advantage to be easy to implement. The optimal weighting
operator is, as before, the square root of the inverse of the covariance operator. Its
estimation will be discussed shortly.
Under some mixing conditions on {h (τ ,X�; θ�)} , the process ĥ� (θ�) = �

�
∑�

���h (τ ,X�; θ�)
follows a functional CLT (see Subsection 2.4.2):√T ĥ� (θ�) �→N (0, K)
where the covariance operator K is an integral operator with kernel

k (τ �, τ 
) =
��
∑

��	�
E��

[

h (τ �,X�; θ�) h (τ 
, X�	�; θ�)
]

.

k can be estimated using a kernel-based estimator as those described in Andrews (1991)
and references therein. Let ω : R → [−1, 1] be a kernel satisfying the conditions stated
by Andrews. Let q be the largest value in [0,+∞) for which

ω� = lim��� 1− ω (u)|u|�
is finite. In the sequel, we will say that ω is a q−kernel. Typically, q = 1 for the Bartlett
kernel and q = 2 for Parzen, Tuckey-Hanning and quadratic spectral kernels. We define

k̂� (τ �, τ 
) = T
T − d

�	�
∑

��	���
ω
( j
S�

)

Γ̂� (j) (6.13)
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with

Γ̂� (j) =










�

�
∑�

�����h
(

τ �, X�; θ̂
�

�

)

h
(

τ 
, X�	�; θ̂
�

�

)

, j ≥ 0
�

�
∑�

��	���h
(

τ �, X���; θ̂
�

�

)

h
(

τ 
, X�; θ̂
�

�

)

, j < 0
(6.14)

where S� is some bandwidth that diverges with T and θ̂
�

� is a T ��
−consistent estimator
of θ. Let K� be the integral estimator with kernel k̂� . Under some conditions on ω
and {h (τ ,X�; θ�)} , Carrasco et al. (2001) establish the rate of convergence of K� to K.
Assuming S
���

� /T → γ ∈ (0,+∞) , we have
‖K� −K‖ = O� (T 	���
����) .

The inverse ofK is estimated using the regularized inverse ofK� , K��� = (K 

� + α�I)	�K�

for a penalization term α� ≥ 0. As before, the optimal GMM estimator is given by
θ̂� = argmin���

∥

∥

∥(K��� )	
��
 ĥ� (θ)

∥

∥

∥ .
Carrasco et al. (2001) show the following result.
Proposition 6.8. Assume that ω is a q−kernel and that S��	
� /T → γ ∈ (0,+∞) . We
have √T (θ̂� − θ�) →N (

0, (〈E�� (∇�h) , E�� (∇�h)�〉�)�

)

(6.15)

as T and T �����	
�α���� go to infinity and α� goes to zero.
Note that the implementation of this method requires two smoothing parameters α�

and S� . No cross-validation method for selecting these two parameters simultaneously
has been derived yet. If {h�} is uncorrelated, then K can be estimated using the sample
average and the resulting estimator satisfies ‖K� −K‖ = O� (T �
��). When {h�} are
correlated, the convergence rate of K� is slower and accordingly the rate of convergence
of α� to zero is slower.

7. Estimation of the solution of an integral equation of the second
kind

7.1. Introduction
The objective of this section is to study the properties of the solution of an integral
equation of the second kind (also called Fredholm equation of the second type) defined
by:

(I −K)ϕ = r (7.1)
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where ϕ is an element of an Hilbert space H, K is a compact operator from H to H and
r is an element of H. As in the previous sections, K and r are known functions of a data
generating process characterized by its c.d.f. F and the functional parameter of interest
is the function ϕ.
In most cases, H is a functional space and K is an integral operator defined by its

kernel k and Equation (7.1) becomes:
ϕ(t)− ∫

k(t, s)ϕ(s)Π(ds) = r(t) (7.2)
The estimated operators are often degenerated, see Subsection 2.6.2. and, in that case,
Equation (7.2) simplifies into:

ϕ(t)−

∑

��
 a
�(ϕ)ε�(t) = r(t) (7.3)

where the a�(ϕ) are linear forms on H and ε� belongs to H for any M.
The essential difference between equations of the first kind and of the second kind

is the compactness of the operator. In (7.1), K is compact but I − K is not compact.
Moreover, if I−K is one-to-one, its inverse is bounded. In that case, the inverse problem
is well-posed. Even if I − K is not one-to-one the ill-poseness of equation (7.1) is less
severe than in the first kind case because the solutions are stable in r.
In most cases, K is a self-adjoint operator (and hence I−K is also self-adjoint) but we

will not restrict our presentation to this case. On the other hand, Equation (7.1) could be
extended by considering an equation (S −K)ϕ = r where K is now a compact operator
fromH to E and S is a bounded operator fromH to E , one-to-one with a bounded inverse.
This extension will not be considered in this paper.
This section will be organized in the following way. The next paragraph recalls the

main mathematical properties of the equations of the second kind. The two following
paragraphs present the statistical properties of the solution in the cases of well-posed and
of ill-posed problems and the last paragraph applies these results to the two examples
given in Section 1.
The implementation of the estimation procedures is not discussed here because this

issue is similar to the implementation of the estimation of a regularized equation of the
first kind (see Section 3). Actually, regularizations transform first kind equations into
second kind equations and the numerical methods are then formally equivalent, even
though statistical properties are fundamentally different.
7.2. Riesz theory and Fredholm alternative
We first briefly recall the main results about equations of the second kind as they were
developed at the beginning of the 20th century by Fredholm and Riesz. The statements
are given without proofs (see e.g. Kress, 1999, Chapters 3 and 4).
Let K be a compact operator from H to H and I be the identity on H (which is

compact only if H is finite dimensional). Then the operator I−K has a finite dimensional
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null space and its range is closed. Moreover I−K is injective if and only if it is surjective.
In that case I −K is invertible and its inverse (I −K)�
 is a bounded operator.
An element of the null space of I−K verifiesKϕ = ϕ and if ϕ �= 0, it is an eigenfunction

of K associated with the eigenvalue equal to 1. Equivalently the inverse problem (7.1) is
well-posed if and only if 1 is not an eigenvalue of K. The Fredholm alternative follows
from the previous results.
Theorem 7.1 (Fredholm alternative). Let us consider the two equations of the sec-
ond kind:

