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118 route de Narbonne, 31062 Toulouse Cedex 9

E-mail : walschaerts.m@chu-toulouse.fr, leconte@cict.fr,
philippe.besse@math.univ-toulouse.fr

Abstract

The instability in the selection of models is a major concern with data sets containing
a large number of covariates. This paper deals with variable selection methodology in
the case of high-dimensional problems where the response variable can be right censored.
We focuse on new stable variable selection methods based on bootstrap for two different
methodologies commonly used in survival analysis: the Cox proportional hazard model
and survival trees. As far as the Cox model is concerned, we investigate the bootstrap-
ping applied to two variable selection techniques: the stepwise algorithm based on the
AIC criterion and the L1-penalization of Lasso. Regarding survival trees, we review two
methodologies: the bootstrap node-level stabilization and random survival forests. We
apply these different approaches to two real data sets, a classical breast cancer data
set and an original infertility data set. We compare the methods on two criteria: the
prediction error rate based on the Harrell concordance index and the relevance of the
interpretation of the corresponding selected models, focusing on the original infertility
data set. The aim is to find a compromise between a good prediction performance and
ease to interpretation for clinicians. Results suggest that in the case of a small number of
individuals, a bootstrapping adapted to L1-penalization in the Cox model or a bootstrap
node-level stabilization in survival trees give a good alternative to the random survival
forest methodology, known to give the smallest prediction error rate but difficult to in-
terprete by non-statisticians. In a clinical perspective, the complementarity between the
methods based on the Cox model and those based on survival trees would permit to built
reliable models easy to interprete by the clinician.

Key-words: censored data, variable selection, survival trees, survival random forests,
Lasso, Cox model, bootstrap.
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1 Introduction

Problems of variable selection arouse a growing interest in the processing of data sets
containing more and more variables. In the last twenty years, many methods of variable
selection have been proposed to handle these high-dimensional problems, especially when
the number of covariates p exceeds the number of observations n. To avoid a wrong estima-
tion due to collinearity problems and to improve interpretation, the scientific community
has developed tools to select the most relevant variables. A large literature concentrates
on the case of the linear regression. A classical well-known method is the stepwise algo-
rithm based on the Akaike Information Criterion (AIC). Recently, another field of research
has focused on optimization problems, such as L1-penalty approaches. On the other way,
tree-based algorithms provide an interesting alternative to handle non-parametrically a
large number of covariates.

We consider the special case where the response variable is right censored. In this
context, the Cox proportional hazards model [1] has become the gold-standard tool for the
statistical analysis, especially in the medical field. However, in the case of a large amount
of covariates, it may be very unstable, even when stepwise selection or L1-penalization of
Lasso are added to the classical procedure. The instability of these selection approaches
have also been encountered in the context of the linear regression [2, 3]. To remedy this
problem, some authors have proposed to use bootstrapping to investigate the reliability of
the choice of the variables in the final model. Bach [4] introduced stability in the selection
by using bootstrapping in a Lasso algorithm, a method called Bolasso, and Meinshausen
and Bühlmann [3] proposed to improve the L1-penalization by randomizing the selection
process of the covariates. These bootstrapped Lasso methods have only been considered
in the framework of linear regression: we propose to extend them to the stabilization of
the selection of covariates in a Cox model.

Alternatively to the Cox model, survival trees procedures permit to take into account
non linear relationships between the censored variable and the covariates and yield easily
interpretable classification rules to the clinicians, but they tend to overfit the data and
suffer also from instability [5 – 8]. A stabilization technique known to improve the pre-
diction performance of a single tree consists in aggregating a family of tree models using
boostrapped samples and a random selection of the covariates at each node of the trees.
This procedure, called “random forests” [9] has been adapted to the survival framework
by Ishwaran et al. [10]. This Random Survival Forest (RSF) methodology is considered as
the best modelization in terms of prediction performance but it it is not easy to interprete
as it does not provide a single tree. On the other way, Dannegger [6] introduced tools to
control the stability of the selection of the covariates at each node of a tree and propose
resampling techniques at node-level to stabilize the choice of the split. This methodology
has the advantage to keep the simplicity of interpretation of a single final tree.

We review and compare these different stable variable selection methods derived on
the Cox model or on survival trees on real data sets. We will base the comparison of the
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proposed methods on statistical criteria as the prediction accuracy but also on the capacity
of the method to supply a final model whose clinical interpretation is easy and pertinent.
As a matter of fact, the objective of the statistician is to provide to clinicians a model
which is robust enough to permit a proper understanding of the relationships between the
variable of interest and the covariates in a predictive and explanatory purpose.

We consider two real data sets. The first data set concerns the survival of breast
cancer patients in relation with their gene-expression signature [11] and is a very usual
case encountered in survival analysis. This classical example will validate the different
approaches discussed earlier. The second data set is much more original as it concerns
couples consulting for infertility and very few studies were led in this domain. The cen-
sored variable of interest is the duration between the first visit of the couple and the birth
of a alive child, which is difficult to model. The study takes into account several covariates
of the couple or man and woman, but also the associated medical treatment according
to the diagnosed causes of infertility. For example, a man with severe oligospermia will
receive ICSI (IntraCytoplasmic Sperm Injection), while a woman with a dysovulation or
with no tubal factor will enter an IVF (In Vitro Fertilization) program. In many couples,
causes of infertility are not identified and physicians can not clearly answer the question
of on-going pregnancy in couples.

In section 2, a presentation of the variable selection methods based on the Cox model
is given, followed, in section 3, by a review of the selection methods based on trees
algorithms. Section 4 compare the different approaches on the two data sets, giving
the prediction erro rate and the selected variables in the final model for each approach.
Concluding remarks and perspectives are presented in the last section.

