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Abstract

We present a model of endogenous growth in which the use of a non-renewable resource

in production yields CO2 emissions whose accumulated stock negatively a¤ects welfare. A

CCS technology enables, via some e¤ort, a partial reduction of these emissions.

We characterize the social optimum and how the availability of CCS technology a¤ects it,

and study the trajectories of the decentralized economy. We then analyze economic policies.

We �rst derive the expression of the Pigovian carbon tax and we give a full interpretation of

its level, which is unique. We then study the impacts of three di¤erent second-best policies:

a carbon tax, a subsidy to sequestered carbon, and a subsidy to labor in CCS.

While all three tools foster CCS activity they generally have contrasting e¤ects on re-

source extraction, carbon emissions, output and consumption. The carbon tax postpones

resource extraction whereas the two subsidies accelerate it. Although the tax decreases short-

term carbon emissions, the two subsidies can increase them, thus yielding a green paradox.

The tax has a negative impact on the levels of output and consumption in the short-term, un-

like the subsidies. The tax generally fosters growth whereas the subsidies reduce it; however,

when the weight of the CCS sector in the economy is high, these impacts can be reversed.

Keywords: carbon capture and storage (CCS), endogenous growth, polluting non-

renewable resources, carbon tax, subsidy to CCS.

JEL classi�cation: O3, Q3
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1 Introduction

The exploitation of fossil resources raises two concerns. The �rst is scarcity, because fossil

resources are exhaustible by nature. The second is related to the emission of greenhouse gases

associated with their combustion. Numerous models deal with this double issue; some of them

in the context of partial equilibrium (e.g. Sinclair, 1992; Withagen, 1994; Ulph and Ulph, 1994;

Hoel and Kverndokk, 1996; Farzin and Tahvonen, 1996; Tahvonen, 1997) and others within

general equilibrium growth frameworks (Stollery, 1998; Schou, 2000, 2002; Groth and Schou,

2007; or Grimaud and Rouge, 2008). A common feature of these papers lies in the fact that

reducing carbon emissions necessarily means extracting less resource. Indeed, there is generally

assumed to be a systematic link between resource extraction and polluting emissions, in the

form of a simple functional relation (e.g. linear). In terms of economic policy, it is therefore

equivalent to taxing either the pollution stream or the resource use itself. Nevertheless, it is

now widely recognized that certain abatement technologies allow the reduction of emissions for

a given amount of extracted resource. In particular, attention has recently been focused on

the possibility of capturing and sequestering some fraction of the carbon embedded in fossil

fuels, whether this capture occurs pre- or post-combustion. This has been reinforced by recent

demonstrations of viability (for an overview, see IPCC special report, 2005). This process, often

referred to as carbon capture and storage or carbon capture and sequestration (CCS), consists in

separating carbon from hydrogen in the pre-combustion process or in separating carbon dioxide

from other �ux gases in the post-combustion process in an energy production plant. Once

captured, the CO2 is injected into a reservoir1 for long-term storage. The availability of CCS

technologies therefore means that the simple relation between resource extraction and carbon

emissions is partially broken.

Here we consider the availability of such an abatement technology in the context of a theor-

etical general equilibrium model with endogenous growth and a polluting exhaustible resource.

We study how the socially optimal trajectories of the economy are modi�ed by the availability

of the CCS option, and how the �rst-best outcome can be restored in a decentralized economy.

We also study the impact of three di¤erent second-best policies: a carbon tax, a subsidy to

sequestered carbon and a subsidy to labor in the CCS activity. Endogenous growth allows us in

particular to analyze the e¤ects of the availability of CCS technology and the economic policy

tools on growth, along the transition path and at the steady-state.
1The sequestration reservoirs include depleted oil and gas �elds, depleted coal mines, or deep saline aquifers.

These various deposits di¤er in their respective capacities, their costs of access or their e¤ectiveness in storing the
carbon permanently.
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Numerous uncertainties still surround the large-scale deployment of carbon capture techno-

logies, especially with regard to the ecological consequences of massive carbon injection. The

social acceptance of this abatement technique is also uncertain - for a survey on these issues,

see for instance Jepma and Hauck (2011). Nevertheless, this technological option has become

promising for the fossil energy extractive industry. For instance, Grimaud et al. (2011) show in

an empirical model that, insofar as the right climate policy is implemented - a carbon tax in

their model -, the percentage of carbon sequestered can exceed 50%.

We develop a Romer-type endogenous growth model in which the production of �nal good

requires the input of an extracted resource, whose stock is available in limited quantities. This

resource use generates polluting emissions, which we take to be CO2 emissions, whose �ow

in turn adds to the pre-existing stock of the pollutant - which features partial natural decay.

Finally, this stock enters the utility function as an argument, making it possible to gauge how

pollution accumulation negatively a¤ects welfare. Here, we implicitly assume that the economy

never reaches a critical level of carbon concentration that would yield an in�nitely negative

utility (for this type of assumption, see for instance Acemoglu et al., 2012). We then consider

that a CCS technology is available. Via some e¤ort, it allows for the partial reduction of the

level of CO2 release. We thus distinguish between the total potential CO2 emissions associated

with one unit of fossil resource (or equivalently the total carbon content per unit of resource) and

the e¤ective emissions, i.e. the fraction that remains after CO2 removal. Note that we do not

account for geological CO2 leakage - on this issue, see for instance van der Zwaan and Gerlagh

(2009). In this economy, the crucial trade-o¤s are made between current consumption, future

consumption, and current and future environmental quality. We model these trade-o¤s through

the allocation of labor between its alternative uses: output production, R&D and CCS. This

general framework has a straightforward implication in terms of climate policy: the �rst best

outcome can only be restored by taxing pollution, i.e., emissions remaining after sequestration,

and not by taxing the resource itself2. However, for various reasons, it is likely that the tax

cannot be set at its Pigovian level in the real world. Hence, we study second-best policies: a

second-best tax on e¤ective carbon emissions, a subsidy to sequestered carbon, and a direct

subsidy to labor used in CCS activity. In this second-best world, such complementary policies

can improve welfare. This analysis constitutes the main contribution of our paper. We show

in particular that it is important to understand how these policies a¤ect the time pro�le of the

2Here we assume that the regulator is able to fully measure the greenhouse gas emissions. This may not be
systematically the case: while emission data is fairly reliable in industrialized countries, collecting accurate data
on industrial activities from developing regions and deducting the emissions may prove more di¢ cult.
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total price paid by resource users. This time pro�le determines the resource extraction path,

and hence impacts the paths of CCS activity, carbon emissions, R&D and output.

We �rst depict the socially optimal trajectories of the economy, and we study how such

trajectories are a¤ected by the availability of the CCS technology. Then we fully characterize

the trajectories of the decentralized economy, we derive the expression of the Pigovian carbon

tax, and we give a full interpretation of it. In the general case, at the social optimum as well as in

the decentralized equilibrium, the economy is always in transition; we nevertheless obtain closed-

form solutions. This allows us to study the impacts of the three di¤erent types of second-best

economic policies.

A strand of literature tackles the question of CCS within calibrated empirical models - see

for instance Edenhofer et al. (2005); Gerlagh and van der Zwaan (2006); van der Zwaan and

Gerlagh (2009); Golombek et al. (2011); Grimaud et al. (2011); or Kalkuhl et al. (2012).

The focus of our paper is on the theoretical side of the issue. Several authors have studied

the links between carbon abatement, optimal climate policy and technical change in theoretical

models. In particular, Goulder and Mathai (2000) show that the presence of induced technical

change generally lowers the time pro�le of optimal carbon taxes. Moreover, e¤orts in R&D shift

part of the abatement from the present to the future. In a similar framework, Gerlagh et al.

(2008) study the link between innovation and abatement policies under certain assumptions,

in particular the fact that patents can have a �nite lifetime. In these studies, the authors use

partial equilibrium frameworks in which baseline CO2 emissions are exogenous, and �nal (or

e¤ective) carbon emissions are endogenous as there is an abatement activity with dedicated

technical progress. Hoel and Jensen (2010) show, in a two-period model, that if the climate

policy is imperfect - that is, if it can only be implemented in the second period -, cost reductions

are more desirable in the CCS than in the renewable sector in particular because they postpone

resource extraction.