(I −K)ϕ = r (7.4)
and

(I −K �)ψ = s (7.5)
where K � is the adjoint of K. Then:

i) Either the two homogeneous equations (I −K)ϕ = 0 and (I −K �)ψ = 0 only have
the trivial solutions ϕ = 0 and ψ = 0 and in that case (7.4) and (7.5) have a unique
solution for any r and s in H

ii) or the two homogeneous equations (I − K)ϕ = 0 and (I − K �)ψ = 0 have the
same finite number m of linearly independent solutions ϕ� and ψ� (j = 1, ..., m)
respectively and the solutions of (7.4) and (7.5) exist if and only if 〈ψ�, r〉 = 0 and
〈ϕ�, s〉 = 0 for any j = 1, ..., m.

7.3. Statistical properties of the solution of a well-posed equation of the second
kind

In the case of a one to one equation of the second kind, the asymptotic properties are easily
deduced from the properties of the estimation of the operator K and of the right-hand
side r.
The starting point of this analysis is the relation:

ϕ̂� − ϕ� =
(

I − K̂�

)�

r̂� − (I −K)�
 r

=
(

I − K̂�

)�

(r̂� − r) +

[

(

I − K̂�

)�

− (I −K)�


]

r

=
(

I − K̂�

)�
[
r̂� − r +

(

K̂� −K
)

(I −K)�
 r
]

=
(

I − K̂�

)�
[
r̂� − r +

(

K̂� −K
)

ϕ�
]

(7.6)
where the third equality follows from A�
−B�
 = A�
 (B − A)B�
.
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Theorem 7.2. ??If
i)

∥

∥

∥K̂� −K
∥

∥

∥ = o (1)

ii)
∥

∥

∥

(

r̂� + K̂�ϕ�
)

− (r +Kϕ�)
∥

∥

∥ = O
( 1
a�

)

Then ‖ϕ̂� − ϕ�‖ = O
( 1
a�

)

Proof. As I − K is invertible and admits a continuous inverse, i) implies that
‖
(

I − K̂�

)�

‖ converges to ∥∥(I −K)�
∥∥ and the result follows from (7.6).

In some cases ‖r − r̂�‖ = O( 

�� ) and ‖K̂� − K‖ = O( �

�� ). Then
�

�� =
�
�� +

�
�� . Insome particular examples, as it will be illustrated in the last subsection the asymptotic

behavior of r̂� − K̂�ϕ is directly considered.
Asymptotic normality can be obtained from different sets of assumptions. The follow-

ing theorems illustrate two kinds of asymptotic normality.

Theorem 7.3. If
i)

∥

∥

∥K̂� −K
∥

∥

∥ = o (1)

ii) a�
((

r̂� + K̂�ϕ�

)− (r +Kϕ�)
)

=⇒ N (0,Σ) (weak convergence in H)
Then

a� (ϕ̂� − ϕ�) =⇒ N (0, (I −K)��Σ(I −K 	)��)

Proof. The proof follows immediately from (7.6) and Theorem 2.47 in Section 2.
Theorem 7.4. We consider the case where H = L
(R�, π). If

i) ‖K̂� −K‖ = o(1)
ii) ∃a� s.t a�

[(

r̂� + K̂�ϕ�

)− (r +Kϕ�)
]

(x)
�→ N (0, σ
 (x)) , ∀x ∈ R�

iii) ∃b� s.t ��
�� = o(1) and

b�K̂
[(

r̂� + K̂�ϕ
)− (r +Kϕ�)

]

=⇒ N (0,Ω)
(weak convergence in H)
Then

a� (ϕ̂� − ϕ�) (x)
�→N (0, σ
 (x)) ∀x
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Proof. Using
(I −K)�� = I + (I −K)��K

we deduce from (7.6):

a�(ϕ̂� − ϕ�)(x) = a�
{

(I − K̂�)��
[

r̂� + K̂ϕ�− r −Kϕ�

]}

= a�(r̂ + K̂ϕ�− r −Kϕ�)(x)
(7.7)

+ a�
b�

{

b�(I − K̂)��K̂(r̂ + K̂ϕ�− r −Kϕ�)
}

(x)

The last term into bracket converges (weakly in L
). to a N(0, (I −K)��Ω(I −K)��)
and the value of this function at any point x also converges to a normal distribution (weak
convergence implies finite dimensional convergences). Then the last term into brackets is
bounded and the result is verified.
Note that condition (iii) is justified by circumstances when K is an integral operator

which increases the rate of convergence of r̂� + K̂�ϕ.
We illustrate these results by the following three examples even if the first one appears

to be a little artificial.
Example. Consider L
(R, π) and (Y, Z) is a random element of R × L
(R, π). We

study the integral equation of the second kind defined by

ϕ(x) +
∫

E� (Z(x)Z(y))ϕ(y)π (dy) = E�(Y Z(x)) (7.8)

denoted by ϕ+ V ϕ = r.
This equation defines a well posed inverse problem because the covariance operator is

positive. We assume that an i.i.d. sample of (Y, Z) is available and the estimated equation
(7.8) defines the parameter of interest as the solution of an integral equation having the
following form:

ϕ(x) + 1n
�
∑

���
z�(x)

∫

z�(y)ϕ(y)π (dy) = 1n
�
∑

���
y�z�(x) (7.9)

Under regularity conditions one can check that ‖V̂� − V ‖ = O
( �
�
�

)

and that
√n 1n

∑

�

{

z�(·) [y� − ∫

z�(y)ϕ(y)π(dy)
]− E� (Y Z (·))− ∫

E�(Z(.)Z(y))ϕ(y)π(dy)
}

⇒ N(0,Σ) in L
(R, π).
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If for instance E�(Y |Z) = ∫ Z(y)ϕ(y)π(y)dy and under a homoscedasticity hypothesis
the operator Σ is a covariance operator with kernel σ
E�(Z(x)Z(y)) where

σ
 = V ar
(

Y − ∫

Z(y)ϕ(y)π(dy)|Z) .

