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Abstract: In survey analysis, the estimation of the cumulative distribution function
(cdf) is of great interest: it allows for instance to derive quantiles estimators or other
non linear parameters derived from the cdf. We consider the case where the response
variable is a right censored duration variable. In this framework, the classical estimator
of the cdf is the Kaplan-Meier estimator. As an alternative,we propose a nonparamet-
ric model-based estimator of the cdf in a finite population. The new estimator uses
auxiliary information brought by a continuous covariate and is based on nonparametric
median regression adapted to the censored case. The bias andvariance of the prediction
error of the estimator are estimated by a bootstrap procedure adapted to censoring. The
new estimator is compared by model-based simulations to theKaplan-Meier estimator
computed with the sampled individuals: a significant gain inprecision is brought by the
new method whatever the size of the sample and the censoring rate. Welfare duration
data are used to illustrate the new methodology.

Keywords: Cumulative distribution function, auxiliary information, censored data,
generalized Kaplan-Meier estimator, nonparametric conditional median, bootstrap es-
timation.

1 Introduction

In survey sampling, the classical literature studies estimation of totals or means but in
many applications the parameters of interest are more complex: they can be quantiles
(see e.g. Rueda et al, 2004) or other non linear parameters derived from the cumulative
distribution function (cdf) of the interest variable. We consider the estimation of the cdf
in a finite population when the interest variable is right censored. This is the case when
the interest variable is a duration which is observed duringa limited period of time. For
example, if we consider unemployment spells, individuals who have not found a job at
the end of the study have right censored unemployment durations. Notice that the cen-
soring mechanism is different from the nonresponse case: when the response variable
of an individual is censored, we know that the duration for this individual is greater
than the censoring time, whereas no information is available for non respondents. Tak-
ing into account the partial information brought by the censoring times improves the
estimation.

To the best of our knowledge, there is no literature about theestimation of the
cdf in a finite population with right censored data. This can be due to the fact that
the censoring methodology has been essentially developed in the medical field, where
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survey sampling is not usual. Note that the classical cdf estimator of a right censored
variable in classical inference is the Kaplan-Meier estimator (Kaplan and Meier, 1958).

The estimation of the cdf in survey sampling has been widely studied in the absence
of censoring (for a review, see by instance Chapter 36 in Pfefferman et al, 2009 and
Mukhopadhyay, 2001). In a naive way, the cdf is estimated by the empirical cdf com-
puted on the sampled individuals. In the design-based approach, the conventional esti-
mator of the cdf is defined in a similar way but takes into account the inclusion probabil-
ities as for the Horvitz-Thompson estimator of a total (see Kuk, 1988). Rao et al (1990)
proposed a parametric model-assisted estimator of the cdf and a nonparametric version
of this estimator was defined by Johnson et al (2008). In the following, we will focus on
model-based estimators. In a parametric regression framework, Chambers and Dunstan
(1986) improve the estimation of the cdf by predicting the response variable values of
non sampled individuals using auxiliary information brought by a covariate (this es-
timator will be denoted CD in the following). Wang and Dorfman (1996) construct a
weighted average of the CD estimator and the estimator of Raoet al (1990) which
performs better than the original estimators in terms of mean squared error. Several
variants of CD and Rao et al (1990) estimators have been proposed (see Chapter 36 in
Pfefferman et al, 2009). Dorfman and Hall (1993) define a nonparametric version of
the CD estimator and study its asymptotic properties.

In section 2, we propose a nonparametric model-based estimator of the cdf for a
finite population when the variable of interest is right censored. The estimator uses
auxiliary information brought by a continuous covariate and is based on nonparametric
median regression adapted to the censored case. In section 3, the properties of the
estimator are discussed. In section 4, a bootstrap procedure to estimate the bias and
variance of the prediction error is proposed. Section 5 compares the performance of
the new estimator to the naive Kaplan-Meier estimator computed with the sampled
individuals by a model-based simulation study. An application to a data set of welfare
spells is presented in section 6 and design-based simulations are performed in section 7.
Some remarks are given in section 8.

2 Cdf estimation of a censored variable in a finite pop-
ulation

2.1 Framework

In the following we will focus on model-based estimation so that the inclusion prob-
abilities will not be used for the estimation. Therefore, wedo not need to specify a
sampling design. However, to obtain consistent and efficient estimators, we need to as-
sume that the sampling design is not informative (or ignorable), that is the same model
holds for the sample and the population (see Introduction toPart 4 in Pfefferman et al,
2009). Moreover we will propose a nonparametric estimator in order to reduce the risk
of model misspecification.