2 Stable variable selection methods based on the Cox

model

Notations

We denote by T the variable of interest, which is a time of failure. We suppose that T may
be right censored at a non-informative censoring time C such that C is independent of T
conditionally on Z, a p-vector of covariates. The observations are therefore the possibly
censored time X = min(T,C) and the censoring indicator ∆ = 1{T ≤ C}, where 1{·} is
the indicator function. The observed sample is thus (Xi,∆i, Zi)i=1,...,n.

In survival analysis, the Cox model [1] has become the most popular method to mod-
elize the relationship between a survival time and one or more predictors (i.e. covariates).
This model has the advantage to be semi-parametric in the sense that it does not re-
quire assumptions on the survival time distribution. Morevoer, it is of easy interpretation
for clinicians in providing estimates of the effect of the covariates on survival time after
adjustment on the other covariates.
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In the Cox regression model in its simplest form, the hazard function for the failure
time of an individual takes the form

λ(t|Z) = λ0(t) exp(β′Z),

where β is a p-vector of unknown regression parameters and λ0(t) is an unknown baseline
hazard function. Denote t(1), . . . , t(k) the k ordered uncensored survival times. The pa-
rameter of interest β is estimated by maximising the logarithm of the partial likelihood
function

L(β) =
k∑
i=1

β′Zi − log

∑
j∈Ri

eβ
′Zj

 (1)

where Ri is the set of indices of the individuals at risk at time t(i). Notice that the Cox
model is a log-linear model based on the proportional hazard hypothesis, which stipulates
that the ratio of the hazard functions of two individuals is constant over time.

In the following, we review three stable methods to select the relevant covariates using
the Cox model: the bootstrap stepwise selection, the bootstrap Lasso selection and the
bootstrap randomized Lasso selection.

2.1 Bootstrap stepwise selection (BSS)

In case of a large number of covariates, the selection of the predictors in the Cox model is
usually made by a stepwise algorithm minimizing the Akaike Information Criteron (AIC).
However, the stability of this method is questionable. Using a data splitting approach,
Harrell et al. [2] showed variation in the selected predictors. This result was confirmed by
Chen and George [12] who applied the stepwise procedure on 100 bootstrapped samples
from a study of acute lymphocytic leukaemia. The original model which was built from
the entire set by a Cox regression model coincide in only 2% of the cases with the models
selected from the bootstrapped samples. Sauerbrei and Schumacher [13] developped a
bootstrap selection procedure which combined the bootstrap method with stepwise selec-
tion in Cox regression. They examined the inclusion frequencies of the variables selected
by the stepwise algorithm into the models derived from the bootstrapped samples and
keep in the final model the variables for which the inclusion frequency exceeds a given
cut-off value κ in (0, 1). The choice of κ is arbitrary. The authors applied the methodol-
ogy to a data set on brain tumours including 447 patients and 12 covariates, using two
values of κ (0.3 and 0.6). They showed that the choice of κ = 0.6 gives the same final
model whatever the number of bootstrap samples (from 100 to 1000).
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2.2 Bootstrap Lasso and bootstrap randomized Lasso selection

Lasso selection

An alternative to the stepwise selection procedure is the Lasso selection. Adapted by
Tibshirani [14] to the Cox model, the method estimates the β parameter via maximising
the log partial likelihood function (1) with the constraint

∑p
j=1 |βj| ≤ λ where λ is a

regularization parameter. The Lasso constraint selects variables by shrinking estimated
coefficients towards 0. This leads to coefficients exactly equal to zero and allows a parci-
monious and interpretable model. The choice of a proper λ is sensitive and leads to
variation in model selection as demonstrated by Meinshausen and Bühlmann [3]. In a
linear regression framework, they studied the stability of the selection in a gene expres-
sion data set. They introduced noise in variables in permuting all but 6 of the 4088 gene
expressions. They showed that, when λ increases, the final model retained as well the 6
unpermuted variables as the irrelevant noised variables. Although cross-validation seems
a natural solution to choose λ, it is not a good alternative for high-dimensional problems.
As a matter of fact, the authors showed in their example that 14 permuted variables
are still retained in the final model obtained in choosing λ by cross-validation. Moreover,
Meinshausen and Bühlmann [15] prooved that if the number of covariates tends to infinity
then the probability of selecting a wrong variable converges to 1.

Bootstrap Lasso selection (BLS)

In order to obtain a consistent model selection, Bach [4] proposed for the linear model
a bootstrapped version of the Lasso, referred as the Bolasso. He defined the Bolasso
model estimate as the final model composed by only the variables which are selected in
all bootstrapped samples; in other words, using the terminology of the BSS, it corresponds
to a cut-off value κ equal to 1. However, Meinshausen and Bühlmann [3] showed with the
permuted gene data set that even with random subsampling (which is a procedure close
to the bootstrap [16]), the Lasso algorithm could select irrelevant variables when λ is too
large.

Bootstrap randomized Lasso selection (BRLS)

To deal with the choice of λ, Meinshausen and Bühlmann [3] proposed a generalisation
of the bootstrap Lasso procedure called bootstrap randomized Lasso where the covariates
are penalized by different values randomly chosen in the range [λ, λ/α] with α in (0, 1).