Many recent contributions take into account the availability of a CCS technology. Most

of them consider the context of partial equilibrium frameworks: see for instance La¤orgue et

al. (2008), Narita (2009), Amigues et al. (2011) or Rickels (2011). These papers mainly

focus on socially optimal issues, and in particular they study the optimal time pro�le of carbon

sequestration. Lontzek and Rickels (2008) and Ayong le Kama et al. (2009) study the same

questions, but they also consider a decentralized economy. However, they do not study the

impact of economic policies on the decentralized equilibrium. Most of these papers consider

a carbon ceiling; in this case, La¤orgue et al. show that CCS is implemented only when the
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ceiling is reached. When the CCS cost function is convex however, as in Rickels, it is optimal to

sequester carbon before the ceiling. Similarly, CCS activity has to start in the near term when

there is no ceiling but a damage function, as in Ayong le Kama et al. Finally, technical progress

is not explicitly considered in these studies.

Our main results can be summarized as follows3. At the social optimum, the amount of

labor devoted to CCS activity is a constant proportion of resource use; in other words, the

CCS e¤ort per unit of carbon content is constant. Since resource use decreases over time, this

implies that the abatement e¤ort also decreases: the greatest e¤ort in abatement should happen

today4 - this contrasts with the result of La¤orgue et al. (2008) mentioned in the previous

paragraph. We also show that the availability of CCS technology modi�es the socially optimal

trajectories of the economy. It speeds up the optimal pace of resource extraction, as it relaxes

the environmental constraint. While it diminishes polluting emissions in the long run, it fosters

them in the short run when the rise in resource extraction, and thus of potential emissions,

is less than proportionally compensated by the CCS activity. Lastly, the availability of such

a technology reduces the socially optimal growth of output as a result of the acceleration in

resource extraction combined with a negative e¤ect on R&D e¤ort.

Due to the availability of CCS technology, the Pigovian carbon tax is unique, which contrasts

with the standard result obtained in a context without abatement, as in Dasgupta and Heal

(1979), Sinclair (1992), Groth and Schou (2007) or Grimaud and Rouge (2008) for instance. In

these models, there are an in�nity of optimal taxes which have the same dynamics but di¤er

in their levels. Here, the tax level matters, especially for setting the optimal abatement e¤ort

level. The optimal carbon tax is equal to both the sum of discounted social costs of one unit of

carbon and the cost of sequestering this unit. We study its properties, and we show that, under

speci�c assumptions on preferences and technology, it is proportional to output5.

The second-best carbon tax fosters CCS activity and postpones resource extraction. It also

lowers short-term CO2 emissions. However, this leads to lower levels of output and consumption

3We often resort to the distinction between the short and long terms. In a Hotelling world, where the whole
stock of resource is asymptotically exhausted, any increase (resp. decrease) in resource extraction at date t
generates changes for all subsequent dates. The short term refers to the period during which resource extraction
is also increased (resp. decreased), that is, the current period and the near future (i.e, the �rst few generations),
whereas the long term refers to the period during which resource use is consequently decreased (resp. increased),
that is, the distant future.

4We show that this result can be slightly altered if one expects a high rate of technical progress in CCS
technology.

5This particular form of the �rst-best tax can be linked to Golosov et al. (2011) or Gerlagh and Liski (2012).
However, since we consider here the possibility of CCS, the tax we study is not levied on resource use but on
carbon emissions. As a result, this tax not only reallocates inputs in production, but also induces agents to
sequester carbon.
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in the short term. The impact of the tax on economic growth is more complex. As polluting

emissions stem from the use of non-renewable resources, if no carbon abatement technology were

available, a more stringent environmental policy would generally enhance economic growth, since

it leads to postponing resource extraction (see for instance Groth and Schou, 2007, or Grimaud

and Rouge, 2008). We show that this does not always hold true when CCS technology becomes

available. Indeed, if the weight of the CCS sector in the whole economy is high, that is if the

CCS sector employs an amount of labor which is signi�cant, this e¤ect can be reversed: the tax

can reduce the growth of output and consumption.

The subsidy to sequestered carbon is a perfect substitute for the carbon tax with regard

to its impact on CCS activity. However, the e¤ects of the two policy instruments on resource

use are opposite: with the subsidy, extraction is faster. A kind of (weak) green paradox can

therefore occur here in the sense that this climate policy can increase short-term emissions (on

the issue of green paradox in other contexts, see e.g. Sinn, 2008, Gerlagh, 2011, or van der Ploeg

and Withagen, 2012). Short-term resource use and carbon abatement being both promoted,

this green paradox occurs when the former e¤ect exceeds the latter. The impacts of the subsidy

and the tax on short-term output and consumption are also opposite: the subsidy prompts

greater output and consumption levels in the early periods. This point should be considered

when taking into account public acceptance issues. Indeed, this subsidy could be seen as a good

complementary tool to a second-best carbon tax since it alleviates the burden of climate policy

in the short term. Finally, the e¤ect of the subsidy on economic growth is basically also opposite

to the e¤ect of the tax: the subsidy generally reduces growth, but, if the weight of the CCS

sector in the whole economy is high, it can promote long-term growth.

Another result is that the subsidy to labor in CCS alone does not trigger any CCS activity.

This tool has an e¤ect only when it is used jointly with a carbon tax or a subsidy to sequestered

carbon. In this case, its impact on CCS activity, resource extraction, carbon emissions and the

level and growth of output and consumption are similar to those of the subsidy to sequestered

carbon.

The remainder of the paper is organized as follows. We present the model and we portray

the social optimum in Section 2. We characterize the equilibrium of the decentralized economy

in Section 3, and we study the �rst-best economic policy and the impact of the second-best

policies in Section 4. Finally, we conclude in Section 5.
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2 Model and welfare

2.1 The model

The �nal good is produced from three types of inputs. The �rst two ones, intermediate goods and

labor, are standard inputs in a Romer-type technology. The third is a �ow of energy. Energy is

produced from fossil fuels; at each date t, the �ow of energy is simply modeled through resource

use. Here, output production is nil in the absence of fossil fuels, i.e. we do not consider the

existence of a backstop6. Formally, the �nal output is produced at each date t 2 [0;+1) using

the range of available intermediate goods, labor and a �ow of resource according to the following

production function:

Yt =

�Z At

0
x�itdi

�
L�Y tR



t ; �+ � + 
 = 1; (1)

where xit is the amount of intermediate good i, LY t the quantity of labor employed in the

production sector, and Rt is the �ow of non-renewable resource. At is a technological index

which measures the range of available innovations. The production of innovations is given by

_At = �LAtAt, � > 0; (2)

where LAt is the amount of labor devoted to research, and � is a constant characterizing the

e¢ ciency of R&D activity7.

With each available innovation is associated an intermediate good produced from the �nal

output:

xit = yit; i 2 [0; At]: (3)

The non-renewable resource is extracted from an initial �nite stock S0. At each date t, a

�ow � _St is extracted. This implies the following standard law of motion:

_St = �Rt: (4)

There are no extraction costs, as it is the case in most endogenous growth models with polluting

non-renewable resources (see for instance Schou, 2000, 2002 or Groth and Schou, 2007)8.

6Taking backstop technologies into account would make it possible to study the question of the impact of CCS
on the adoption timing of these renewable sources of energy, which is outside the scope of the current study.

7Here labor is the only input other than the knowledge stock that appears in the knowledge production
function; indeed, it is the variable whose allocation between its di¤erent uses will embody the basic arbitrages
of the economy. For other assumptions on knowledge production in a growth model with climate change see for
instance Popp (2006).

8This avoids heavy computational complexity. For general optimal solutions when faced with extraction costs
as studied André and Smulders (2004) in a model with no abatement, see for instance Grimaud and Rouge (2008).
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Pollution is generated by the use of the non-renewable resource within the production process.