Let us consider a finite populationP with sizeN and lets be a sample ofP with

sizen. The cdf of the interest variableT is thereforeF(t) =
1
N ∑

j∈P

1I(t j ≤ t) which can

2



be partitioned into

F(t) =
1
N ∑

j∈s
1I(t j ≤ t)+

1
N ∑

j∈P\s

1I(t j ≤ t), (1)

wheret j is the value of the variable of interest measured for the individual j of the
populationP. Moreover, we suppose thatt j is a non-negative value possibly right
censored by a censoring timec j. So, on the samples, we observey j = min(t j,c j) and
δ j = 1I(t j ≤ c j). We assume that auxiliary information available on the whole popu-
lation is given by a continuous covariateX andx j denotes the value of the covariate
measured for the individualj of the populationP.

2.2 A naive estimator of the cdfF

It is well known that the empirical cdf does not provide a consistent estimator of the
cdf in the presence of censored data. The cdf can be consistently estimated by the
Kaplan-Meier estimator (Kaplan and Meier, 1958) calculated on the samples, which
generalizes the empirical cdf to the censored case.

Notice that the original Kaplan-Meier estimator is undetermined after the last ob-
served timey(n) if this latter is censored. Therefore, to obtain a distribution function,
we will use the Efron’s version (Efron, 1967) defined by:

F̂KM (t) =





1−∏
j∈s





1− 1

∑
r∈s

1I(yr ≥ y j)





1I(y j ≤ t,δ j = 1)

if t < y(n)

1 otherwise.

(2)

The Kaplan-Meier estimator is uniformly strongly consistent (see Földes et al, 1980)
and under suitable regularity conditions, it converges weakly to a Gaussian process (see
Breslow and Crowley, 1974).

2.3 Cdf estimation using the prediction of the interest variable

We propose a model-based estimator of the cdf by estimating the two terms of (1).
Notice that the first term of (1) is unknown because of right censoring and must be
estimated. Since it can be written as:

1
N ∑

j∈s
1I(t j ≤ t) =

n
N

(
1
n ∑

j∈s
1I(t j ≤ t)

)
, (3)

we recognize the cdf on the samples in the term in parenthesis. This term can also be
estimated by the Kaplan-Meier estimator on the samples.

In order to estimate nonparametrically the second term of (1), we assume the su-
perpopulation model:

ξ : t j = m(x j)+ ε j ( j ∈ P) (4)
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where theε j are i.i.d. variables with cdfG andm(x j) is the conditional median ofT
given X = x j. We have chosen to modelize the relationship betweent andx by the
conditional median instead of the classical conditional mean since the median is easier
to estimate than the mean in presence of right censored data.

As IEξ (1I(t j ≤ t)) = P(t j ≤ t) = G(t −m(x j)), a prediction of 1I(t j ≤ t) can be ob-
tained by estimatingG(t −m(x j)). Therefore, we first need to estimate the conditional
medianm(x j). To this aim, we estimate the conditional cdf ofT givenX = x with the
generalized Kaplan-Meier estimator (see Beran, 1981) on the samples:

F̂GKM (t | x) =





1−∏
j∈s





1− B j (x)

∑
r∈s

Br (x)1I(yr ≥ y j)





1I(y j ≤ t,δ j = 1)

if t < y(n)

1 otherwise,
(5)

where theB j(x) are Nadaraya-Watson type weights defined by:

B j (x) =
K

(
x−X j

hX

)

∑
k∈s

K

(
x−Xk

hX

) ·

K is a kernel andhX denotes a suitable bandwidth. It is easy to check thatF̂GKM is a
distribution function. Its uniform strong consistency hasbeen proved by Dabrowska
(1989) and W. and Cadarso-Suarez (1994) established a result of asymptotic normality
with a norming factor of

√
nhX .