This turns out to estimate the β parameter with the constraint
p∑
j=1

∣∣∣∣∣ βjWj

∣∣∣∣∣ ≤ λ. In practice,

the set of covariates {Zj : j = 1, . . . , p} are weighted by the set {Wj : j = 1, . . . , p}
randomly generated where P (Wj = α) = pw and P (Wj = 1) = 1 − pw with pw in (0, 1).
The authors give no indication on the choice of pw and in the following we take pw = 0.5.
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This procedure is very simple to implement and the authors showed that choosing α in the
range of (0.2, 0.8) gives a consistent variable selection whatever the choice of the penalty
λ. The authors explained that a low value of α will decrease the selection probabilities
of irrelevant variables even if the penalty λ is large. As the BLS and BRLS methods are
based on a penalization of the parameter β, it is necessary to first normalize the covariates
such as ||Zj||2 = (

∑n
i=1 Z

2
ij)

1/2 = 1 for all j in {1, . . . , p}.

3 Stable variable selection methods based on survival

trees

Although they are not so popular than the Cox model, tree-based methods in survival
analysis (the so-called survival trees) have known a great development in the last decades.
They provide a good alternative to the Cox regression model in identifying covariates
which play a role on the survival outcome and in predicting the individual risk of failure. In
addition to be easy to interpret in a large frame of applications, survival trees methods can
incorporate non linear effects, and also take into account interactions between covariates.

First developed for basic classification trees, the Classification and Regression Trees
(CART) algorithm of Breiman [17] is based on binary recursive partitioning. This is an
iterative process which splits the data into two subgroups (daughter nodes) according to
the value of one of the predictors. The splitting rule maximises the difference between
nodes. Let denote {Zj : j = 1, . . . , p} the set of covariates. Formally, a split is induced
by a question of the form “Is Zj ≤ b ?” for a continuous covariate where b is a cut-off
value in the set of realizations of Zj. For nominal covariates with possible values in the set
B = {b1, . . . , br}, the question is of the form “Is Zj in S?” where S ⊂ B. To determine the
best split s among all covariates in the current node h, a measure of improvement G(s, h)
is evaluated, producing the most homogeneous daughter nodes. The best split sbest is the
optimal split among all possible splits in the set Sh such as G(sbest, h) = maxs∈Sh

G(s, h).
The process goes on until each node reaches a user-specified minimum node size and
becomes a terminal node, or is homogeneous. To control the size of the tree, a stopping
rule is used to prune the “large” tree containing “pure” nodes. The method employed by
CART is called cost-complexity pruning. The complexity of a tree Θ is :

Rcp(Θ) = R(Θ) + cp
∣∣∣Θ̃∣∣∣ ,

where R(Θ) is the raw error of measure (sum of the error of measure over the terminal

nodes),
∣∣∣Θ̃∣∣∣ is the number of terminal nodes, and cp is an arbitrary penalty weight between

0 and ∞ called the complexity parameter. A sequence of nested trees is built. The final
tree is the smallest tree for which Rcp(Θ) is minimized. To deal with the choice of cp,
cross-validation techniques can be used to determine the optimal size of the tree.

Various splitting and pruning approaches have been proposed to adapt regression trees
to survival data. Gordon and Olshen [18] used the Wasserstein metrics to measure the
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distance between two Kaplan-Meier estimates of the survival distribution. The split cri-
terion chooses the predictor (and if necessary the cut-off) which maximises this distance
for the left and right daugther nodes. To prune the survival tree, they generalized the
cost-complexity measure for censored data. A more usual way to measure the differ-
ence between survival curves is the logrank test statistic. This was done by Ciampi et
al. [19], Segal [20] and LeBlanc and Crowley [21] who suggested to use the logrank test
statistic as a between-node heterogeneity measure. As an alternative to the standard
cost-complexity pruning approach using proportional hazards martingale residuals as er-
ror measures, LeBlanc and Crowley [21] proposed a “goodness-of-split” complexity based
on the sum of the standardized splitting logrank test statistics of the internal nodes. Oth-
ers authors suggested to use split criteria based on the likelihood function. Davis and
Anderson [22] assume that the survival function within each node is an exponential func-
tion with a constant hazard, while LeBlanc and Crowley [23] only assume proportionality
for the hazard functions of two daughter nodes. These latter used for estimation the full
or partial likelihood function in the Cox proportional hazards model.

Instability in the selection of covariates by regression trees has been observed and
demonstrated by many authors [5 – 8] This instability may be due to an overfitting of
data. The variance observed may also come from arbitrary cutpoints defined by the
dichotomization of continuous covariates. We review in the following two remedies to
instability of survival trees: the bootstrap node-level stabilization proposed by Dannegger
[6] and the random survival forests of Ishwaran et al. [10].

3.1 Bootstrap node-level stabilization (BNLS)

Dannegger [6] proposed a bootstrap node-level stabilization procedure for survival trees.
The algorithm consists, at node h, in drawing bootstrapped samples from the original
set, and for each of them, in finding the best split. The split which appears the most of
the time at the node h is selected. For a continuous variable, the cut-off value b chosen
in the set of realizations of the split variable is the median of all the b-values proposed at
each bootstrap. As Dannegger [6] did not propose a choice of the cut-off for a categorical
variable, we decide to affect to the daughter node the level of the categorical variable
which was mainly chosen by the boostrapped samples. To find the optimal complexity
parameter cp to prune the tree, we use a ten-fold cross-validation procedure as suggested
by Dannegger [6].