In case of no abatement, the pollution �ow would be a linear function of resource use: hRt, where

h > 0: In this way, hRt can be seen as the carbon content of resource extraction or, equivalently,

as maximum potential emissions at time t. Nevertheless, �rms can abate part of this carbon so

that the actual emitted �ow of pollution is

Pt = hRt �Qt; (5)

where Qt is the amount of carbon that is removed from the potential emission �ow. The ratio

Pt=hRt thus represents the e¤ective emissions per unit of carbon content at date t, that is,

the quantity of carbon actually emitted in the atmosphere relative to the carbon that would

be emitted with the same extraction level but without the CCS option. Qt=hRt is the rate of

sequestration, that is, the amount of sequestered carbon relative to the total carbon content of

the �ow Rt of extracted resource.

We assume that Qt is produced from two inputs, the pollution content hRt and dedicated

labor LQt, according to the following Cobb-Douglas abatement technology9:

Qt = (hRt)
�L1��Qt , 0 < � < 1, if LQt < hRt (6)

and

Qt = hRt, if LQt � hRt,

that is, the pollution �ow is fully abated once LQt = hRt
10. The ratio LQt=hRt represents

the CCS e¤ort, i.e. the amount of labor devoted to this activity, per unit of carbon content.

The Cobb-Douglas form allows simple analytical developments. For any given hRt, the total

cost of labor, LQt = Q
1=(1��)
t (hRt)

��=(1��), is an increasing and convex function of Qt. The

marginal and average labor costs, respectively @LQt=@Qt = [1=(1� �)]Q�=(1��)t (hRt)
��=(1��)

and LQt=Qt = Q
�=(1��)
t (hRt)

��=(1��), are also increasing functions of Qt: Given any quantity

of potentially emitted carbon hRt, it is the e¤ort in terms of labor only that enables pollution

Using data on the prices of fossil fuels over the last century, Gaudet (2007) shows that, despite high volatility,
these prices remained approximatively constant, or at most increased only slightly.

9More generally, one could consider the technology Qt = (hRt)
�(�LQt)

1��, 0 < � < 1, if LQt < hRt=� and
Qt = hRt, if LQt � hRt=�, with � > 0. Here, we normalize � at one. Other abatement technologies can be found
in Stokey (1998), Copeland and Taylor (2004) or Aghion and Howitt (1998). In the latter, output is an increasing
function of a technological index, and the pollution �ow is an increasing function of the output level and of this
index. However, there are two main di¤erences here. First, pollution is a by-product of the resource use, and not
of output; second, pollution can be abated by using more labor - and not through a di¤erent technological index.
10 In the following sections, we make an assumption on parameters so that this corner solution never occurs.
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abatement. In a calibrated model, which is outside the scope of the current analysis, introducing

capital in the technology (6) would certainly improve the framework by making it more realistic

- the same applies for production functions (1) or (2). Here, in the context of a theoretical

analysis, this would highlight an arbitrage between CCS and future consumption (through capital

accumulation and thus future production). In fact, this arbitrage is already present in our

framework: it is modeled by the allocation of labor between CCS (LQ) and research (LA) -

moreover, this would add a fourth state variable, which would make our computations much

more complex. Finally, note that, for the sake of simplicity, contrary to Goulder and Mathai

(2000) or Gerlagh et al. (2008) for instance, we do not consider technical progress in abatement11.

We also assume away storage constraints12.

At each date s 2 (0; t), the �ow of resource use Rs yields after sequestration a �ow of

carbon emissions Ps that adds to the existing stock. However, we take natural removal into

account: Pse�(s�t) is the fraction of Ps that still remains in the atmosphere at date t, where

� > 0 is the exponential rate of natural removal. Hence the total stock of carbon at date t is

Zt = Z0+
R t
0 Pse

�(s�t)ds, where Z0 > 0 is the initial level of the stock of carbon - which one can

see as its pre-industrial level. Di¤erentiating Zt with respect to time yields the law of motion of

the carbon stock:
�
Zt = Pt + �(Z0 � Zt). (7)

Thus, at each date t, the stock of carbon Zt increases by the �ow of carbon emissions Pt and

decreases by the natural removal �(Z0 � Zt)13.

Production �ow Yt is used for consumption (Ct) and for the production of intermediate

goods:

Yt = Ct +

Z At

0
yitdi. (8)

Population is assumed constant, normalized at one, and each individual is endowed with one

11Such an assumption would be more realistic. For instance, one can consider the function Qt =
(hRt)

�(AQtLQt)
1��, where AQt grows over time at exogenous rate. However, in this endogenous growth frame-

work, it would make our computations much more complex. We nevertheless show later in the text how such a
formulation can generalize certain results of our paper.
12At the local scale, such constraints can be important, especially when transportation costs are non-negligible

(on this issue, see for instance La¤orgue et al., 2008, in a partial equilibrium framework). Here, we implicitly
assume that carbon sinks are large enough to store any stock of CO2.
13This formulation is standard in the literature. As Goulder and Mathai (2000) or Gerlagh et al. (2008) point

out, the dynamics of the stock of carbon are more complex in reality. To make equation (7) more realistic, we
could consider a non constant rate of decay, for instance. However, such a formulation would make the model
much less tractable. We could also add a short-term natural removal rate to the �ow of emissions, as in Nordhaus
(1994) or Goulder and Mathai (2000) in the numerical part of their study. However, this would not change the
results of our analysis.
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unit of labor. We have:

1 = LY t + LAt + LQt: (9)

The key trade-o¤s in this model are thus characterized through the allocation of labor between

the three activities, production, research and sequestration. For this reason, despite the absence

of capital in our framework (in particular in equations (1), (2) and (6)) we are able to consider

the basic arbitrages between current consumption, future consumption, and current and future

environmental quality.

The household�s instantaneous utility function depends on both consumption, Ct, and the

stock of CO2, Zt. The intertemporal utility function is:

U =

Z +1

0
[lnCt � !Zt] e��tdt; � > 0 and ! � 0: (10)

The separability of the utility function simpli�es the computations. This means that, though

the impact of a change in the pollution stock on the marginal utility of consumption could be con-

sidered positive or negative, we take it as nil. Here, a given increase in the carbon concentration

harms households in the same way, regardless of the current consumption level. Equivalently,

this means that the carbon stock has no impact on the marginal utility of consumption. Con-

cerning environmental preferences, as Goulder and Mathai (2000) observe, the damage function

can be regarded as convex or concave; we simply consider a linear relationship. In other words,

the disutility generated by a given �ow of carbon is independent of the current concentration

level. As we will see, such properties of the utility function condition the form of the ratio

LQt=hRt, which is crucial in our analysis, as well as the expression of the �rst-best carbon tax.

2.2 Welfare analysis

2.2.1 Social optimum

We now present the socially optimal trajectories of the economy. The social planner maximizes

U =
R +1
0 (lnC � !Z)e��tdt subject to (1)-(9). The planned economy is always in transition;

however, we obtain closed-form solutions. All computations and results are given in Appendix 1,

where we fully depict the socially optimal transition time-paths of all variables. In this section,

we focus only on the most relevant trade-o¤s. Hereafter, we denote by gXt = _Xt= Xt the growth

rate of any variable Xt, and by Xo
t its socially optimal level.
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We obtain

LoQt =

�
�!(1� �)
�(�+ �)

�1=�
hRot : (11)

Thus the ratio LoQt=hR
o
t is constant, which implies Q

o
t=hR

o
t and P

o
t =hR

o
t constant. We now

explain where this result comes from - we will see that, in particular, it depends on the functional

forms we have chosen for CCS, carbon accumulation in the atmosphere and utility. It should

be �rst remembered that, in this model, the main trade-o¤s are characterized through the

allocation of labor between its three competing uses: production (LY ), research (LA) and CCS

(LQ). The social planner allocates labor between these sectors so that a marginal increase in

this input in any sector yields the same variation of intertemporal utility. On the one hand,

�LoQt = 1 yields an increase in Qt and thus a decrease in pollution Pt: �Pt = ��Qt =

�(1 � �)(hRt=LQt)
�, from (5) and (6). �Pt is a linear function of (hRt=LQt)�; it stems from

the fact that the CCS technology (6) is Cobb-Douglas, homogeneous of degree 1, which implies

that the partial derivatives are homogeneous of degree 0 and thus only depend on the inputs

ratio. By assumption, we have Zt = Z0 +
R t
0 Pse

�(s�t)ds, thus �Zv = �Pte
�(t�v) = �(1 �

�)(hRt=LQt)
�e�(t�v) for all v � t. Finally, using (10), we have �1Ut = �

R +1
t !�Zve

��(v�t)dv =

!(1� �)(hRt=LQt)�=(�+ �). The fact that �1Ut is a linear function of (hRt=LQt)� stems from

the fact that the rate of CO2 natural decay � is constant and utility is separable and linear in

Zt. On the other hand, we show in Appendix 1 (Section i) that �LoAt = 1 yields �2Ut = �=�.