As F̂GKM is a step function with respect tot, in order to estimate the conditional
median by inversion, we will use instead ofF̂GKM a smoothed version int proposed by
Leconte et al (2002). Moreover, simulation studies have shown the gain brought by the
smoothing int in terms of the mean averaged squared error. The proposed smoothed
generalized Kaplan-Meier estimator is defined by:

F̂SGKM (t | x) =
#s†+1

∑
l=1

(
F̂GKM

(
y†

l | x
)
− F̂GKM

(
y†

l−1 | x
))

H

(
t − y†

l

hT

)
, (6)

wheres† is the subset of the uncensored individuals and the{y†
l , l = 1, . . . ,#s†} denote

the ordered times ofs†. In addition, we use the following conventions:y†
0 = 0 and

y†
#s†+1

= y(n). H is an integrated kernel andhT is an appropriate bandwidth. Note that
this smoothing is similar to the classical kernel smoothingof the empirical cdf by re-
placing the jumps1n of the empirical cdf by the jumps of the generalized Kaplan-Meier

estimator. Thanks to the definitions ofF̂GKM andH, it is easy to check that̂FSGKM (t | x)
is a nondecreasing function oft. The sum of the jumps is equal tôFGKM

(
y(n) | x

)

which turns out to be 1 by formula (5). ThereforêFSGKM(· | x) is a distribution func-
tion. An estimator of the conditional median is then derivedby numerical inversion as
m̂(x j) = F̂−1

SGKM(0.5 | x j).
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Now, let us return to the estimation ofG(t −m(x j)). As the residualŝε j = y j −
m̂(x j), j ∈ s may be right censored (obviously,ε̂ j is censored ify j is censored), a
natural estimator of the cdfG of the errors is the Kaplan-Meier estimator computed
with the sampled residualŝε j. We denote this estimator̂GKM and derive the following
estimator ofF :

F̂M(t) =
1
N

(
nF̂KM (t)+ ∑

j∈P\s

ĜKM(t − m̂(x j))

)
. (7)

It is straightforward that̂FM is a nondecreasing function. Moreover, it tends to 1
whent tends to infinity. So, the proposed estimator is a genuine distribution function.
Note that this estimator, as well as the KM estimator, has a natural extension in case of
tied time values (see 2.4 of Leconte et al, 2002).

3 Properties of the new estimator

Nascimento Silva and Skinner (1995) have listed the properties required by a good es-
timator of a cdf in a finite population. The first one is that theestimator should be
a genuine cdf. This goal is achieved by the estimator we have built. Estimators of
quantiles can then be easily obtained by inverting the cdf estimator.

Another desirable property verified by the proposed estimator is the flexibility of
the use of the auxiliary variable. We assume in the above methodology that the aux-
iliary variable is continuous. However, this estimator canbe adapted to a discrete
auxiliary variable by replacing the generalized Kaplan-Meier estimatorF̂GKM (t | xk)
by the Kaplan-Meier estimator on the subsample of individuals for whom the covari-
ate is equal toxk. In addition to it, in the presence of several covariates, the auxiliary
information can be easily summarized by a univariate index computed for instance
performing a sliced inverse regression adapted to right censoring (Li et al, 1999).

Moreover, the definition of the proposed estimator is relatively automatic: as we
use a nonparametric approach, no choices are required in thespecification of the model.
The only choice is the specification of the bandwidths which can be achieved by auto-
matic techniques such as cross-validation (see section 4).

In a finite population, Dorfman and Hall (1993) have shown that the nonparametric
version of the CD estimator is asymptotically model unbiased under some conditions
concerning the bandwidth. They also exhibit an asymptotic development for the vari-
ance of the estimator leading to its consistency. Because ofthe similarity ofF̂M with
the nonparametric version of the CD estimator, we expect thenew estimator to have
similar asymptotic properties. However these latter can not be obviously derived as an
extension of the existing methodology because of the censorship.

Let us address the question of variance estimation. An analytical variance estima-
tor for the CD estimator can be found in Wu and Sitter (2001). They also develop a
jacknife estimator of the variance and show its design consistency. Lombardia et al
(2004) have proposed to estimate by bootstrap the bias, variance and prediction error
of the nonparametric version of the CD estimator and they have shown the consistency
of the used bootstrap estimator. Due to the presence of censoring and nonparametric
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techniques which involve complex estimation procedures, an analytical formula for the
variance estimation of the new estimator has not yet been obtained. However, in the
next section, we present an adaptation to the censored case of the bootstrap techniques
of Lombardia et al (2004) in order to estimate the bias and variance of the prediction
errors of the new estimator.

4 Bootstrap estimation of the bias and variance of the
prediction error

Following Lombardia et al (2004), we use the argument proposed by Booth et al (1994)
which consists in estimating a characteristic of a finite population by averaging the
values of the characteristics over booststrapped populations issued from the original
sample.