Using simulated data, Dannegger [6] compared his methodology (for 100 bootstraps
at each node) to the CART algorithm and to the bagging method and found that the
BNLS reduces the predictor error rate from 26% (the value obtained with CART) to 6%.
The bagging method has the best performance with a prediction error of 3%. However
the model obtained with this latter method is not easy to use and interpret by non-
statisticians, unlike BNLS.
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3.2 Random Survival Forests (RSF)

In order to stabilize the trees obtained by the CART procedure, Breiman [5] proposed
the bagging method (so called for bootstrap aggregating) based on a family of random
trees: multiple versions of predictor models obtained from bootstrapped samples are
aggregated in order to construct a robust model estimator. Bagging was then adapted to
the survival framework by Efron [24] and Akritas [25]. Another way to improve stability
of trees is the boosting, developped by Freund and Schapire [26]. As for the bagging, the
boosting consists in aggregating a family of models. Each tree is built iteratively from a
weighted sample (an individual who is misclassified gains weight and an individual who
is classified correctly looses weight) and then evaluated according to its ability to classify
data. Considered as better than the bagging, the boosting is yet limited when data are
too noised: the algorithm gives a heavy weight to noised data which leads to a bad overfit
[27].

Breiman [5] proposed a random selection approach which combines the bagging method
with a random selection of the covariates at each node of the tree. This methodology,
called random forests, is more stable than the two previous ones [5, 26]. The method was
adapted to the survival framework in an approach called “random survival forests” by
Ishwaran [10]. Bootstrapped samples were drawn from the original data set. Notice that
each bootstrapped sample excludes on average 37% of the data, a set called out-of-bag
(OOB) data. For each bootstrapped sample b in (1, . . . , ntree), a survival tree is built:
at each node, a subset of covariates is randomly selected among all the covariates. The
splitting process continues under the constraint that each terminal node contains at least
a fixed number of unique event times. The RSF algorithm computes an ensemble estimate
for the cumulative hazard function (CHF), which is used as a predictor. For each terminal
node h, let t(1,h) < . . . < t(Nh,h) be the distinct ordered uncensored event times, and define
dl,h and Yl,h as the number of events and individuals at risk at time t(l,h), for l = 1, ..., Nh

respectively. The CHF estimator for the node h is the Nelson-Aalen estimator

Ĥh(t) =
∑

t(l,h)≤t

dl,h
Yl,h
·

Each tree provides such a CHF estimate at each terminal node. Let Ĥb(t|z) denote the
cumulative hazard estimate for tree b conditionnaly on the covariate z. To determine the
CHF estimate for individual i with covariate vector zi obtained from the tree b, drop zi
down the tree. It will fall in a unique terminal node h. So we have Ĥb(t|zi) = Ĥh(t) if
zi ∈ h. Let Ii,b = 1 if i is an OOB point for b and 0 otherwise. The OOB ensemble CHF
estimator for i is:

Ĥ∗e (t|zi) =

∑ntree
b=1 Ii,bĤb(t|zi)∑ntree

b=1 Ii,b
· (2)

Note that the above estimator is obtained by avering only over bootstrap samples in which
i is excluded.
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4 Comparison of the methods

In order to compare the different variable selection approaches, we apply them to two
real data sets, the first concerning breast cancer and the second male fertility. The
five following procedures have been compared: the bootstrap Cox stepwise procedure
(BSS), the bootstrap Cox Lasso procedure (BLS), the bootstrap Cox randomized Lasso
procedure (BRLS) with three different values of α (0.2, 0.4 and 0.6), the bootstrap node-
level stabilization procedure (BNLS) and the random survival forest method (RSF).

4.1 Software

We use the methods implemented in R software (CRAN). We adapted the bootstrap to
the stepwise Cox algorithm and to the R package penalized. We also modified the R

package rpart in order to introduce bootstrap at node-level in the building of the tree
(BNLS procedure). Instead of the default exp method which maximises an exponential
likelihood, we used as a splitting criterion in rpart the logrank test statistic, following
the recommandations of Radespiel-Troger et al. [28]. They showed that the prediction
error of the tree is related to the instability of the covariate selection at each node.
Compared to other splitting criteria on a real survival data set on gallbladder stones,
the logrank test statistic yields the lowest prediction error (evaluated by the Brier score).
The R package randomSurvivalForests provides four different splitting rules: logrank,
conservation of events, logrank score, and approximate logrank (for more details, see
Ishwaran and Kogalur [29]). We used the default splitting criterion i.e. the logrank test
statistic. Concerning the number of bootstrapped samples, we take N = 100 for the Cox
model based procedures, the default value N = 1000 for RSF, and N = 1000 for the
BNLS procedure.

4.2 Comparison criteria

We compare the five procedures on the basis on their prediction performance but also on
the usefulness of the model for non-statisticians. The prediction performance is measured
by the prediction error rate. A model will be considered as useful if the statistical method
involved is the most adapted to the problematic of the clinician and if the results are easy
to interprete.

4.2.1 Comparison of the prediction error rates

We compare the stability of the five procedures using a statistical criterion: the prediction
error rate, which allows to quantify the prediction performance of the final model selected.
To this aim, the original data set is divided into two subsets, the training set and the
test set. The procedures, computed on the training set, give a final model which is then
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applied on the test set to calculate the prediction error rate. We obtain the prediction
error rates in three steps:

1. We graphically chose sensible values of the cut-off κ for the methods based on the
Cox model and also values of λ for BLS and BLRS. For that, considering the whole
set, we plot the values of κ for each selected covariable for BSS and we plot the
values of κ with respect to values of λ for BLS and BLRS. The aim is to identify the
most relevant variables whose frequencies of inclusion κ are larger than those of the
other covariates whatever the value of λ. Then we chose values of λ and κ which
maximize the gap between the two subgroups of covariates. For BNLS, the choice
of the optimal complexity parameter cp is achieved by cross-validation techniques.

2. We then apply the procedures on the training set with the values of λ, κ and cp
chosen at step 1. As far as the methods based on the Cox model are concerned, for
each method, we adjust on the training set a simple Cox model including the subset
of covariates for which the inclusion frequencies are greater than κ. This permits
to obtain the estimations of the β parameter in order to calculate the predicted
outcomes.