Then, from Theorem 7.3,

√n (ϕ̂� − ϕ�)⇒ N (0, σ
(I + V )��V (I + V )��) (7.10)
Example. Rational expectations asset pricing models:
Following Lucas (1978), such models characterize the pricing functional as a function

ϕ of the Markov state solution of an integral equation:

ϕ (x)− ∫

a(x, y)ϕ (y) f (y|x) dy = ∫

a(x, y)b(y)f (y|x) dy (7.11)

While f is the transition density of the Markov state, the function a denotes the
marginal rate of substitution and b the dividend function. For sake of expositional sim-
plicity, we assume here that the functions a and b are both known while f is estimated
nonparametrically by a kernel method. Note that if the marginal rate of substitution a
involves some unknown preference parameters (subjective discount factor, risk aversion
parameter), they will be estimated, for instance by GMM, with a parametric root n rate
of convergence. Therefore, the nonparametric inference about ϕ (deduced by solution of
(7.11) of a kernel estimation of f) is not contaminated by this parametric estimation;
all the statistical asymptotic theory can be derived as if the preference parameters were
known.
As far as kernel density estimation is concerned, it is well known that under mild

conditions (see e.g. Bosq (1998)) it is possible to get with stationary strongly mixing
stochastic processes the same convergence rates and the same asymptotic distribution as
in the i.i.d. case. Then, we do not make explicit in this presentation the assumed dynamic
properties of the observations y and x of present and lagged values of a Markov process.
Let us then consider a n-dimensional stationary stochastic process X� and H the

space of square integrable functions of one realization of this process. In this example, H
is defined with respect to the true distribution. The operator K is defined by

Kϕ (x) = E� (a (X���, X�)ϕ (X�) |X��� = x) (7.12)
and

r (x) = E� (a (X���, X�) b(X�)|X��� = x) (7.13)
We will assume that K is compact though for example a Hilbert-Schmidt condition

(see assumption A.1 of Section 5.4 for such a condition). A common assumption in rational
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expectation models is that K is a contraction mapping, due to discounting. Then, 1 is
not an eigenvalue of K and (7.11) is a well-posed Fredholm integral equation.
Under these hypotheses, both numerical and statistical issues associated with the

solution of (7.11) are well documented. See Rust, Traub and Wozniakowski (2002) and
references therein for numerical issues. The statistical consistency of the estimator ϕ̂�

deduced from the kernel estimator K̂� is deduced from Theorem ?? above. Assumption i)
is satisfied because K̂�−K has the same behavior as the conditional expectation operator
and

r̂� + K̂�ϕ− r −Kϕ
= E�� (a (X���,X�) (b(X�) + ϕ (X�)) |X���)−E� (a (X���, X�) (b(X�) + ϕ (X�)) |X���)

converges at the speed �

�� =
( �

���� + c��
)
��


if c� is the bandwidth of the (second order)
kernel estimator and m is the dimension of X.
The weak convergence obtained through Theorem 7.4, Assumption ii) is the usual

result on the normality of kernel estimation of conditional expectation. AsK is an integral
operator, the transformation by K increases the speed of convergence which implies iii).

Example: Partially Nonparametric forecasting model:
Nonparametric prediction of a stationary ergodic scalar random process X� is often

performed by looking for a predictor ϕ (X���, ..., X���) able to minimize the mean square
error of prediction:

E [X�− ϕ (X���, ..., X���)]


In other words, if ϕ can be any squared integrable function, the optimal predictor is
the conditional expectation

ϕ� (X��������X���) = E [X�|X��������X���]
and can be estimated by kernel smoothing or any other nonparametric way to estimate a
regression function. The problems with this kind of approach are twofold. First, it is often
necessary to include many lagged variables and the resulting nonparametric estimation
surface suffers from the well-known ”curse of dimensionality”. Second, it is hard to
describe and interpret the estimated regression surface when the dimension is more than
two.
A solution to deal with these problems is to think about a kind of nonparametric

generalization of ARMA processes. For this purpose, let us consider semiparametric
predictors of the following form

E [X�|I���] = m� (θ, I���) =
�
∑

���
a� (θ)ϕ (X���) (7.14)
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where θ is an unknown finite dimensional vector of parameters, a� (.) , j ≥ 1, are known
given scalar functions and ϕ (.) is the unknown functional parameter of interest. The
notation

E [X�|I���] = m� (θ, I���)
stresses the fact that the predictor depends on the true unknown value of the parameters
θ and ϕ and of the information I��� available at time (t− 1) as well. This information is
actually the σ-field generated by X���, j ≥ 1. A typical example is

a� (θ) = θ��� for j ≥ 1 with 0 < θ < 1. (7.15)
Then, the predictor (7.14) is actually characterized by

m� (θ, I���) = θm� (θ, I��
) + ϕ (X���) (7.16)
In the context of volatility modelling, X� would denote a squared asset return over

period [t− 1, t] and m� (θ, I���) the so-called squared volatility of this return as expected
at the beginning of the period. Engle and Ng (1993) have studied such a partially non-
parametric (PNP for short) model of volatility and called the function ϕ the “news impact
function”. They proposed an estimation strategy based on piecewise linear splines. Note
that the PNP model includes several popular parametric volatility models as special cases.
For instance, the GARCH (1,1) model of Bollerslev (1986) corresponds to ϕ (x) = w+αx
while the Engle (1990) asymmetric model is obtained for ϕ (x) = w+α (x+ δ)
 . See also
Linton and Mammen (2003) and references therein.
The nonparametric identification and estimation of the news impact function can be

derived for a given value of θ. After that, a profile criterion can be calculated to estimate
θ. In any case, since θ will be estimated with a parametric rate of convergence, the
asymptotic distribution theory of a nonparametric estimator of ϕ is the same as if θ were
known. For sake of notational simplicity, the dependence on unknown finite dimensional
parameters θ is no longer made explicit.
At least in the particular case (7.15)-(7.16), ϕ is easily characterized as the solution

of a linear integral equation of the first kind
E [X� − θX���|I��
] = E [ϕ (X���) |I��
] (7.17)