Let us consider the original sample(y j,δ j,x j) j∈s with the superpopulation modelξ
(see (4)), with the covariatex known on the whole populationP. The adaptation of the
Lombardia et al (2004) method to the censored case leads to the bootstrap resampling
method in three steps as follows:

1. Compute the residuals :ε̂ j = y j − m̂(x j) as in section 2.3. and derive a smoothed
Kaplan-Meier estimator̂Gλ of G:

Ĝλ (u) =
#s†+1

∑
l=1

(
ĜKM

(
ε̂†
(l)

)
− ĜKM

(
ε̂†
(l−1)

))
H

(
u− ε̂†

(l)

λ

)
(8)

wheres† is the subset of the uncensored individuals and the{ε̂†
(l), l = 1, . . . ,#s†}}

denote the ordered residuals ofs†. In addition, we use the following conventions:
ε̂†

0 = −∞ (Ĝλ (ε̂
†
0) = 0) andε̂†

#s†+1
= ε̂(n) (Ĝλ (ε

†
#s†+1

) = 1). H is an integrated
kernel andλ is an appropriate bandwidth.

The bandwidthshT andhX have been chosen in a suitable grid of bandwidths so
that they minimize a cross-validation criterion adapted tocensoring defined as
follows:

CV = ∑
j∈s†

|y j − m̂− j(x j)| (9)

wherem̂− j(x j) is the estimator of the conditional median based ons minus the
jth individual ofs†. Note that we only use the uncensored durations in the CV
criterion as the durations are not exactly known for censored observations.

As far as the choice of theλ smoothing parameter is concerned, it has been
chosen in a suitable grid by cross-validation adapted to cdfestimation with cen-
soring. Letλ0 denote the value ofλ which minimizes the following criterion:

∑
u∈Gε

∑
j∈s†

(
1I(ε̂ j ≤ u)− Ĝλ ,− j(u)

)2
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whereĜλ ,− j(u) is the smoothed Kaplan-Meier estimator ofG based ons minus
the jth individual ofs† andGε is the grid of the 30 regularly spaced residuals in
the range of thêε j.

2. Generate aN-membered bootstrap populationP∗ = (y∗k ,δ
∗
k ,xk)k∈P wherey∗k =

min(t∗k ,c
∗
k) andδ ∗

k =1I(t∗k ≤ c∗k). The bootstrapped event durationst∗k are obtained
using the superpopulation modelξ by t∗k = m̂(xk)+ε∗k , where the bootstrap errors
ε∗k are generated according tôGλ0

by numerical inversion. The bootstrapped
censored durationsc∗k have been obtained by inverting numerically the smoothed
Kaplan-Meier estimator of the cdf of the censored times fromthe original sample
(known as the reverse Kaplan-Meier estimator).

3. Draw a samples∗ of sizen from P∗ without replacement.

Let F∗(t) =
1
N ∑

k∈P

1I(t∗k ≤ t) be the cdf of thet∗ variable.

The functionF∗ can be estimated from the samples∗, leading to an estimator de-
notedF̂∗. Eq. (2) (respectively Eq. (7)) gives the estimatorF̂∗

KM (respectivelŷF∗
M). For

computing time reasons, the bandwidthshT andhX have been chosen by data-driven
techniques:hT equals 30% of the range of they andhX equal 30% of the range of the
x in the bootsrapped sample.

Following Lombardia et al (2004), for an estimatorF̂ of F, we can estimate the bias
E(F̂(t)−F(t)|P) and the varianceVar(F̂(t)−F(t)|P) of the prediction error using
the predictorsE∗(E(F̂∗(t)−F∗(t)|P∗)) andE∗(Var(F̂∗(t)−F∗(t)|P∗)) respectively.
To approximate these predictors, according to step 2 and 3 ofthe previous procedure,
we generateB bootstrap populations denotedP∗b(b = 1, . . . ,B) with sizeN and from
each one we drawR samples with sizen, denoteds∗br(r = 1, . . . ,R). So we have the
following approximations:

E∗(E(F̂∗(t)−F∗(t)|P∗))≈ 1
B

1
R

B

∑
b=1

R

∑
r=1

[F̂∗br(t)−F∗b(t)]

E∗(Var(F̂∗(t)−F∗(t)|P∗))≈ 1
B

1
R

B

∑
b=1

R

∑
r=1

[F̂∗br(t)− F̂∗b(t)]2

whereF∗b is the cdf of thebth boostrap population,̂F∗br is the estimator orF∗b com-
puted from therth sample of thebth bootstrapped population (with Eq. (2) or Eq. (7))
andF̂∗b is the mean of theR estimateŝF∗br for a givenb.