3. We finally calculate the prediction error rates on the test set for each method.

The most commonly used prediction error rate for survival models is based on the
Harrell’s concordance index C [30]. To compute the C-index, the observed and predicted
outcomes are compared, as follows:

• Form all possible pairs of observations.

• Eliminate those pairs where the shorter survival time is censored, and also pairs
where the survival times and the censoring indicators are equal.

• For each permissible pair, count 1 if the shorter survival time has the worse predicted
outcome and count 0.5 if the predicted outcomes are tied. Sum over all permissible
pairs.

• The C-index is the ratio of the latter sum over the number of permissible pairs.

The prediction error rate is defined as 1− C and is in {0, 1}. Note that a value of 0.5 is
not better than random guessing.

For the Cox model based procedures, the prediction for an individual i with covariate
vector Zi is based on the linear predictor β̂′Zi. Individual i has worse predicted outcome
than j if β̂′Zi > β̂′Zj. The predictions of the survival trees based procedures are derived
from the CHF estimator. For the RSF procedure, they are derived from the OOB ensemble
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CHF estimator of formula (2). Let t1, . . . , tm be the unique times in the test set. Individual
i is said to have a worse predicted outcome than j if

m∑
k=1

Ĥ∗e (tk|Zi) >
m∑
k=1

Ĥ∗e (tk|Zj).

A total of 30 training sets and test sets were drawn to obtain a sample of error
rates. Boxplots of the error rates are presented in order to compare the variability of the
prediction performances.

4.2.2 Comparison of the selected covariates

We compare the set of covariates selected by the five different approaches applied on
the entire set. For BSS, BLS and BRL, we take the values of the cut-off κ and of the
penalties λ determined above. The BNLS algorithm provides the final tree which has
been pruned with a fixed complexity parameter cp. For the RSF procedure, the impact of
the variables is measured by their “variable importance” (VIMP), which is the difference
between the prediction error obtained with the original RSF procedure and the prediction
error obtained using randomized assignments whenever a split for the considered variable
is encountered [10].

4.3 Results for the breast cancer data set

4.3.1 Description

The breast cancer data set contains the metastasis-free survival times from the study of
Vijver et al. [31] who classified a serie of 295 patients with primary breast carcinomas as
having a gene-expression signature associated with either a poor or a good prognosis. We
restricted the study to the 144 patients who had lymph node positive disease. Vijver et
al. [31] evaluated the predictive value of the gene-expression profile of patients for the 70
genes previously determined by Veer et al. [32] based on a supervised learning method.
The data set can be found in the R package penalized. Five clinical risk factors and
70 gene expression measurements found to be prognostic for metastasis-free survival have
been recorded. The censoring rate is 66%. The variables in the data set are:

• time: metastasis-free follow-up time,

• event: censoring indicator (1 = metastasis or death; 0 = censored),

• diam: diameter of the tumor (two levels),

• N: number of affected lymph nodes (two levels),

• ER: estrogen receptor status (two levels),

11



Mean Standard deviation Median
BLS 0.319 0.066 0.310
BRLS α = 0.2 0.309 0.075 0.292
BRLS α = 0.4 0.309 0.081 0.287
BRLS α = 0.6 0.311 0.086 0.302
BNLS 0.376 0.073 0.394
RSF 0.279 0.062 0.286
TREE 0.389 0.0741 0.382

Table 1: Mean, standard deviation and median of error rates for the different procedures:
Bootstrap Lasso selection, Bootstrap Randomized Lasso selection (three values of α),
Bootstrap node-level selection, Random Survival Forest and a single survival tree.

• grade: grade of the tumor (three ordered levels),

• age: age of the patient at diagnosis,

• TSPYL5...C20orf46: gene expression measurements of 70 prognostic genes.

4.3.2 Prediction error rates

The Cox stepwise algorithm did not converge for the BSS procedure, probably due to
too many covariates and not enough events in the boostrapped samples. As suggested by
Meinshausen and Bühlmann [3], we search graphically the penalty λ which leads to the
best split between covariates in the BLS and BRLS procedures. However, the graphical
determination of λ is not so easy as in Meinshausen and Bühlmann [3] which presents
results on an ad-hoc example. Figure 1 suggests that selecting between four and five
covariates seems to be the most relevant whatever the value of λ and κ. So we decide
to choose a value of λ = 0.4 and a value of κ = 0.2 for BLS and BRLS whatever the
value of α. The complexity parameter cp of the BNLS procedure is obtained by a ten-fold
cross-validation procedure: we chose graphically cp = 0.002.

Figure 2 presents the boxplots for the different approaches based on 30 iterations
and the numerical summaries are in table 1. As expected, RSF gives the lowest mean,
median and standard deviation of the prediction error rates. We verify that the single
survival tree has the worse prediction performance, but the BNLS procedure is hardly
better. Whatever the value of α, the BRLS procedure shows a large dispersion of error
rates compared to the BLS procedure which has a standard deviation of 0.06, similar to
this of RSF. However, a good compromise between dispersion and mean of error rates is
observed for BRLS with α = 0.2 or α = 0.4.
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Figure 1: Inclusion frequencies κ with respect to λ for Bootstrap Lasso Selection and
Bootstrap Randomized Lasso Selection.

13



●

●

BLS BRLS BRLS BRLS BNLS RSF TREE

0.
2

0.
3

0.
4

0.
5

pr
ed

ic
tio

n 
er

ro
r 

ra
te

s

α α α=0.2 =0.4 =0.6

Figure 2: Boxplots of the prediction error rates for seven methods : Bootstrap Lasso
selection, Bootstrap Randomized Lasso selection (three values of α), Bootstrap node-level
selection, Random Survival Forest and a simple survival tree.