Except for its dynamic features, this problem is completely similar to the nonparametric
instrumental regression example described in Section 5.4. However, as already mentioned,
problems of the second kind are often preferable since they may be well-posed. As shown
by Linton and Mammen (2003) in the particular case of a PNP volatility model, it is
actually possible to identify and consistently estimate the function ϕ of interest in (??)
from a well-posed linear inverse problem of the second kind. The main trick is to realize
that ϕ is characterized by the first order conditions of the least squares problem

min
�

E
[

X� − �
∑

���
a�ϕ (X���)

]



(7.18)
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Then, when ϕ is an element of the Hilbert space L

� (X), its true unknown value is

characterized by the first order conditions obtained by differentiating in the direction of
any vector h

E
[(

X� − �
∑

���
a�ϕ (X���)

)( �
∑

���
a�h (X���)

)]

= 0

In other words, for any h in L

� (X)

�
∑

���
a�E� [E [X�|X��� = x] h (x)]

− �
∑

���
a
�E� [ϕ (x)h (x)]

− �
∑

���

�
∑

���
� ���

a�a�E� [E [ϕ (X���) |X��� = x] h(x)] = 0

(7.19)

where E� denotes the expectation with respect to the stationary distribution of X�. As
the equality (7.19) is true for all h, it is in particular true for a complete sequence of
functions of L


� (X). It follows that
�
∑

���
a�E [X�|X���]−

( �
∑

���
a
�
)

ϕ (X���)

− �
∑

���

�
∑

� ���
a�a�E [ϕ (X���) |X���] = 0

P�− almost surely. Let us denote
r� (X�) = E [X���|X�] and H� (ϕ) (X�) = E [ϕ (X���) |X�] .

Then, we have proved that the unknown function ϕ of interest must be the solution of
the linear inverse problem of the second kind

A (ϕ,F ) = (I −K)ϕ− r = 0 (7.20)
where

r =
( �
∑

���
a
�
)�� �

∑

���
a�r�

K = −
( �
∑

���
a
�
)�� �

∑

���

∑

� ���
a�a�H���

,
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and, with a slight change of notation, F characterizes now the probability distribution of
the stationary process (X�) .
To study the inverse problem (7.20), it is first worth noticing that K is a self adjoint

integral operator. Indeed, while

K =
( �
∑

���
a
�
)�� ��

∑

����
H�





��
∑

������������
a�a���





we immediately deduce from Subsection 2.5.1 that the conditional expectation operator
H� is such that

H 	
� = H��

and thus K = K 	, since
��
∑

������������
a�a��� =

��
∑

������������
a�a���

As noticed by Linton and Mammen (2003), this property greatly simplify the practical
implementation of the solution of a sample counterpart of equation (7.19). But, even more
importantly, the inverse problem (7.19) will be well-posed as soon as one maintains the
following identification assumption about the news impact function ϕ

Assumption A: There exists no θ and ϕ ∈ L

� (X) with ϕ �= 0 such that

∑�
���a� (θ)ϕ (X���) = 0 almost certainly.

To see this, note that assumption A means that for any non-zero function ϕ

0 < E
[ �
∑

���
a�ϕ (X���)

]



that is
0 < ∑�

���a
� 〈ϕ, ϕ〉
+∑�

���
∑�

���
� ��� a�a� 〈ϕ,H���ϕ〉

Therefore
0 < 〈ϕ, ϕ〉 − 〈ϕ,Kϕ〉 (7.21)

for non zero ϕ. In other words, there is no non-zero ϕ such that
Kϕ = ϕ
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and the operator (I −K) is one-to-one. It is also worth noticing that the operator K
is Hilbert-Schmidt and a fortiori compact under reasonable assumptions. As already men-
tioned in subsection 2.5.1, the Hilbert-Schmidt property for the conditional expectation
operator H� is tantamount to the integrability condition

∫ ∫ [f��
���� (x, y)

f�����f�� (y)
]�

f�� (x) f�� (y) dxdy <∞
It amounts to say that there is not too much dependence between X	 and X	
�. This

should be tightly related to the ergodicity or mixing assumptions about the stationary
process X	. Then, if all the conditional expectation operator H�, k ≥ 1, are Hilbert-
Schmidt, the operator K will also be Hilbert-Schmidt insofar as

�
∑

��

∑

� ��
a�a�� < +∞

Note that (7.21) implies that (I−K) has eigenvalues bounded from below by a positive
number.
Up to a straightforward generalization to stationary mixing processes of results only

stated in the i.i.d. case, the general asymptotic theory of this subsection 7.3 can then
be easily applied to nonparametric estimators of the new impact function ϕ based on
the Fredholm equation of the second kind (7.19). An explicit formula for the asymptotic
variance of ϕ̂� as well as a practical implementation by solution of matricial equations
similar to subsection 3.5 (without need of a Tikhonov regularization) is provided by Linton
and Mammen (2003) in the particular case of volatility modelling.
However, an important difference with the i.i.d. case (see for instance assumption