Moreover, following Lombardia et al (2004), a 100(1−α)% bootstrap confidence
interval forF can be obtained by

CI [F(t)]∗ = [F̂(t)− q∗1− α
2
, F̂(t)+ q∗α

2
] (10)

whereF̂(t) is computed from the original sample (with Eq. (2) or Eq. (7))andq∗α is the
100α-percentile of the bootstrap estimation of the functionH(u) = P(F̂(t)−F(t) ≤
u | P).

The original populationP has been generated according to the accelerated failure
time model of subsection 5.1 with HR=7.4, withN = 400 and a censoring rateτ = 25%.
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Figure 1: Boostrap estimation of the biases and variances ofthe prediction error for the
two estimators of the cdf (B = 200,R = 1000,N = 400,τ = 25%).tt denotes the time
values of the gridG

B = 200 bootstrapped populations have been generated andR = 1000 samples have
been drawn from each population. The target cdf, its estimators as well as the bootstrap
estimators have been computed on the gridG of theK =30 evaluation timestt regularly
spaced between the first and the 99th percentiles of thet values of the original sample.

Figure 1 shows boostrap estimation of the biases and variances of the prediction
error for the two cdf estimatorŝFKM andF̂M. As expected, the bias of the prediction
error is smaller for the estimator̂FKM than for the estimator̂FM. In compensation,
the variance of the prediction error is weaker for the new estimator. The orders of
magnitude of bias and variances are quite similar to those obtained by the model-based
simulations (see section 5.2).

Figure 2 presents the cdfF with its two estimatorsF̂KM and F̂M computed from
the initial sample, as well as the 95% bootstrap confidence intervals forF based on
formula (10). The confidence interval based onF̂M is more narrow than this based on
F̂KM for 83.3 % of the t values of the grid.
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Figure 2: Cdf estimators and the corresponding boostrap estimated 95% confidence
intervals forF (B = 200,R = 1000,N = 400,τ = 25%). tt denotes the time values of
the gridG .The target cdf has been computed from the original populationP

5 Model-based simulations

5.1 Description

We present a simulation study to compare the performances ofthe two cdf estimators
F̂M andF̂KM , this latter being the naive estimator of the cdf in presenceof censoring.
We have also derived estimators for the quartiles of the cdf.

At each iteration, a population of sizeN (N = 200 and 400) has been generated ac-
cording to the accelerated failure time model log(t j) =−3+0.2∗x j+σ ∗u j where the
covariatex j is uniformly distributed on(1,4). The error termu j follows an extreme
value distribution in order to obtain a Weibull distribution for the t j. Note that this
model is a proportional hazard model with a hazard ratio (HR)equal to exp(0.2/σ)
which means that the ratio of the hazard rates of two individuals whose covariatex dif-
fers from one unit is constant over time and equal to exp(0.2/σ). Two values ofσ (0.5
and 0.1) have been chosen leading to hazard ratios of 1.5 and 7.4, which correspond
respectively to a weak and a strong relationship between thevariable of interest and
the auxiliary variable.t j is censored byc j wherec j is uniformly distributed on(0,c), c
being chosen in order to obtain 0%, 10%, 25% or 50% of censoring in the whole pop-
ulation. At each iteration, we then draw a simple random sample without replacement
of sizen=N/10. S = 1000 iterations have been performed.
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As far as the smoothing is concerned, we choose the triweightkernel K (x) =
35
32

(
1− x2

)3
1I(−1,1) (x) rather than the more commonly used Epanechnikov kernel be-

cause the triweight kernel is twice differentiable at the boundaries of the interval(−1,1).
So the resulting estimators will have the same degree of regularity. For each iteration
s, the bandwidthshT andhX have been chosen in a grid of bandwidths so that they
minimize the averaged square error (ASE) criterion defined as:

ASE(F̂M,s) =
1
K

K

∑
i=1

(
F̂M,s(tti)−Fs(tti)

)2
.

where the evaluation timestt belong to the gridG of theK = 30 regularly spaced values
of times between the 5th and the 95th percentiles of the distribution of t. Note that this
grid is common to all the iterations. The cdfFs is computed for iterations according to
formula (1) using the truet j times.