4.3.3 Variables selected in the final model

Figure 3 shows the covariates selected by the Cox based procedures BLS and BRLS
according to the choice of the inclusion frequency κ. Only 23 covariates of the 75 initial
covariates appear in the selection done by the procedures applied to the boostrapped
samples (i.e. with κ = 0) and no clinical covariate is selected. For κ = 0.2, six covariates
are selected by BLS whereas only four are selected by the BRLS procedures whatever
the value of α (these four covariates are a subset of the previous six). We notice a clear
gap between the four first selected variables and the other ones in the BRLS procedures.
We can observe that the BLS and BRLS procedures find the same four most relevant
covariates but not in the same order: PRC1, ZNF533, QSCN6L1 and IGFBP5.1.

For the tree-based procedures RSF and BNLS, figure 4 and 5 show that the same most
discriminant variable is ZNF533. BNLS selects three other covariates among the first most
important variables selected by RSF: COL4A2, PRC1 and N. The selection with a single
survival tree procedure exhibits the same first discriminant variable ZNF533 followed by
PRC1, RP5.860F19.3, HRASLS, IGFBP5, and SCUBE2. But the additional selected covariates
by the CART algorithm never appear in the stable selection procedures. We can also
notice that no clinical factor is included in the survival tree built by CART procedure
unlike the BNLS and RSF procedures.

As far as the comparison of the Cox based methods and survival trees methods is
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Figure 3: Selected covariates with respect to the inclusion frequency κ for Bootstrap Lasso
Selection and Bootstrap Randomized Lasso Selection
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Figure 4: The final tree obtained by the Bootstrap Node-Level Selection.

concerned, we notice similarity between the selected covariates: for example, ZNF533 is
found in all models. Regarding clinical factors, none was selected in Cox models contrary
to the survival trees based procedures. As they can take into account interactions between
covariates, tree based procedures show that N, the number of affected lymph nodes and
the age of the patient at diagnostic are relevant predictors in metastasis-free survival.
Notice that these two factors are also known to be clinically relevant.

4.4 Results for the fertility data set

4.4.1 Description

The fertility data were obtained from 2138 couples consulting for male infertility during
the period from 2000 to 2004 at Toulouse Male Sterility Center (TMSC) located in Univer-
sitary Public Hospital (France). Patients were followed from entry and during treatment
by an andrologist specialist until either discontinuation of treatment or delivery of an alive
infant. The maximum follow-up duration is 9 years. The outcome assessment was based
on the delivery of an alive infant obtained at TMSC (pregnancies after medical treatment
- medecine and/or surgical treatment, or assisted reproductive technologies (ART) - as
well as spontaneous pregnancies). The event considered here is the birth of an alive infant
and right-censored events correspond to miscarriage or loss to follow-up. The “survival”
time is the delay in months from the first visit of the couple to the birth of its alive infant.
We will work on the subset of the 1773 couples with covariates without missing values.
40% of the couples succeed in their parental project, leading to a censoring rate of 60 %.
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Figure 5: Importance of variables for Random Survival Forest.

In agreement with clinicians, we decided to keep 32 covariates, among which:

• for the man: age, clinical investigation including medical histories as: histories
of orchitis, epididymitis, urogenital infections (UI), sexually transmitted infection
(STI), inguinal hernia, testis trauma, cryptorchidism (testicular maldescent), can-
cer, as well as testis, epididymis or vas deferens surgery, and clinical examination
as: aspects of scrotum, testicular migration (presence of the testes into the scro-
tum and their position), epididymides and vasa deferentia evaluation, presence of a
varicocele or hydrocele, testicular volumes, and if he received a non-ART treatment
(both medical and surgical, including pharmacological and hormonal treatment,
varicocelectomy, and vas deferens/epididymis surgery).

• for the woman: age, tubal factor, ovarian factor, cervical factor, ovulation, and if
she received a non-ART treatment (hormonal treatment).

• for the couple: fecundity type (primary or secondary), infertility duration, type
of ART including IUI (intra-uterine insemination), IVF (in vitro fertilization), ICSI
(intracytoplasmic sperm injection) using male sperm cells, and ART with donor
sperm.

4.4.2 Prediction error rates

As for the breast cancer data set, we chose λ and κ graphically. A first sight of figure 6
reveals that the contribution of the BRLS procedure with regard to the BLS procedure
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Mean Standard deviation Median
BSS 0.453 0.017 0.454
BLS 0.471 0.017 0.470
BRLS α = 0.2 0.483 0.013 0.482
BRLS α = 0.4 0.484 0.013 0.482
BRLS α = 0.6 0.482 0.015 0.480
BNLS 0.447 0.021 0.446
RSF 0.413 0.017 0.414
STEP 0.451 0.015 0.450
TREE 0.445 0.018 0.443

Table 2: Mean, standard deviation and median of error rates for the different procedures:
Bootstrap Stepwise selection, Booststrap Lasso selection, Bootstrap Randomized Lasso
selection (three values of α), Bootstrap node-level selection, Random Survival Forest, Cox
stepwise selection and a single survival tree.

for the choice of the cut-off values is not obvious. For BLS and BRLS, only two variables
seem to be the most relevant factors whatever the value of λ. But for BLS and BLRS
with α = 0.6, five other covariates follow the two first when λ = 0.4, for a value of κ = 0.3
whereas for BRLS with α = 0.2 and α = 0.4, no group of variables seems relevant. So we
decided to choose a fixed penalty λ = 0.4 for a value of κ = 0.3 for BLS and BRLS.