A.3 in section 5.4 about instrumental variables) is that the conditional homoskedasticity
assumption cannot be maintained about conditional probability distribution of X	 given
its own past. This should be particularly detrimental in the case of volatility modelling
since, when X	 denotes a squared return, it will be in general even more conditionally
heteroskedastic than returns themselves. Such a severe conditional heteroskedasticity will
likely imply poor finite sample performance and large asymptotic variance of the estimator
ϕ̂� defined from the inverse problem (7.19), that is from the least squares problem (7.18).
Indeed, ϕ̂� is basically kind of OLS estimator in infinite dimension. In order to better
take into account conditional heteroskedasticity of X	 in the context of volatility mod-
elling, Linton and Mammen (2003) propose to replace the least squares problem (7.18)
by a quasi-likelihood kind of approach where the criterion to optimize is defined from the
density function of a normal conditional probability distribution of returns, with variance
m� (θ, I	
�) . Then, the difficulty is that the associated first order conditions now charac-
terize the news impact function ϕ as solution of a nonlinear inverse problem. Linton and
Mammen (2003) suggest to work with a version of this problem which is locally linearized
around the previously described least squares estimator ϕ̂� (and associated consistent
estimator of θ).
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7.4. Regularized solution of an ill posed equation of the second kind and sta-
tistical implications

The objective of this section is to study equations (I −K)ϕ = r where 1 is an eigenvalue
of K, i.e. where I − K is not injective (or one-to-one). For simplicity we restrict our
analysis to the case where the order of multiplicity of the eigenvalue 1 is one and the
operator K is self-adjoint. This implies that the dimension of the null spaces of I −K is
one and using the results of Section 7.2, the space H may be decomposed into

H = N (I −K)⊕R(I −K)
i.e. H is the direct sum between the null space and the range of I −K, both closed. We
denote by P� r the projection of r on N (I − K) and by P�r the projection of r on the
range R(I −K).
Using ii) of Theorem 7.1, a solution of (I −K)ϕ = r exists in the non injective case

only if r is orthogonal to N (I −K) or, equivalently, if r belongs to R(I −K). In other
words, a solution exists if and only if r = P�r. However in this case, this solution is not
unique and there exists a one dimensional linear manifold of solutions. Obviously, if ϕ
is a solution, ϕ plus any element of N (I −K) is again a solution. This non uniqueness
problem will be solved by a normalization rule which selects a unique element in the set
of solutions. The normalization we adopt is

〈ϕ, φ�〉 = 0 (7.22)
where φ� is the eigenfunction of K corresponding to the eigenvalue equal to 1.
In most statistical applications of equations of the second kind, the r element corre-

sponding to the true data generating process is assumed to be in the range of I−K where
K is also associated with the true DGP. However this property is no longer true if F is
estimated and we need to extend the resolution of (I −K)ϕ = r to cases where I −K is
not injective and r is not in the range of this operator. This extension must be done in
such a way that the continuity properties of inversion are preserved.
For this purpose we consider the following generalized inverse of (I − K). As K is

a compact operator it has a discrete spectrum λ� = 1, λ�,... where only 0 may be an
accumulation point (in particular 1 cannot be an accumulation point). The associated
eigenfunctions are φ�, φ�, .... Then we define:

Lu =
�
∑

��
1

1− λ 〈u, φ〉φ, u ∈ H (7.23)

This operator computes the unique solution of (I −K)ϕ = P�u satisfying the normaliza-
tion rule (7.22). It can be easily verified that L satisfies:

LP� = L = P�L
L(I −K) = (I −K)L = P� (7.24)
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It can easily be checked that L is the generalized inverse of I − K as it was defined in
Luenberger (1969).
We now consider estimation. For an observed sample, we obtain the estimator F� of

F (that may be built from a kernel estimator of the density) and then the estimators r̂�
and K̂� of r and K respectively. Let φ̂�, φ̂�, ... denote the eigenfunctions of K̂� associated
with λ̂�, λ̂�, ... We restrict our attention to the cases where 1 is also an eigenvalue of
multiplicity one of K̂� (i.e. λ̂� = 1). However φ̂� may be different from φ�.
We have to make a distinction between two cases. First assume that the Hilbert

space H of reference is known and in particular the inner product is given (for exampleH = L�(R�, π) with π given), the normalization rule imposed to ϕ̂� is
〈ϕ̂�, φ̂�〉 = 0

and L̂� is the generalized inverse of I − K̂� in H (which depends on the Hilbert space
structure) where

L̂�u =
�
∑

��
1

1− λ̂ 〈u, φ̂〉φ̂, u ∈ H
Formula (7.24) applies immediately for F�.
If however the Hilbert spaceH depends on F (e.g. H = L�(R�, F )), we need to assume

that L�(R, F�) ⊂ L�(R�, F ). The orthogonality condition which defines the normalization
rule (7.22) is related to L�(R�, F ) but the estimator ϕ̂� of ϕ will be normalized by

〈ϕ̂�, φ̂�〉� = 0
where 〈 , 〉� denotes the inner product relative to F�. This orthogonality is different from
an orthogonality relative to 〈 , 〉.
In the same way L̂� is now defined as the generalized inverse of I − K̂� with respect

to the estimated Hilbert structure, i.e.