Basically, two main assumptions made in the present framework explain that �2Ut is constant:

the production of knowledge exhibits constant marginal returns to labor (equation (2)) and

utility is separable and logarithmic in consumption (equation (10)). Finally, we also show in

Appendix 1 that �LoY t = 1 yields �3Ut = �=(1 � �)LY t. Here, the form of �3Ut stems from

the decreasing marginal returns to labor in the output production function (equation (1)), and,

here also, the separable utility function, logarithmic in consumption. By equalizing �2Ut and

�3Ut, we obtain LoY = ��=�(1� �). By equalizing �1Ut and �2Ut, we get equation (11).

We also have

Rot =



�0e
�t +B

; (12)

in which �0 = B=(e
B�S0

 � 1) and B = (1��)!h

�+�

�
1� �

�
�!(1��)
�(�+�)

�(1��)=��
. Moreover, we get

goRt = goLQt = goQt = goPt =
��

1 + (e
B�S0

 � 1)e��t

: (13)
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As shown in Appendix 1 (Section iv), since B > 0, goRt < 0 for all t. L
o
Qt=hR

o
t being constant, this

means that LoQt decreases over time. In other words, the greatest e¤ort in CCS is required today:

the social planner places the strongest sequestration e¤orts in the short run and diminishes them

progressively over time.

Finally, the socially optimal growth rate of the economy is

goY t = goAt + (
=(1� �))goRt: (14)

Remark: Suppose now that there is technical progress in the CCS function - as in e.g.

Gerlagh and van der Zwaan (2006). For instance, assume Qt = (hRt)
�(AQtLQt)

1��, where

AQt grows over time at an exogenous rate. In this case, equation (11) becomes LoQt=hR
o
t =

[�!(1� �)=�(�+ �)]1=� A(1��)=�Qt , and we get Qot=hR
o
t = [�!(1� �)=�(�+ �)](1��)=� A(1��)

2=�
Qt .

Then, if technical progress in CCS is high, LoQt and Q
o
t increase over time. In other words, the

socially optimal e¤ort in CCS can increase over some intervals of time. As mentioned above, our

basic model does not feature technical progress in CCS because it would make our computations

much more complex.

Finally, the economy tends asymptotically to a steady-state which corresponds to the state

the economy would immediately jump to if environmental preferences were nil (! = 0).

2.2.2 Impact of CCS on the socially optimal trajectories

We have just seen that the socially optimal e¤ort in CCS is strictly positive (see equation (11)).

This means that the availability of CCS technology increases social welfare. In order to study

the impact of carbon abatement on the socially optimal paths, we consider the social optimum

in the case where CCS technology is not available. We denote by Xo?
t the optimal level of any

variable Xt in this case, with Xo
t still standing for the optimal value in the CCS case. We provide

the optimal levels and growth rates in the no-CCS case in Appendix 2. If we now compare the

optimal growth rates of resource extraction in the two cases, we obtain the following inequality:

goRt < go?Rt .

The literature shows that laissez-faire resource extraction is too fast (see for instanceWithagen,

1994), and thus that gR is too low. The above inequality shows that if CCS technology is avail-

able, the optimal extraction is faster than in the absence of such a technology and thus less

12



restrictive. In other words, more resource is used in the short run and less in the long run. For

this reason, one can say that CCS partially relaxes the environmental constraint; the sacri�ce

required in the early periods is reduced.

The impact of CCS on the optimal pollution paths is less obvious. We �rst consider the

near term. Two opposite e¤ects drive the pollution path. First, hRo?t < hRot , that is, potential

emissions are increased. Indeed, since resource extraction is increased, carbon emissions tend

to rise as well. At the same time, CCS activity reduces pollution. However, such an activity

has a cost in terms of knowledge accumulation (see equations (9) and (2)), and thus in terms

of future output and consumption. This means that the short-run level of sequestered carbon

can be low, that is, not high enough to compensate for the rise in resource extraction. In such a

case, the introduction of CCS technology entails a rise in the socially optimal level of polluting

emissions in the short term14. In the long term, CCS unambiguously induces lower emissions.

Indeed, we have shown that extraction decreases; thus, whatever the amount of sequestered

carbon, pollution decreases.

We now turn to the e¤ect of CCS on optimal growth. First, Lo?Qt and Q
o?
t are obviously

nil. Moreover, LoY = Lo?Y = ��=�(1 � �) (as shown in Appendix 1 and Appendix 2). This

implies LoAt < Lo?At : the amount of labor devoted to R&D is lower in the "CCS case" as CCS

is a third competing use for labor. So there is a �rst e¤ect on research which reduces growth

- such a mechanism also occurs in growth models with renewable resources, as in Smulders

and Gradus (1996) for instance. Here, it is reinforced by an additional mechanism which we

have presented above: resource extraction is faster (goRt < go?Rt ). Thus, we have the following

inequality: goY t = �LoAt + (
=(1� �))goRt < go?Y t = �Lo?At + (
=(1� �))go?Rt . In other words, CCS

reduces economic growth, because of the lower e¤ort in R&D and the acceleration of resource

extraction.

Finally, CCS increases consumption levels in the early stages. As shown in Appendix 1

(Section i), consumption is a linear function of output. We have seen that the amount of labor

in production remains unchanged by the introduction of CCS technology and that resource

extraction is increased in the near term. If we consider a su¢ ciently short period of time during

which the reduced growth of knowledge does not o¤set these two e¤ects, then the production

level increases. Hence, the optimal short-run consumption levels are greater in an economy with

CCS.
14This result can be related to Goulder and Mathai (2000), in which a more e¢ cient abatement technology

leads to higher pollution levels in the short-run. However, baseline emissions are exogenous in their model, and
pollution rises because abatement falls.
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3 Decentralized Economy

We now study the equilibrium trajectories of the decentralized economy, which will enable us to

study the impacts of climate policies in the following section. Since we study a Romer model,

there are two �rst basic distortions: the standard public good character of knowledge and

the monopolistic structure of the intermediate sector. A third distortion arises from polluting

emissions whose accumulated stock harms welfare. In order to correct these distortions, we

introduce three economic policy tools: a unit subsidy to the use of intermediate goods, a research

subsidy and a tax on polluting emissions. Note that climate policy does not consist of a tax on

the polluting resource, as in Groth and Schou (2007) or Grimaud and Rouge (2008). The basic

externality is polluting emissions and, as an abatement technology is available, a tax on these

emissions and a tax on the polluting resource are not equivalent. The latter tax would only

modify the extraction path and would have no impact on CCS activity. Conversely, as we will

show below, the tax on carbon emissions has two main e¤ects: it leads to postponing extraction

(as in models without abatement) and it provides incentives to produce optimal e¤orts in carbon

abatement at each date t.

For many reasons, e.g. lack of international political consensus, it is not always possible to

implement a carbon tax at the Pigovian level. Hence we consider two additional economic policy

tools aimed at -partially- compensating, in a second-best world, the fact that the carbon tax

cannot be set at its �rst-best level. The �rst is a subsidy to sequestered carbon 15. The second

is a subsidy to labor devoted to CCS, which can be considered as observable as sequestered

carbon.

3.1 Agents�behavior

The price of the �nal good is normalized at one, and wt, pit, pRt, and rt are, respectively, the

wage, the price of intermediate good i, the price of the non-renewable resource, and the interest

rate on a perfect �nancial market.