For the BSS procedure, we decide to choose a value of κ = 0.5 which seems to split
the set of covariates in two distinct subgroups as suggested by figure 8. Thus, the first
eight variables seem to be the most relevant to predict the duration to the birth. For
the BNLS procedure, we observe by a 10-fold cross-validation procedure that the optimal
value of the complexity parameter is cp = 0.0035.

The boxplots of the prediction error rates for the five procedures are presented in figure
7 and table 2 shows the summary statistics. Notice that the mean and median values
obtained are higher (between 0.41 and 0.45) than those obtained from the data set on
breast cancer which reflects the difficulty to predict the delay to the birth. However, the
variabilities of the error rates are lower. As seen previously, the RSF method gives the
best predictive model. However, it appears that RSF is similar in dispersion with other
procedures. Moreover, we can notice that the BNLS procedure is not better than a single
survival tree and the same remark can be done between the BSS procedure compared to
a single stepwise Cox regression. These results can be explained by the size of the sample,
which is sufficient to produce low error rates without bootstrapping. Regarding BLS and
BRLS, these procedures show less variation in error rates but their means and medians
are close to 0.5 which suggests that these models do no better prediction than random
guessing.
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Figure 6: Inclusion frequencies κ with respect to λ for Bootstrap Lasso Selection and
Bootstrap Randomized Lasso Selection.
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Figure 7: Boxplots of the prediction error rates for nine methods : Bootstrap Stepwise
selection, Booststrap Lasso selection, Bootstrap Randomized Lasso selection (three values
of α), Bootstrap node-level selection, Random Survival Forest, Cox stepwise selection and
a simple survival tree.

4.4.3 Selected variables in the final model

If we compare the covariates selected by the different approaches, we can see in figure
8 that the first four selected covariates do not differ for the BLS and BRLS procedures
for a value of κ = 0.3: we find tubal factor, IUI, sperm donor and infertility

duration. The additional covariates included by BLS are epididymis, varicocelis,
inguinal hernia, fecundity type, testicular trauma and testicular volume. For
the BSS procedure, for a value of κ = 0.5, we find in the selected covariates the first four
covariates selected by BLS but also female age, testicular volume, male treatment,
varicocelis, testicular trauma, scrotum, female treatment and epididymis. We
observe also that the BSS procedure includes more variables than the BLS and BRLS
procedures, which leads to a lower prediction error rate.

We can notice that the cut-off value κ = 0.3 appears very clearly in the graphs of
figure 8 for the BRLS procedures with α = 0.4 and α = 0.6, suggesting that the BRLS
procedure is a good stable variable selection procedure. However, only four covariates are
selected, which leads to poor prediction performances.

If we adjust a single Cox stepwise regression, we find the same covariates selected by
the BSS procedure except for the variable scrotum. However, epididymis, testicular
trauma and male treatment are not statistically significant at the 5% level in the Cox
stepwise model.

Regarding the tree-based RSF and BNLS procedures, we observe in figures 8 and 9
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Figure 8: First part: Selected variables for Bootstrap Stepwise Selection, Bootstrap Lasso
Selection, Bootstrap Randomized Lasso Selection and importance of variables for Random
Survival Forest.

21



STI
orchitis
deferens
endometriosis
cervical_factor
male_surgery
ovarian_factor
UI
testicular_surgery
scrotum
ed_surgery
hydrocelis
cryptorchidism
epididymis
testicular_volume
IVF
inguinal_hernia
male_treatment
epididymitis
varicocelis
female_treatment
fecundity_type
testicular_trauma
sperm_donor
infertility_duration
IUI
tubal_factor

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5

κ

UI
deferens
cryptorchidism
hydrocelis
anovulation
STI
male_surgery
cervical_factor
ed_surgery
orchitis
scrotum
epididymitis
epididymis
inguinal_hernia
male_age
ovarian_factor
sperm_donor
endometriosis
testicular_surgery
testicular_trauma
migration
fecundity_type
ICSI
IVF
male_treatment
testicular_volume
female_treatment
tubal_factor
IUI
varicocelis
infertility_duration
female_age

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.000 0.005 0.010 0.015 0.020 0.025

5. BRLS α = 0.6, λ = 0.2 6. RSF

Figure 8: Second part: Selected variables for Bootstrap Stepwise Selection, Bootstrap
Lasso Selection, Bootstrap Randomized Lasso Selection and importance of variables for
Random Survival Forest.
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Figure 9: The final tree obtained from the Bootstrap Node-Level selection
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that the selected covariates are substantially different from the most relevant covariates
selected by the Cox based procedures. The first split, which corresponds to female age,
is the same for the two types of procedures but the following splits are different. This
may be explained by the fact that the tree based procedures take into account interactions
contrary to the Cox model based procedures. Moreover, the covariates selected for the
BNLS procedure are found in the most important variables in RSF. The variables selected
by a single survival tree are almost the same than those selected by BNLS, which can be
explained by the large sample size of the fertility data set.

5 Discussion

5.1 Computational requirements

On a 2.4GHz processor, for the fertility data set with 1773 individuals and 32 covariates,
running the RSF procedure is 200 times longer than running a single survival tree from
the CART procedure (which takes about 1 second), whereas the stepwise algorithm takes
about 10 seconds. Compared to the RSF method, the BLS and BRLS procedures have
similar computing times. The BNLS procedure is much longer than RSF (4 times) as
a bootstrap is realized at each node. Finally, the BSS procedure, for which a bootstrap
sample is used at each stepwise, is the most expensive procedure in time (8 times longer
than RSF). Thus, the running times seem reasonable for each procedure taken separately.
However, a systematic comparison of errors becomes heavy, as well as the running time to
exhibit the optimal complexity parameter cp in the cross-validation procedure for BNLS,
and also the penalty λ for the BLS and BRLS methods.