L̂�u =
�
∑

��
1

1− λ̂ 〈u, φ̂〉�φ̂
and L̂� is not the generalized inverse of I − K̂� in the original space H. The advantages
of this definition is that L̂� may be effectively computed and satisfies the formula (7.24)
where F� replaces F . In the sequel P�� denotes the projection for the inner product
<, >�on R� = R(

I − K̂�
)

.
¿From (7.24) one can deduce that:

L̂� − L = L̂�(K̂� −K)L
+ L̂�(P�� − P�) + (P�� − P�)L (7.25)
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since L̂� − L = L̂�P�� − P�L = L̂�(P�� − P�) + (P�� − P�)L− P��L+ L̂�P�

and L̂� (K� −K)L = L̂� (K� − I)L+ L̂� (I −K)L = P��L+ L̂�P�.
The convergence property is given by the following theorem:

Theorem 7.5. Let us define ϕ� = Lr and ϕ̂� = L̂�r̂�. If
i)

∥

∥

∥K̂� −K
∥

∥

∥ = o (1)

ii) ‖P�� − P�‖ = O
( �

�
�

)

iii)
∥

∥

∥(r̂� + K̂�ϕ�)− (r +Kϕ�)
∥

∥

∥ = O
( �

��

)

Then
‖ϕ̂� − ϕ�‖ = O

( 1
a� +

1
b�
)

Proof. The proof is based on:
ϕ̂� − ϕ� = L̂�r̂� − Lr

= L̂�(r̂� − r) + (L̂� − L)r
= L̂�(r̂� − r) + L̂�(K̂� −K)ϕ� (7.26)
+ L̂� (P�� − P�) r + (P�� − P�)ϕ�

deduced from (7.25). Then
‖ϕ̂� − ϕ�‖ ≤ ‖L̂�‖‖(r̂� + K̂�ϕ�)− (r +Kϕ�)‖

+ (‖L̂�‖‖r‖+ ‖ϕ‖)‖P�� − P�‖ (7.27)
Under i) and ii) ‖L̂� − L‖ = o(1) from (7.25). This implies ‖L̂�‖ → ‖L‖ and the result
follows.
If a�

b� ∼ O (1) , the actual speed of convergence is bounded by 1a� . This will be the
case in the two examples of 7.5 where a�

b� → 0.
We consider asymptotic normality in this case. By (7.24), we have L̂� = P��+ L̂�K̂�,

hence:

ϕ̂� − ϕ� = P��

[

(r̂� + K̂�ϕ�)− (r +Kϕ�)
]

+ L̂�K̂�
[

(r̂� + K̂�ϕ�)− (r +Kϕ�)
]

(7.28)
+ L̂�(P�� − P�)r + (P�� − P�)ϕ�

Let us assume that there exists a sequence a� such that i) and ii) below are satisfied
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i) a�P��

[

(r̂� + K̂�ϕ�)− (r +Kϕ�)
]

(x) has an asymptotic normal distribution

ii) a�
[

L̂�K̂�(r̂� + K̂�ϕ�− r −Kϕ�)
]

(x) → 0 , a�
[

L̂� (P�� − P�) r
]

(x) → 0 and
[(P�� − P�)ϕ�] (x)→ 0

Then the asymptotic normality of a�(ϕ̂� − ϕ�) is driven by the behavior of the first
term of the decomposition (7.28). This situation occurs in the non parametric estimation
as illustrated in the next section.

7.5. Two examples: backfitting estimation in additive models and panel model
7.5.1. Backfitting estimation in additive models
Let us recall that in an additive model defined by

(Y, Z,W ) ∈ R×R� × R�

Y = ϕ(Z) + ψ(W ) + U
E(U |Z,W ) = 0, (7.29)

in which case (see 1.24), the function ϕ is solution of the equation:
ϕ−E [E(ϕ (Z) |W )|Z] = E(Y |Z)− E [E(Y |W )|Z]

and ψ is the solution of an equation of the same nature obtained by a permutation of W
and Z. We focus our presentation on the estimation of ϕ. It appears as the resolution of
a linear equation of the second kind. More precisely, we have in that case :

• H is the space of the square integrable functions of Z with respect to the true data
generating process. This definition simplifies our presentation but an extension to
different spaces is possible.

• The unknown function ϕ is an element of H. Actually asymptotic considerations
will restrict the class of functions ϕ by smoothness restrictions.

• The operator K is defined by Kϕ = E [E(ϕ (Z) |W )|Z]. This operator is self adjoint
and we assume its compactness. This compactness may be obtained through the
Hilbert Schmidt assumption A.1 of section 5.

• The function r is equal to E(Y |Z)− E [E(Y |W )|Z].
The operator I−K is not one-to-one because the constant functions belong to the null

space of this operator. Indeed the additive model (7.29) does not identify ϕ and ψ. We
introduce the following hypothesis which warrants that ϕ (and ψ) are exactly identified
up to an additive constant or, equivalently, that the null space of I−K only contains the
constants.
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Identification assumption. Z and W are measurably separated w.r.t. the distri-
bution F i.e. a function of Z almost surely equal to a function of W is almost surely
constant.
This assumption implies that if ϕ�, ϕ�, ψ�, ψ� are such that E(Y |Z,W ) = ϕ�(Z) +

ψ�(W ) = ϕ�(Z) + ψ�(W ) then ϕ�(Z) − ϕ�(Z) = ψ�(W ) − ψ�(W ) which implies that
ϕ�− ϕ� and ψ�− ψ� are a.s. constant. In terms of the null set of I −K we have:

Kϕ = ϕ⇐⇒ E [E(ϕ (Z) |W )|Z] = ϕ (Z)
=⇒ E [(E [ϕ (Z) |W ])�]
= E [ϕ (Z)E (ϕ(Z)|W )] = E (ϕ� (Z)) .

But, by Pythagore theorem:
ϕ(Z) = E(ϕ (Z) |W ) + υ

E (ϕ� (Z)) = E ((E (ϕ (Z) |W ))�)+ Eυ�

Then:
Kϕ = ϕ =⇒ υ = 0⇔ ϕ(Z) = E [ϕ(Z) |W ] .