5.2 Results

The performances of the two estimators have been compared interms of Monte Carlo
bias, variance and mean squared error. For each estimatorF̂ , we compute the estimated
bias

B̂(F̂(t)) =
1
S

S

∑
s=1

(
F̂s(t)−Fs(t)

)
,

the estimated variance

V̂ar(F̂(t)) =
1
S

S

∑
s=1

(
F̂s(t)−

1
S

S

∑
s=1

F̂s(t)

)2

and the estimated mean squared error (MSE):

M̂SE(F̂(t)) =
1
S

S

∑
s=1

(
F̂s(t)−Fs(t)

)2
.

Note that the usual relationship between the three above quantities does not hold
here since theFs function changes as the population is generated at each iteration. In
practice, these estimators have been computed on the gridG defined above.

The MASE criteria (mean of the estimated MSE overG ) of the estimators have
been computed and the ratiosMASE(F̂KM)/MASE(F̂M) are shown in table 1 for two
sample sizes, different censoring rates and two strengths of the relationship between
the interest variable and the auxiliary variable.

F̂M performs always better than̂FKM with a maximal ratio of the MASE criteria
equal to 3.03. As expected, the gain brought by the auxiliaryinformation is much
higher when the relationship between the interest variableand the auxiliary variable is
great: the ratios of the MASE are more than twice greater whenthe hazard ratio equals
7.4. For both estimators, the simulations show that the MASEcriteria decrease with
the sample size and increase with the censoring rate, but theratios of the MASE criteria
remain almost the same for a given hazard ratio.
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Figure 3: Estimated biases, variances and MSE of the two estimators of the cdf for
N=400 individuals, a censoring rateτ = 25% and the two values of the hazard ratio
HR. tt denotes the evalution times of the gridG

Figure 3 shows the estimated bias, variance and MSE of the twoestimators of the
cdf for N = 400 individuals and a censoring rateτ = 25% for both hazard ratios. Notice
that similar patterns are obtained for other sample sizes and censoring rates. The new
estimator has a greater bias than the estimatorF̂KM but it shows a smaller variance and
MSE for both values of the hazard ratio. As expected, when therelationship between
the interest variable and the auxiliary is strong, the bias as well as variance and MSE
are appreciably smaller.

The estimators of the quartiles have been obtained by numerical inversion of the
two cdf estimators. Tables 2 and 3 show the relatives biases and the square roots of the
relavive mean squared errors for the different sample sizesand censoring rates, for the
two hazard ratios. The results are very similar to those obtained for the cdf estimation:
the quartile estimator based onF̂KM has almost always a larger MSE than the quartile
estimator based on̂FM. As far as the relative bias is concerned, the estimator based on
F̂M shows a better performance than the estimator based onF̂KM in half of the cases.
Notice that, when the auxiliary variable is strongly linkedto the interest variable, the
third quartile estimator based on̂FM always behaves better than the estimator based on
F̂KM in terms of bias and MSE criterion. Acccording to figure 3, this can be explained
by the fact that the curves of the biases ofF̂M has very small biases for thet values
close to the third quartile.
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Table 1: Estimated ratiosMASE(F̂KM)/MASE(F̂M). n is the sample size,τ denotes the
censoring rate and HR is the hazard ratio of the proportionalhazard model describing
the relation betweent andx

HR=1.5 HR=7.4

n τ=0% τ=10% τ=25% τ=50% τ=0% τ=10% τ=25% τ=50%

20 1.27 1.37 1.38 1.59 3.03 2.84 2.85 2.81
40 1.27 1.33 1.34 1.46 2.88 2.96 2.97 2.85

6 Example

We analyse the data from the Survey of Income and Program Participation (SIPP) with
the new method (see Hu and Ridder (2012) for more details about the SIPP). We use
the 1992 and 1993 SIPP panels. Each individual is followed upduring 36 months. We
consider the subsample of monoparental families who benefitfrom the Aid to Families
with Dependent Children program (AFDC). Thet variable of interest is the length of
time spent on welfare. For simplicity, only the first welfarespell will be considered.
The spell is right-censored if it does not end before the family leaves the panel. 520
spells have been recorded, among which 269 are right-censored, leading to a censoring
rateτ =51.7%. It has been found in the literature that the benefit level is negatively and
significantly related to the probability of leaving welfare: in the SIPP sample, a Cox
model explaining the welfare duration by the benefit level gives a hazard ratio of 0.999
(with a p-value of 0.0013). Therefore we use the benefit levelas auxiliary variable.