3.1.1 Household

The representative household maximizes (10) subject to its budget constraint _bt = rtbt + wt +

�t � Ct + Tt, where bt is its total wealth, �t represents total pro�ts - including the resource

rent pRtRt - in the economy and Tt is a lump-sum subsidy (or tax). We then get the following

15We thank an anonymous referee for suggesting this tool.
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standard Ramsey-Keynes condition:
_Ct
Ct
= rt � �: (15)

3.1.2 Non-renewable resource sector

On the competitive natural resource market, the maximization of the pro�t functionR +1
t pRsRse

�
R s
t rududs, subject to _Ss = �Rs, Ss � 0, Rs � 0, s � t, yields the standard

equilibrium �Hotelling rule�:
_pRt
pRt

= rt. (16)

As usual, the transversality condition is limt!+1 St = 0.

3.1.3 Final sector

The �nal sector maximizes the following pro�t function:

�Y t =

�Z At

0
x�itdi

�
L�Y tR



t �

Z At

0
pit(1� s)xitdi� wtLY t � wt(1� ')LQt � pRtRt (17)

�� th(Rt � h��1R�tL
1��
Qt ) + �t(hRt)

�L1��Qt .

s and ' are constant rates of subsidy to the use of intermediate goods and labor in CCS activity,

respectively. � t is a unit tax on polluting emissions Pt (i.e., hRt�(hRt)�L1��Qt ) and �t is a subsidy

to sequestered carbon Qt. The �rst-order conditions of this program are:

@�Y t
@xit

= �x��1it L�Y tR


t � pit(1� s) = 0, for all i (18)

@�Y t
@LY t

= �Yt=LY t � wt = 0; (19)

@�Y t
@Rt

= 
Yt=Rt � pRt � � th(1� �h��1R��1t L1��Qt ) + �t�h
�Rt

��1L1��Qt = 0; (20)

and
@�Y t
@LQt

= �(1� ')wt + (� t + �t)(1� �)h�R�tL
��
Qt = 0: (21)

This last condition highlights the fact that the carbon tax � and the subsidy to sequestered

carbon � have similar e¤ects on the e¤ort put into the CCS activity. We develop this point later

in Section 4.2.

In this study, it is useful to identify the "total" price paid by the �nal sector for the resource.

We denote this by ~pR. Pro�t function (17) shows that it is composed of three elements: the

price paid to resource owners (pRt), the tax paid on carbon emissions (� th(1 � (LQt=hRt)1��)
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and the subsidy to sequestered carbon (�th(LQt=hRt)1��). Following equation (17), we have

~pRt = pRt

"
1 +

� th

pRt
� (� t + �t)h

pRt

�
LQt
hRt

�1��#
� pRtMt: (22)

3.1.4 Intermediate and research sectors

Innovations are protected by in�nitely lived patents. This gives rise to a monopoly position in

the intermediate sector. The pro�t function of the ith monopolist is �mi = (pi � 1)xi(pi), where

xi(pi) is the demand for intermediate good i by the �nal sector (see (18)). Hence, the price

chosen by the monopolist is

pit � p = 1=�, for all i. (23)

As a result, quantities and pro�ts are symmetric. We get

xit � xt =

 
�2L�Y tR



t

1� s

!1=(1��)
(24)

and

�mit � �mt =
1� �
�

xt. (25)

The market value of a patent is Vt =
R +1
t (�ms + �s)e

�
R s
t rududs, where �s is a subsidy to

research aimed at correcting the standard distortion caused by the intertemporal spillovers16.

Di¤erentiating this equation with respect to time gives

rt =
_Vt
Vt
+
�mt + �t
Vt

, (26)

which states that bonds and patents have the same rate of return in equilibrium.

The pro�t function of the research sector is �RDt = Vt�AtLAt � wtLAt. Free-entry in this

sector leads to the standard zero-pro�t condition:

Vt =
wt
�At

. (27)

3.1.5 Government

The government�s budget constraint comprises: the carbon tax (� tQt = � t

h
hRt � (hRt)�L1��Qt

i
),

the subsidy to the use of intermediate goods (
R At
0 spitxitdi = Atsxt=�), the subsidy to re-

16Note that Barro and Sala-i-Martin (2003), for instance, consider a direct subsidy to labor in research; our
assumption alleviates computational complexity in the present context of polluting non-renewable resources and
abatement.
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search (�t), the subsidy to labor in CCS ('wtLQt), the subsidy to sequestered carbon (�tQt =

�t(hRt)
�L1��Qt ) and the lump-sum subsidy (or tax) Tt (see Section 3.1.1). Assuming that it is

balanced at each date t, it can be written: � t
h
hRt � (hRt)�L1��Qt

i
� Atsxt=� � �t � 'wtLQt �

�t(hRt)
�L1��Qt � Tt = 0 for all t.

3.2 Equilibrium

The preceding �rst-order conditions enable us to determine the equilibrium in a decentralized

economy, that is, the set of quantities, prices and growth rates at each date expressed as functions

of the economic policy tools (s, �, � , ' and �). Like the planned economy, a decentralized

economy is always in transition. We fully characterize the decentralized economy in Appendix

3, where we provide all equilibrium levels and growth rates. In this section, we focus on the

variables that are relevant to our analysis.

As we mentioned above, the three basic distortions concern research and polluting emissions.

It should be recalled that, in the present model, there is no directed technical change17, in

particular in the abatement technology. We do not study the links between the climate policy

and research subsidies - for such analysis in a partial equilibrium framework, see for instance

Goulder and Mathai (2000) or Gerlagh et al. (2008). Thus, in order to focus on climate policy,

we assume here that research is optimally funded. In other words, both subsidies, s and �, are

set at their �rst-best levels, that is s = 1��, and �t = VtgAt (for proof, see Appendix 3, Section

i).

3.2.1 Equilibrium with no climate policy

We �rst consider the case in which no climate policy is implemented: � t = �t = 0 at each date.

The economy immediately jumps to its steady-state, where the amount of labor devoted to CCS

is nil (see equation (28)): LQt = 0, which means that no carbon is abated (Qt = 0). This, in turn,

implies that the total potential emission is released into the atmosphere, i.e. Pt = hRt. Moreover,

since labor used in the production of the �nal good (LY ) is constant, labor devoted to the research

sector (LA = 1� LY ) is also constant18. The �ow of extraction at date t is Rt = �S0e
��t: This

implies gR = �� for all t. Finally, the growth rate of output, gY ; is equal to ���, as in standard

endogenous growth models with non-polluting non-renewable resources. This steady-state is

17For an endogenous growth model with a stock of pollution and directed technical change, see for instance
Grimaud and Rouge (2008) or Acemoglu et al. (2012).
18This property stems from an arbitrage condition in the allocation of labor between production and research

activities. A similar trade-o¤ occurs at the social optimum; we give a more detailed analysis in Appendix 1
(Section i).

17



obviously identical to the �rst-best steady-state when environmental preferences are nil, that is,

when ! = 0 (see Section 2.2.1).

3.2.2 Equilibrium with climate policies

We now consider the equilibrium in presence of the climate policy tools. For obvious reasons,

it is impossible to study all types of carbon tax and subsidy pro�les. We therefore limit our

analysis to speci�c types. We show in the next section (Section 4.1) that the �rst-best carbon

tax is a linear function of Y . Moreover, studying the class of economic policy tools that are

growing at the same rate as output enables us to fully characterize the equilibrium, and in

particular to obtain a closed-form solution for resource extraction. We thus focus on a climate

policy such that � t = a1Yt and �t = a2Yt, where a1 and a2 are positive constants.

The main �ndings are the following. Labor in �nal good production, LY , is constant over

time, and LQt, the e¤ort in CCS, is given by

LQt =

�
(� t + �t)�(1� �)
(1� ')�(1� �)Yt

�1=�
hRt: (28)

Here, we assume 0 � (� t + �t)=Yt � (1 � ')�(1 � �)=�(1 � �) in order to avoid the corner

solution in which the whole carbon content of Rt is abated at each time. The �ow of resource

extraction is given by

Rt =



 0e
�t +G

, (29)

where  0 = G=(e
G�S0

 � 1) and G = h� t

Yt
� �h

�
�(1��)

(1�')�(1��)

� 1��
�
�
� t+�t
Yt

� 1
�
(see Appendix 3 (iii)).