5.2 Prediction error rates

Compared to the data set on breast cancer, the prediction error rates obtained from
the fertility data set are higher, suggesting that data on fertility are more complex and
difficult to study and that finding a good prediction model is a difficult task. Moreover,
the sizes of the two data sets are very different, which could lead to observe discrepancy
in the results. However, we find from the two data sets that the RSF procedure is the
best procedure for prediction and that it allows to exhibit the most relevant variables to
explain the survival durations. The Cox model and RSF have been previously compared
by Omurlu et al. [33] using the Harrell’concordance index. On the basis on Monte Carlo
simulations, they show that the Cox model has the best predictive performance whatever
the size of the sample (n = 50, 100, 250, 500). However, on a real data set on breast cancer,
they find that RSF has the lowest prediction error rate. These contradictory results are
not surprising if we consider the fact that the simulated data have been generated from a
Cox model. Moreover, the RSF procedure is easy to use and does not require the choice
of tuning values as do the BSS, BLS, BRLS and BNLS procedures. However, even if
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the selected covariates are identified and sorted by their importance, as no final tree is
provided, the RSF results stay a black-box not easy to interpret and use for clinicians.

We find that the BRLS procedure, whatever the value of α, does not seem to improve
the BLS procedure. Although the gap between the selected variables appears more clearly
for BRLS, the final model does explain these results. Moreover, the good results obtained
with this method by Meinshausen and Bühlmann [3] may come from the fact that they
presented an ad-hoc example. As noticed by these authors, we find on our data sets that
choosing a value of κ equal to 1, as suggested by Bach [4], is too restrictive.

Even if some authors [12, 13] showed that the bootstrap method adapted to the
stepwise algorithm improves the stability of the variable selection, our results suggest
no improvement with the BSS procedure. As a matter of fact, the BSS algorithm does
not converge on the breast cancer data set containing too few events with respect to
the number of the covariates. On the other side, for the fertility data set whose size is
sufficient to assure the convergence of the algorithm, it does not give better results than
a single stepwise Cox model.

As far as the BNLS procedure is concerned, it seems not perform better than a single
survival tree on the two data sets, contrary to the results found by Dannegger [6]. It can
be explained by the fact that it is difficult to tune a sensitive value for the complexity
parameter by cross-validation. It may also result from the sufficient size of the fertility
data set.

5.3 Selected variables in the final model

The breast cancer data set was originally analyzed by Vijver et al. [31] who included in
a multivariate Cox regression model the clinical factors and a prognosis variable based
on the gene profile. Indeed, the 70 genes expressions were not included as independent
covariates in the Cox model, as we do in our analysis. We notice that the procedures
based on the Cox model selected no clinical factors in the breast cancer data set. It
can result from the fact that the genes which were introduced in the model are those
whose expression is the most correlated positively or negatively with the breast cancer
survival duration among the multitude of genes studied. Thus, these genes have a more
important weight in the multivariate analysis than clinical factors. In the BNLS and
RSF procedures, which take naturally into account interactions between covariates, two
clinical factors appears in the selected set of covariates. As it is not possible to include
interactions in the Cox model in a high-dimensional context, an alternative would be
to force the inclusion of some clinical factors clearly identified by the clinicians in the
procedures based on the Cox model.

Regarding the fertility data set, we obtain different final models with the procedures
based on the Cox model and those based on survival trees. However, all the selected
covariates are relevant clinical factors in reproductive issues. Indeed, the BSS, BNLS
and RSF procedures showed that female age is an important factor, with a cut-off value
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of 34.5 years, which is similar to results observed in other studies [34 – 36]. Moreover,
the infertility duration is selected by all the procedures, with a cut-off of 33.5 months in
the BNLS method. It is not surprising as it is well-known that duration of infertility is
predictive in the occurrence of pregnancy [37]. It is also interesting to notice that the
BLS, BSS and BNLS procedures found a relationship between the live-birth and male
clinical factors whereas BRLS included very few covariates which are essentially limited
to female aspect and ART treatment. In most of the publications about reproductive
issue in infertile couples, authors analysed the survival event of live-birth according only
to female aspect and type of ART treatment [38 – 41]. However, we observe in our
study that varicocelis is included in most of the procedures, which can be explained by
the fact that varicocelis has an impact on an impaired spermatogenesis [42, 43]. The
same observation could be done for the testicular volume which seems to be an important
variable in the BNLS procedure, but with less impact in the other final models.

6 Concluding remarks

As far as the breast cancer data set is concerned, the objective is reasonably well achieved.
The method based on randomized Lasso selection combined with bootstrapping provides
prediction error rates very similar to those obtained by the RSF method, in association
with an easily interpretable final model for the medical field. Regarding the procedure
that combines bootstrap and survival trees, this method especially allows to identify
interactions between the relevant covariates.

On the contrary, the data set on fertility seems to be much more difficult to analyze.
The bootstrapping adapted to the various procedures based on the Cox model or on
survival trees seems not improve the standard procedures (single Cox stepwise selection
or single survival tree). Moreover, the wide variations observed in the prediction error
rates may be due to the weak predictive performance of the selected covariates.

Finally, these results suggest that the Cox and tree based procedures should be per-
formed in a complementary way to identify the most relevant covariates and provide to
clinicians a stable and reliable model. Each procedure shows indeed a particular inter-
est, either in terms of its prediction performance, either in the selection of the relevant
covariates.
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