Then if ϕ is an element of the null set of I −K, ϕ is almost surely equal to a function of
W and is therefore constant.
The eigenvalues of K are real positive and smaller than 1 except for the first one. We

have 1 = λ� > λ� > λ�... > .� The eigenfunctions are such that φ� = 1 and the condition〈ϕ, φ�〉 = 0 means that ϕ has an expectation equal to zero. The range of I −K is the set
of functions with a mean equal to 0 and the projection of u, P�u, equals u− E(u).
It should be noticed that under the hypothesis of additive model, r has zero mean

and is then an element of R(I −K). Then a unique (up to the normalization condition)
solution of the structural equation (I −K)ϕ = r exists.
The estimation may be done by kernel smoothing. The joint density is estimated by

f�(y, z, w) = 1
nc������

�
∑

���
ω
(y − y�

c�
)

ω
(z − z�

c�
)

ω
(w − w�

c�
)

(7.30)

and F� is the c.d.f. associated to f�. The estimated K̂� operator verifies:

(K̂�ϕ)(z) =
∫

ϕ (u) â� (u, z) du (7.31)
��������	 
 � � � ���� �� � ������ ��� � � � ������ ���� � �� � �������� �� � �  ��

��!��"����� �� 
 ��##��$��� �� ��� �%��#�� ���!���# "����� �� ��� � ��� �  ��&��� �� '������ (�
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where
â� (u, z) = ∫ f̂� (., u, w) f̂� (., z, w)

f̂� (., ., w) f̂� (., z, .) dw.

The operator K̂� must be an operator from H to H (it is by construction an operator
from L��(F�) into L��(F�)). Therefore �( ������ )	� �( ������ ) must be square integrable w.r.t. F .The estimation of r by r̂� verifies

r̂�(z) = 1�
∑
��ω ( ���� )

�
∑
��

(

y
 − �
∑��� y�ω��

)

ω
(z − z


c� )

where ω �� = � �w� − w�
c� ��

∑��� � �w� −w�
c� � .

The operator K̂� has also 1 as the greatest eigenvalue corresponding to an eigenfunc-
tion equal to 1. Since F� is a mixture of probabilities for which z and w are independent,
the measurable separability between Z and W is fulfilled. Then the null set of I − K̂�
reduces to a.s. (w.r.t. F�) constant functions. The generalized inverse of an operator
depends on the inner product of the Hilbert space because it is defined as the function ϕ
of minimal norm which minimizes the norm of K̂�ϕ− r̂�. The generalized inverse in the
space L��(F ) cannot be used for the estimation because it depends on the actual unknown
F . Then we construct L̂� as the generalized inverse in L��(F�) of I − K̂�. The practical
computation of L̂� can be done by computing the n eigenvalues of K̂�, λ̂� = 1, ..., λ̂� !
and the n eigenfunctions φ̂� = 1, φ̂!, ..., φ̂� !. Then

L̂�u = � !
∑"#! 1
1− λ̂"

{∫

u(z)φ̂"(z)f̂�(z)dz} φ̂" (7.32)

It can be easily checked that property (7.24) is verified where P$% is the projection
(w.r.t. F�) on the orthogonal of the constant function. This operator subtracts to any
functions its empirical mean computed through the smoothed density :

P$%u = u− 1
nc&� ∑�

∫

u(z)ω
(z − z�

c� )

dz (7.33)

The right hand side of the equation (I− K̂�)ϕ = r̂� has a mean equal to 0 (w.r.t. F�).
Hence, this equation has a unique solution ϕ̂� = L̂�ϕ� which satisfies the normalization
condition !�'(% ∑� ∫ ϕ̂�(z)ω ( ) )*'% )

dz = 0.
The general results of Section 7.4 apply.
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1) Under very general assumptions, ‖K̂� −K‖ → 0 in probability.
2) We have to check the properties of P$% − P$

(P$% − P$)ϕ = 1
nc&� ∑�

∫

ϕ(z)ω
(z − z�

c� )

dz − ∫

ϕ(z)f(z)dz

The asymptotic behavior of ‖(P$%−P$)ϕ‖� = ∣

∣

∣

!�'(% ∑��#!∫ ϕ(z)ω
( ) )*'% )

dz −E(ϕ)
∣

∣

∣

�
is the same as the asymptotic behavior of the expectation of this positive random
variable :

E
(

1
nc&� �

∑�#!
∫

ϕ(z)ω
(z − z�

c� )

dz −E(ϕ)
)�

Standard computation on this expression shows that this mean square error is
O
(1
n + c����������� ) ‖ϕ‖�, where d is the smoothness degree of ϕ and d� the order of

the kernel.
3) The last term we have to consider is actually not computable but its asymptotic
behavior is easily characterized. We simplify the notation by denoting E�%(.|.) the
estimation of a conditional expectation. The term we have to consider is
(r̂� + K̂�ϕ)− (r +Kϕ) = E�%(Y |Z)− E�%(E�%(Y |W )|Z) + E�%(E�%(ϕ(Z)|W )|Z)− E�(Y |Z) + E�(E�(Y |W )|Z)−E�(E�(ϕ(Z)|W )|Z)

= E�% (Y − E� (Y |W ) + E� (ϕ (Z) |W ) |Z)

− E� (Y − E� (Y |W ) + E� (ϕ (Z) |W ) |Z)

− R

where R = E� {E�% (Y − ϕ (Z) |W )−E� (Y − ϕ (Z) |W )}
1. Moreover

E� (Y |W ) = E� (ϕ (Z) |W ) + ψ|W )
Then
(r� +K�ϕ)− (r +Kϕ) = E�% (Y − ψ (W ) |Z)−E� (Y − ψ (W ) |Z)− R

The R term converges at a faster speed than the first part of the r.h.s. of this
equation and can be neglected.
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We have seen in the other parts of this chapter that

‖E�%(Y − ψ(W )|Z)− E�(Y − ψ(W )|Z)‖� ∼ 0( 1
nc&� + c��� )

where ρ depends on the regularity assumptions.
We can conclude that ‖ϕ̂�−ϕ�‖ → 0 in probability and that ‖ϕ̂�−ϕ�‖ ∼ 0( !√�'(% + c��).
The pointwise asymptotic normality is now easy to verify. Consider √nc��(ϕ̂�(z) −

ϕ�(z)). We adapt in this framework the formula (7.28) and Theorem 7.4.
1) Under a suitable condition on c� (typically nc������������ → 0), we have:√nc&�{L̂�(P$% − P$)r + (P$% − P$)ϕ}→ 0 in probability.
2) Using the same argument as in 7.4, a suitable choice of c� implies that

√nc��L̂�K̂� [(r̂� + K̂�ϕ�)− (r +Kϕ�)]→ 0
Actually, while E�%(Y − ψ(W )|Z) − E�(Y − ψ(W )|Z) only converges pointwise
at a non parametric speed, the transformation by the operator K̂� transforms this
convergence into a functional convergence at a parametric speed. Then

√nc&� ∥∥∥K̂� [E�%(Y − ψ(W )|Z)− E�(Y − ψ(W )|Z]

∥

∥

∥→ 0
Moreover L̂� converge in norm to L which is a bounded operator and the result
follows.