Since � t=Yt and �t=Yt are constant, G is constant. The growth rate of resource extraction is

gRt =
��

1 + (e
G�S0

 � 1)e��t

: (30)

gRt is negative and asymptotically converges toward its long-run level ��. Along the transition,

it can be seen that if G > 0, then gRt is higher than its asymptotic value, while if G < 0, it is

lower. The value of G depends on the relative values of � t and �t.

Since the e¤ort in CCS (LQt), abated carbon (Qt) and pollution (Pt) are all linear functions

of Rt, they also decrease over time19. Since LQt decreases over time, labor devoted to research,

19 If we consider technical progress in the CCS function, for instance Qt = (hRt)
�(AQtLQt)

1��, where AQt
grows over time at exogenous rate, then (28) becomes LQt=hRt = [� t�(1� �)=(1� ')�(1� �)Yt]1=� A(1��)=�Qt .
LQt=hRt and Qt=hRt are then increasing functions of time, which is more consistent with Grimaud et al. (2011),
for instance. In this case, even if Rt decreases over time, Qt can increase over some intervals of time.
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LAt, increases over time and converges to the constant level 1� LY = 1� ��=�(1� �) as time

tends to in�nity. Note that the levels of CCS e¤ort, sequestration, pollution and extraction

depend on economic policy tools - the e¤ects of economic policies are analyzed in the following

section.

The level and the growth rate of output are given by

Yt = ��=(1��)AtL
�=(1��)
Y R


=(1��)
t ; (31)

and gY t = gAt + (
=(1� �))gRt. (32)

Since gAt = �LAt (see equation (2)), gAt increases over time and tends to � � ��=(1 � �).

Simultaneously, gRt tends to its limit �� (see equation (30)). Thus, in the long run, gY t tends

to �� �, which we can consider positive. This is a fairly standard expression of long-run output

growth in a model with non-renewable resources - see for instance Stiglitz (1974), in the context

of an exogenous growth model without pollution. Along the transition path, however, gAt is

lower than its long-run level and gRt can be lower or higher according to the relative values

of the carbon tax and the subsidy to sequestered carbon - see comments below equation (30).

Thus, over some intervals of time, output growth can be positive or negative. We provide further

elements on the impact of the economic policy tools on output growth in the next section.

4 Economic policies

4.1 First best climate policy

We now characterize the �rst-best policy. It should be remembered that there are three basic

market failures in this economy. Since we have set the research subsidies at their optimal levels,

only the environmental distortion remains. Hence, in order to implement the �rst-best, it is

only necessary to set the carbon tax at its Pigovian level. Obviously, there is no need here for

the CCS tools, that is, the subsidies to sequestered carbon and to labor in CCS. Thus we set

� = ' = 0 in this section.

Proposition 1 At each date t, � ot =
!(1��)
�+� Yt is the level of carbon tax that implements the

socially optimal path. This tax is unique, and it generally increases over time.

Proof. Comparing the socially optimal levels of the variables to their levels in the decentralized

equilibrium, for instance LoQt=hR
o
t (11) and LQt=hRt (28), yields �

o
t . One can then easily check

that all the other variables in the decentralized economy are at their socially optimal levels.
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Economic interpretation of the �rst-best carbon tax

It can be shown that, if we use the non-speci�ed expression of the utility function, U(Ct; Zt),

the optimal tax is equal to �1
UC

R +1
t UZe

�(�+�)(s�t)ds > 0, since UZ < 0. Thus the optimal tax is

the product of two terms. The �rst, 1=UC , is the amount of consumption good that compensates

for a marginal change in utility. The second, �
R +1
t UZe

�(�+�)(s�t)ds; is the expression of the

optimal tax in terms of utility, that is, the sum of discounted social costs of one unit of carbon

emitted at date t, for all (present and future) times. Hence, � ot is the sum of discounted social

costs of one unit of carbon measured in terms of �nal good.

With the speci�ed functional form (10), the �rst-best tax level is linear in the output level.

Indeed, since utility is separable and linear in the damage, the term �
R +1
t UZe

�(�+�)(s�t)ds

is constant and equal to !=(� + �). Moreover, since the utility of consumption is logarithmic,

1=UC is equal to Ct = (1��)Yt. Thus we have � ot =
!(1��)
�+� Yt. If the environmental damage was

introduced in the production function as a multiplicative argument with an exponential form

as in Golosov et al. (2011) or Gerlagh and Liski (2012), the �rst-best tax would have the same

form20.

Note that the tax level matters here. Indeed, when abatement technology is available, the

social planner has to give �rms the right incentive in terms of social costs of pollution, so

as to induce the optimal e¤ort in abatement. Thus, the optimal tax has to be equal to @Yt=

@Qt � (@Yt= @LY t)=(@Qt= @LQt), which is the cost of sequestering one unit of carbon21 - indeed,

increasing CCS leads to a decrease in output through a labor transfer from the �nal good sector

to CCS. Since @Yt= @LY t = �Yt=LY t and @Qt= @LQt = (1� �)Qt=LQt, using the optimal values

given in Appendix 1 (Section vii), we get � ot as expressed in the proposition. This sharply

contrasts with the standard result in the literature without abatement which states that the tax

level generally does not matter (see Dasgupta and Heal, 1979; Sinclair, 1992; Groth and Schou,

2007; or Grimaud and Rouge, 2008 for instance). In this context, there are an in�nity of optimal

taxes which have the same dynamics, but di¤er in their levels. Here, in a model featuring CCS,

we have shown that the �rst-best tax is unique.

20 Indeed, if the environmental damage is entered as an argument in the production function (Y = F (Z; :::)),
the general expression of the �rst-best tax is �1

UC

R +1
t

(UCFZ + UZ)e
�(�+�)(s�t)ds. Suppose that Z appears in

the production function as a multiplicative argument with an exponential form: Yt =
�R At

0
x�itdi

�
L�Y tR



t e

�$Zt;

$ > 0. The tax expressed in terms of utility is then (! + $)=(� + �). Expressed in terms of �nal good, the
�rst-best tax is thus equal to (!+$)(1��)Yt=(�+ �). It depends on the impact of emissions on both utility (!)
and output production ($).
21Goulder and Mathai (2000) provide a similar expression in a partial equilibrium context with exogenous

baseline emissions, that is, exogenous total carbon content in our framework (see equation (11) in their paper).
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Finally, � ot = (��t)e�t(1��)Yt, where �t is the co-state variable associated with the stock of

carbon Zt in the social planner program (see Appendix 1, equation (42)). This socially optimal

tax can be linked to the ones obtained in partial equilibrium frameworks: see for instance Hoel

and Kverndokk (1996, equation (17)), Goulder and Mathai (2000, equation (13)) or Gerlagh et

al. (2008, equation (18)). However, in our context, this tax exhibits speci�c properties, which

we comment on below.

Main properties of the �rst-best carbon tax

For obvious reasons, the �rst-best tax is increasing in environmental preferences ! and

decreasing in the psychological discount rate � and the rate of natural CO2 decay �.

Moreover, since the tax is proportional to output, its growth rate is equal to the growth

rate of output - which is generally positive. The economic intuition behind this property is the

following. If gY t > 0, the marginal utility of consumption decreases over time. Thus, the amount

of �nal good that compensates the household for the emission of one unit of carbon increases

over time. Observe that the Pigovian tax is increasing even if utility is a linear function of Zt. A

convex functional form would probably reinforce this result - see for instance the discussion on

this issue in Goulder and Mathai (2000, p.34). This con�rms what is obtained by Grimaud et

al. (2011) in a calibrated model, in the absence of a carbon ceiling. Finally, since go� = goY , the

Ramsey-Keynes condition (15) implies go� = r� � < r; in other words, this policy will postpone

resource extraction - see Dasgupta et al. (1981) on this issue.

Remark: Ex-post interpretation of the increasing unit carbon tax.