As we need to know the value of the auxiliary variablex for the whole population,
we have to consider the above sample of 520 spells as the fixed populationP, in
which we draw a samples of sizen = 40 without replacement. We compute the two
cdf estimatorsF̂KM and F̂M based on the samples and the auxiliary variablex. The
bandwidthshT andhX have been chosen by cross-validation according to formula (9).
Bootstrap estimated 95% confidence intervals for the cdf based on the two estimators
have been obtained by the procedure of section 4 (see formula(10). As the variable of
interest is censored in the considered populationP, we cannot compute the true cdf.
So, instead of the true cdf, we can use as a target cdf the Kaplan-Meier estimatorF̂N

computed with all the individuals ofP. The estimators have been computed over the
grid of theK = 30 evaluation timestt regularly spaced between the first and the 99th
percentiles of thet values of the samples.

Figure 4 presents the two cdf estimatorsF̂KM andF̂M as well as the corresponding
95% bootstrap confidence intervals forF. Note that the censoring rate of the drawn
sample is 42.5%. We also plot as a reference the Kaplan-MeierestimatorF̂N computed
onP. The confidence interval based onF̂M is more narrow than this based onF̂KM for
all the t values of the grid. The median welfare duration is estimated to 6.68 months by
invertingF̂KM and to 10.88 months by invertinĝFM. This latter estimation is very close
to the estimation of the median welfare duration based on theKaplan-Meier estimator

12



Table 2: Model-based simulation results for the estimationof the quartiles by the two
estimators for a weak relationship (HR = 1.5). Entries indicate relative biases, with
square roots of the relavive mean squared errors in parenthesis

τ = 0% τ = 10% τ = 25% τ = 50%
Target Q1: 0.080

n KM M KM M KM M KM M

20 -0.004 -0.021 0.023 -0.015 0.063 -0.001 0.286 0.049
(0.330) (0.128) (0.397) (0.115) (0.519) (0.211) (1.054) (0.453)

40 -0.025 -0.024 -0.021 -0.019 -0.022 -0.017 -0.008 -0.019
(0.100) (0.084) (0.116) (0.081) (0.129) (0.080) (0.235) (0.084)

Target Q2: 0.108

n KM M KM M KM M KM M

20 0.074 0.104 0.080 0.107 0.107 0.122 0.246 0.133
(0.306) (0.223) (0.316) (0.228) (0.389) (0.263) (0.748) (0.364)

40 0.045 0.100 0.063 0.101 0.074 0.115 0.061 0.099
(0.187) (0.195) (0.199) (0.197) (0.209) (0.212) (0.233) (0.205)

Target Q3: 0.164

n KM M KM M KM M KM M

20 0.076 0.089 0.062 0.071 0.083 0.088 0.071 0.015
(0.295) (0.228) (0.281) (0.217) (0.320) (0.247) (0.441) (0.237)

40 0.029 0.049 0.047 0.046 0.058 0.055 -0.036 -0.004
(0.191) (0.162) (0.198) (0.165) (0.223) (0.186) (0.165) (0.136)

F̂N , which equals 10.79 months.

7 Design-based simulations

Design-based simulations have been performed: they are based on the SIPP data pre-
sented in the previous section. To compare the two estimators, we consider the SIPP
sample of size 520 as a fixed population in which we randomly selectS = 500 samples
of size 40 without replacement. As in section 6, the true cdfF can not be computed
because of censoring. Therefore we use as a target cdf the Kaplan-Meier estimator
F̂N computed with all the individuals of the SIPP sample. For each iterations, the
bandwidthshT andhX have been chosen in a suitable grid of bandwidths so that they

13



Table 3: Model-based simulation results for the estimationof the quartiles by the two
estimators for a strong relationship (HR = 7.4). Entries indicate relative biases, with
square roots of the relavive mean squared errors in parenthesis

τ = 0% τ = 10% τ = 25% τ = 50%
Target Q1: 0.075

n KM M KM M KM M KM M

20 -0.014 0.011 -0.015 0.015 -0.014 0.016 -0.030 0.012
(0.092) (0.037) (0.095) (0.038) (0.107) (0.044) (0.139) (0.057)

40 0.001 0.010 0.003 0.010 0.001 0.012 -0.004 0.013
(0.046) (0.026) (0.053) (0.027) (0.059) (0.030) (0.077) (0.034)