3) The convergence of √nc&�(ϕ�%(z)− ϕ�(z)) is then identical to the convergence of
√nc&�P$% [E�%(Y − ψ(W )|Z)−E�(Y − ψ(W )|Z]

= √nc&�[E�%(Y − ψ(W )|Z)− E�(Y − ψ(W )|Z)

− !�∑� (Y� − ψ(W�))− !�'(% ∑� ∫

(Y − ψ(W ))f(Y,W |Z)ω(z − z�
c� )

dz
]

Then also it can be easily checked that the difference between the two sample means
converge to zero at a higher speed than √nc&� and these two last terms can be
cancelled. Then using standard results on nonparametric estimation, we obtain:
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√nc&�(ϕ�%(z)− ϕ�(z))
�→N (

0,
∫ ω�
f�(z)V ar(Y − ψ(W )|Z = z)

)

where the 0 mean of the asymptotic distribution is obtained thanks to a suitable choice
of the bandwidth, which needs to converge to 0 faster than the optimal speed.

7.5.2. Estimation of the bias function in a measurement error equation
We have introduced in Example 1.3.6, Section 1, the measurement error model:

{ Y! = η + ϕ (Z!) + U! Y!, Y� ∈ R
Y� = η + ϕ (Z�) + U� Z!, Z� ∈ R&

when η, U� are random unknown elements and Y! and Y� are two measurements of η con-taminated by a bias term depending on observable elements Z! and Z�. The unobservablecomponent η is eliminated by difference and we get the model under consideration :
Y = ϕ (Z�)− ϕ (Z!) + U (7.34)

when Y = Y�−Y! and E (Y |Z!, Z�) = ϕ (Z�)−ϕ (Z!) .We assume that i.i.d. observations
of (Y, Z!, Z�) are available. Moreover the order of measurements is arbitrary or equivalently(Y!, Y�, Z!, Z�) is distributed identically to (Y�, Y!, Z�, Z!) . This implies that (Y, Z!, Z�)and (−Y, Z�, Z!) have the same distribution. In particular, Z! and Z� are identicallydistributed.

• The reference spaceH is the space of random variables defined on R& that are square
integrable with respect to the true marginal distribution on Z! (or Z�). We are in acase where the Hilbert space structure depends on the unknown distribution

• The function ϕ is an element of H but this set has to be reduced by smoothness
condition in order to obtain asymptotic properties of the estimation procedure.

• The operator K is the conditional expectation operator
(Kϕ) (z) = E� (ϕ (Z�) |Z! = z)

= E� (ϕ (Z!) |Z� = z)
from H to H. The two conditional expectations are equal because (Z!, Z�) and(Z�, Z!) are identically distributed (by the exchangeability property). This operatoris self-adjoint and we suppose that K is compact. This property may be deduced as
in previous cases from an Hilbert Schmidt argument.
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Equation (7.34) introduces an overidentification property because it constrains the
conditional expectation of Y given Z! and Z�� In order to define ϕ for any F (and in
particular for the estimated one), the parameter ϕ is now defined as the solution of the
minimization problem:

ϕ = argmin
�

E (Y − ϕ (Z�) + ϕ (Z!))�
or, equivalently as the solution of the first-order conditions:

E� [ϕ (Z�) |Z! = z]− ϕ (z) = E (Y |Z! = z)
because (Y,Z!, Z�) ∼ (−Y,Z�, Z!) .Then the integral equation which defines the functions of interest ϕ may be denoted
by

(I −K)ϕ = r
where r = E (Y |Z� = z) = −E (Y |Z! = z) . As in the additive models, this inverse prob-
lem is ill-posed because I − K is not one-to-one. Indeed, 1 is the greatest eigenvalue
of K and the eigenfunctions associated with 1 are the constant functions. We need an
extra assumption to warranty that the order of multiplicity is one, or, in more statistical
terms, that ϕ is identified up to a constant. This property is obtained if Z! and Z� aremeasurably separated i.e. if the functions of Z! almost surely equal to some functions of
Z� are almost surely constant.
Then the normalization rule is

〈ϕ, φ�〉 = 0
where φ� is constant. This normalization is then equivalent to

E� (ϕ) = 0.
If F is estimated using standard kernel procedure, the estimated F� does not satis-
fied, in general, the exchangeability assumption ((Y,Z!, Z�) and (−Y, Z�, Z!) are iden-tically distributed). A simple way to incorporate this constraint is to estimate F using
a sample of size 2n by adding to the original sample (y�, z!�, z��)�#!������ a new sample(−y�, z��, z!�)�#!������ . For simplicity we do not follow this method here and we consideran estimation of F which does not verify the exchangeability. In that case r̂� is not, in
general, an element of R(

I − K̂�) and the estimator ϕ̂� is defined as the unique solution
of

(

I − K̂�)ϕ = P$% r̂�,
which satisfies the normalization rule

E�% (ϕ) = 0.
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Equivalently we have seen that the functional equation
(

I − K̂�)ϕ = r̂� reduces to a n
dimensional linear system, which is solved by a generalized inversion. The asymptotic
properties of this procedure follows immediately from the theorems of Section 7.4 and are
obtained identically to the case of additive models.
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