In many growth models with climate change (see for instance Sinclair, 1992, Groth and

Schou, 2007, or Grimaud and Rouge, 2008), the socially optimal policy instrument consists of

a decreasing ad-valorem tax on resource use - which is equivalent to a tax on carbon emissions

if there is no abatement. Here we have shown that the optimal tool is an increasing unit tax

on carbon emissions. Both results can be linked. Indeed, the optimal carbon tax, which leads

the decentralized economy to postpone resource extraction, can be interpreted ex-post as a

decreasing ad valorem tax on the resource. When the optimal tax is implemented, the total

(i.e., including the price of the resource and the carbon tax) unit price paid by users for the

resource increases less rapidly than the unit price perceived by owners of the resource -whose

growth rate is equal to the interest rate. That is why extraction is postponed. Ex-post, this has

the same e¤ect as a decreasing ad valorem tax. Indeed, we have seen that the total price paid by

�rms for the resource is ~pRt (see (22)). Using (28) and � ot = !(1��)Yt=(�+ �) (see Proposition
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1), ~pRt is equal to pRt

�
1 +

�
1�

�
!�(1��)
�(�+�)

�(1��)=��
!(1��)hYt
(�+�)pRt

�
at the �rst-best. Thus, ~pRt can

be written as pRt(1 + �t), where �t can be interpreted as an ad valorem tax on the resource.

Since gY t = rt�� and gpRt = rt, the ratio Yt=pRt decreases over time and so does the ad valorem

tax.

4.2 Impact of second-best economic policies

We suppose here that the Pigovian level of the carbon tax - stated in Proposition 1- cannot

be achieved by the policy maker, and that it can only be lower than this level at each date t.

As mentioned above, many reasons could explain this situation, such as a lack of international

political consensus. In this case, additional policies could prove useful. We thus study the impact

of second-best policies: a carbon tax � t inferior to � ot
22, the subsidy to sequestered carbon �t

and the subsidy to labor in CCS '. We �rst analyze how CCS activity is a¤ected. Here, the key

transmission channel of the policies is the trade-o¤ between labor in R&D and CCS. Second,

the time pro�le of resource use is modi�ed. The transmission channel is the impact of these

policies on the dynamics of the total price paid by the �nal sector for the resource. We then

study the impact on carbon emissions, which obviously depends on the impact on CCS as well

as the impact on resource use. Finally, we show how the changes in resource extraction and

knowledge accumulation also a¤ect the levels and growth rates of output and consumption.

When they are not necessary, we drop time subscripts for notational convenience.

4.2.1 Carbon tax

We �rst consider the impact of the carbon tax � . We have shown in Section 4.1 that the �rst-best

level of the carbon tax is strictly positive; we thus study here the impact of setting a positive

carbon tax in an economy where there is none, or, equivalently, of increasing the tax level if one

is already in place. We implicitly assume that, in either case, the tax level is below its �rst-best

level. This means that the studied policy is always welfare-improving - even if, as we shall see, it

can reduce output and consumption in the short run. As mentioned above, we focus on a policy

such that the ratio �=Y is constant. The main relevant e¤ects of this policy on the equilibrium

trajectories of the economy are presented in the following proposition.

22We include the carbon tax in the second-best tools when it is below its �rst-best level in order to simplify
our presentation.
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Proposition 2 An increase in �=Y has the following impact on the economy.

(i) The rate of CCS activity rises: for any extraction �ow (R), the e¤ort in CCS (LQ) and

the �ow of sequestered carbon (Q) increase.

(ii) Resource extraction is postponed: R decreases in the short term and increases in the long

term.

(iii) The rate of carbon emissions decreases: for any level of R, the �ow of carbon emissions

(P ) decreases. Hence P unambiguously decreases in the short term.

(iv) The tax reduces the short-term levels of output (Y ) and consumption (C) and it generally

fosters economic growth. However, if the weight of the CCS sector in the whole economy is high,

the tax can reduce growth.

Proof. See Appendix 3 (Section v).

The result presented in item (i) is due to the fact that the carbon tax makes CCS activity

more pro�table. Here, the key transmission channel is the trade-o¤ between labor in research

and CCS: the policy leads to an additional e¤ort in CCS which is drawn from the R&D activity.

This trade-o¤ has been analyzed in the comments below equation (11): the e¤ects of the carbon

tax are identical to an increase in ! or �. Formally, the amount of labor by unit of carbon

content, LQ=hR (see equation (28)), increases - remember that the carbon content of a given

�ow of resource use, hR, is the total potential carbon emissions associated with the extracted

resource, R. Therefore, the instantaneous rate of CCS, that is, the amount of sequestered carbon

relative to the total carbon content of the �ow of extracted resource, Q=hR, also increases.

The carbon tax modi�es the dynamics of resource extraction. Resource use is monotonous

and decreasing; since @gRt=@(� t=Yt) > 0 for all t, we get the result presented in item (ii). The

key transmission channel is the resource price. To understand it, consider the total price paid

by the �nal sector for the resource, ~pR (see equations (22) and (28)). The growth rate of ~pR is

equal to gpR+gM . According to the sign of gM , the total price of the resource grows more or less

rapidly than pR. Equation (22) shows that the ratio �=pR plays a key role. It can be rewritten

as (�=Y ):(Y=pR). Since �=Y is constant, and gY=pR = �� (see equations (15) and (16)), we

have g�=pR = gY � gpR = ��. Similarly, g�=pR = ��. Hence, we obtain gM = �(1 �M)=M . In

order to isolate the e¤ects of the carbon tax on the dynamics of the total price of the resource,

we assume here that �t = 0 for all t. In this case, M = 1 + �h
pR

"
1�

�
��(1��)

Y (1�')�(1��)

�(1��)=�#
. If

�=Y > 0, using the fact that 0 � �=Y � (1�')�(1��)=�(1� �) - see Section 3.2.2 -, it is clear

that M > 1. Thus, gM is negative. In other words, when �=Y > 0, we have ~pRt > pRt with
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g~pRt < rt, for all t. So, when the policy maker implements a climate policy, the total price of the

resource ~pR is higher but it grows less rapidly. Hence, the instantaneous �ows of resource use

are reallocated over time: less resource is extracted today, and more tomorrow. In other words,

resource extraction is postponed.

Item (iii) presents the impact of the tax on carbon emissions. Since Q=hR increases (item

(i)), e¤ective pollution by unit of carbon content, i.e. the quantity of carbon actually emitted

relative to the carbon that would be emitted without the CCS option, P=hR, decreases. Since

the tax has the e¤ect of reducing resource extraction in the short term, e¤ective carbon emissions

unambiguously also decrease in the short term.

This climate policy also modi�es the level and growth of output (item (iv) in Proposition 2).

Since consumption is a linear function of output, as shown in Appendix 3 (Section i), the e¤ects

on output and consumption are identical. Output level is given by equation (31). In the short

run, one can consider that the changes to the stock of knowledge, that is, the state variable A,

are negligible compared with changes to the �ow of resource use R. Hence, the postponement of

resource extraction, which drives the economy to less resource use, negatively impacts output.

In sum, the carbon tax reduces output and consumption in the early stages.

The impact on output growth is less straightforward. Equation (32) shows that two di¤erent

e¤ects drive this impact: the e¤ect of the tax on knowledge growth (gA) and the e¤ect of

the tax on the growth rate of resource extraction (gR). In the absence of CCS technology,

the e¤ect on research is nil, since the allocation of labor between production and research is

unchanged over time (see equation (43) in Appendix 3). In this case, since the climate policy

postpones resource extraction, i.e. gR increases, it unambiguously promotes output growth23.

If a carbon abatement technology is available however, the e¤ect on the research e¤ort - and

hence on the growth of knowledge - can play a key role since there is now a third competing

use for labor. Using equations (2) and (9), we can see that the sign of @LA=@(�=Y ) is opposite

to the sign of @LQ=@(�=Y ) - since, here also, LY is constant. We have shown that LQ =

[��(1� �)=�(1� �)Y ]1=� hR (equation (28)). An increase in �=Y has a positive impact on the

term between brackets: for a given level of extraction, the tax increases the price of carbon used

in the CCS process, which prompts a rise in LQ. However, as we have already seen, it also has

a negative impact on R in the short run and a positive impact in the long run. Hence, the total

23This contradicts the general �nding of models in which pollution is a by-product of production or capital, and
does not result from the use of non-renewable resources. Most of these models, when no speci�c assumptions on,
say, returns to scale on the abatement technology or the external e¤ects of environmental quality on productiv-
ity are made, show that there is a trade-o¤ between environmental quality and economic growth (Gradus and
Smulders, 1993, or Grimaud, 1999). For a survey of this question, see for instance Ricci (2007).
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e¤ect of the tax on LQ is positive in the long run but ambiguous in the short run. The e¤ect

of the carbon tax on LA and thus on gA being opposite to the e¤ect on LQ, one can see that

the impact of the tax on the growth of knowledge is negative in the long run but ambiguous in

the short run. Since this tax has a positive impact on gR, the overall e¤ect on output growth is

ambiguous in the short term and the long term.