Target Q2: 0.089

n KM M KM M KM M KM M

20 -0.003 0.007 -0.004 0.010 -0.005 0.008 -0.010 0.006
(0.073) (0.043) (0.071) (0.043) (0.076) (0.044) (0.089) (0.051)

40 -0.006 0.003 -0.004 0.003 0.001 0.006 -0.001 0.004
(0.056) (0.039) (0.056) (0.040) (0.060) (0.041) (0.069) (0.045)

Target Q3: 0.102

n KM M KM M KM M KM M

20 -0.016 0.003 -0.015 0.002 -0.020 0.001 -0.035 -0.003
(0.056) (0.031) (0.056) (0.033) (0.062) (0.036) (0.076) (0.042)

40 -0.007 0.002 -0.002 0.002 -0.003 0.001 -0.012 0.000
(0.044) (0.022) (0.042) (0.024) (0.045) (0.023) (0.054) (0.032)

minimize the averaged square error (ASE) criterion defined as:

ASE(F̂M,s) =
1
K

K

∑
i=1

(
F̂M,s(tti)− F̂N(tti)

)2
,

where the evaluation timestt belong to the gridG ′ of the K = 30 regularly spaced
values between the 5th and the 95th percentiles of the t values of the whole SIPP
sample.

The ratio of the MASE criteria (mean of the ASE over theS samples) of the estima-
tor F̂KM over the estimator̂FM is equal to 1.72, which shows clearly the gain brought
by the new cdf estimator. Table 4 presents the relative bias and relative root mean
squared errors of quartiles estimates of the distribution of the welfare spells. The esti-
matorF̂M has the smallest relative bias except for the median and has always the best
performance in terms of relative mean squared error. Figure5 exhibits the estimated
bias and mean squared errors (MSE) of the two cdf estimators.As in the model-based
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Figure 4: Cdf estimators and the corresponding boostrap estimated 95% confidence
intervals forF (B = 200, R = 1000) based on a sample of sizen = 40. tt denotes
the time values of the grid. The target cdf denotes the Kaplan-Meier estimatorF̂N

computed on all the individuals of the SIPP sample

simulations, the bias of̂FKM is very close to zero. On the other hand,F̂M shows a more
important bias but a substantially smaller mean squared error thanF̂KM .

8 Concluding remarks

The simulations show the gain in precision by predicting theinterest variable for the
non sampled individuals. Therefore it is worth using the estimator F̂M instead of the
Kaplan-Meier estimator̂FKM in a finite population when auxiliary information is avail-
able.

According to formula (7), it is obvious that̂FM is a step function with jumps among
others things at the uncensored time values. As the interestvariable is continuous, we
expect the cdf to be continuous. So if desired, the cdf estimator F̂M could be smoothed
using for instance an integrated kernel as in formula (6), which would require another
choice of bandwidth.

The model-based approach is appropriate and will presumably lead to consistent
estimators when the sampling is not informative. When a morecomplex sampling
method is used or when the sampling is informative, a model-assisted approach which
takes into account the sampling weights would be more adapted. For instance, we can
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Table 4: Relative biases and relative root mean squared errors (in percentage) of esti-
mates of quartiles of welfare durations (n = 40)

Relative bias Relative root MSE
Target quartile KM M KM M

q0.25= 5.26 26.80 3.18 99.19 36.09
q0.50= 10.70 21.54 27.82 51.33 40.15
q0.75= 22.60 -14.15 2.79 19.24 12.22
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Figure 5: Estimated bias and MSE of the cdf estimators for thewelfare duration data
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consider the model-assisted parametric cdf estimator of Rao et al (1990) or its non-
parametric version proposed by Dorfman and Hall (1993) in the case of simple random
sampling. These estimators could be easily generalized to the censored case.

Note that, in panel surveys, nonresponse could be the sourceof right censoring: in
the design-based simulations of section 6, an individual lost to follow-up who was still
in welfare state at his last interview is considered as censored. A methodology taking
into account the nonresponse could have been more adapted tothis case.

The proposed estimators are based on the generalized Kaplan-Meier estimator of
the conditional cdf. Other estimators could have been used.In particular, Van Keilegom et al
(2001) defined an estimator of the conditional cdf which behaves better than the orig-
inal Beran estimator in the right tail of the distribution even under heavy censoring.
Alternatively, as proposed by Gannoun et al (2005) in the censored case, the condi-
tional median could have been directly estimated by local linear polynomials.
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