We have seen that the carbon tax reallocates labor from research to CCS activities. Assume

that the weight of the CCS sector in the economy is low; in other words, the amount of reallocated

labor is negligible. This means that whatever the impact of the tax on knowledge growth, it

does not surpass the positive impact on the growth of resource use. In this case, the tax fosters

growth. If the weight of the CCS sector is high, however, the carbon tax can reduce output

growth.

4.2.2 Subsidy to sequestered carbon

Here we consider the e¤ects of the subsidy to sequestered carbon �. As previously mentioned,

we restrict our analysis to subsidies that grow at the same rate as output, that is, �=Y is

constant. We study the impact of setting a positive subsidy in an economy where there is none,

or, equivalently, of increasing the level of the subsidy if it is already implemented. The e¤ects

of such policies on the equilibrium trajectories of the economy are described in the following

proposition.

Proposition 3 An increase in �=Y has the following impact on the economy.

(i) Like the carbon tax, the subsidy increases the rate of CCS activity - see item (i) in

Proposition 2.

(ii) Contrary to the tax, the subsidy accelerates resource extraction: R increases in the short

term and decreases in the long term.

(iii) The rate of carbon emissions decreases: for any level of R, the �ow of carbon emissions

(P ) decreases. Hence the subsidy can decrease or increase short-term emissions.

(iv) Contrary to the tax, the subsidy increases the short-term levels of output (Y ) and con-

sumption (C) and it generally reduces economic growth. However, if the weight of the CCS

sector in the whole economy is high, the subsidy can foster long-term growth .

Proof. See Appendix 3 (Section vi).

Like the carbon tax, the subsidy to sequestered carbon makes CCS activity more pro�table.

Its impact on LQ=hR, and thus Q=hR, is summarized in equation (28). Here, � and � are
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perfect substitutes since they appear in a sum. Henceforth, their impacts are clearly identical -

item (i) in Proposition 2. Moreover, if � < � o - and, in particular, if � = 0 -, the policy maker

can always set � = � o � � and restore the socially optimal LQ=hR and Q=hR: Nonetheless, the

levels of LQ and Q will not be socially optimal since, as we show below, this level of subsidy

does not entail socially optimal resource extraction.

The impact of the subsidy on resource extraction is opposite to the impact of the carbon

tax. This means that gR decreases. The subsidy to sequestered carbon thus accelerates resource

extraction. To understand this, we study how the resource price is a¤ected by this policy.

Remember that the total price paid for the resource by the �nal sector is given by (22) and

(28). The case we consider here is symmetric to the case studied in Section 4.2.1, that is, in

order to study the e¤ects of the subsidy on the dynamics of this price, we assume that the

carbon tax is nil: � t = 0 for all t. In this case, M = 1 � �h
pR

�
��(1��)

Y (1�')�(1��)

�(1��)=�
. Here

M < 1, which means that gM > 0. In other words, the subsidy lowers the level of the price

paid for the resource but makes it grow faster: ~pRt < pRt and g~pRt > rt for all t. This entails a

reallocation of instantaneous resource uses over time so that more resource is extracted today

and less tomorrow, i.e. resource extraction is accelerated: gR decreases - item (ii) in Proposition

3.

The impact of the subsidy on carbon emissions (item (iii) in Proposition 3) is more complex.

We have seen that, like the carbon tax, the subsidy increases Q=hR, which leads to a decrease in

P=hR. However, the subsidy entails a higher resource use in the short run. The overall impact

on short-term carbon emissions is thus ambiguous. This means that a type of green paradox

can occur here. Indeed, following Sinn (2008) and subsequent contributions like Gerlagh (2011)

and van der Ploeg and Withagen (2012), a (weak) green paradox occurs when climate policies

induce a more rapid extraction of fossil fuels, thus increasing short-term emissions. Here, two

opposite e¤ects drive short-term e¤ective emissions: more resource is extracted, and more carbon

is sequestered. If the former e¤ect surpasses the latter, then the subsidy to CCS yields higher

carbon emissions in the short run.

We �nally turn to the impact of this policy on output and consumption (item (iv) in Pro-

position 3). The e¤ect on output level (31) in the short run is opposite to the e¤ect of the tax:

more resource is used in the early stages, which tends to increase output and consumption in the

short run. The e¤ect on economic growth is determined by the combination of the e¤ect on the

growth of resource use and the e¤ect on the growth of knowledge. As demonstrated above, the
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subsidy entails a decrease in gR. If this e¤ect is strong, and thus exceeds any possible positive

impact on research, output growth (32) decreases. We have shown in the preceding subsection

that gA is a decreasing function of LQ. The impact of the subsidy on LQ is deduced from

equation (28). We can see that the increase in �=Y has a positive e¤ect on the term between

brackets. Moreover, we have stated that the e¤ect on R is positive in the short run and negative

in the long run. Therefore, the impact of the subsidy on knowledge growth is negative in the

short run and ambiguous in the long run. Hence, the overall e¤ect of the subsidy to sequestered

carbon on output growth is unambiguously negative in the short run and ambiguous in the long

run.

Assume that the weight of the CCS sector in the whole economy is low; as mentioned in

the previous subsection, this means that the amount of labor reallocated from R&D to CCS

is negligible. In such a case, the impact of the subsidy on the growth rate of resource use

dominates, and the tax is unambiguously bad for growth. However, if the weight of the CCS

sector is high, one can see that, unlike the carbon tax, the subsidy can foster long-run growth.

More generally, the advantage of this policy is twofold. First, for many reasons - in particular,

political consensus issues -, the �rst-best level of the carbon tax is not likely to be reached. One

may therefore suppose that a complementary tool, such as a subsidy to sequestered carbon,

may help to increase welfare along the equilibrium trajectories of the economy. Second, we have

seen that the impacts of both policies are sometimes opposed, in particular on production and

consumption in the short run. Whereas the carbon tax entails a decrease in output, the subsidy

fosters it. In other words, the latter tool helps to reduce the burden of climate policy in the

earlier periods. One might then think that mixing both policies could favor public acceptance

when the regulator has to implement her policy scheme.

Remark: We have seen that the carbon tax and the subsidy to sequestered carbon have

opposite e¤ects on the time pro�le of resource extraction: the tax postpones it while the subsidy

accelerates it. When these two policies are applied simultaneously, the e¤ect of the tax on

extraction con�icts with that of the subsidy. However, we are able to characterize the overall

e¤ect on the growth rate of resource extraction of any couple (� t;�t). Indeed, we have shown

in the comments below equation (30) that gRt is higher (resp. lower) than ��, i.e. resource

extraction is postponed (resp. accelerated), if G > 0 (resp. < 0). This means that resource

extraction is postponed (resp. accelerated) if and only if �t is lower (resp. higher) than ���

[�(1� �)=Yt(1� ')�(1� �)]��1 ��t � � t.
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4.2.3 Subsidy to labor in CCS

We �nally consider the subsidy to labor in CCS, '. The main e¤ects of this tool are summarized

in the following proposition.

Proposition 4 The subsidy to labor in CCS ' has an impact on the economy only if it is

implemented together with a complementary climate policy, that is, if � > 0 and/or � > 0. In

such a case, the e¤ects of ' are similar to the e¤ects of the subsidy to sequestered carbon �

(presented in Proposition 3).

Proof. All these results are found by di¤erentiating equations (28)-(30), and (45), (46), (49)

and (50) in Appendix 3 with respect to '.

First, in the absence of the carbon tax (�) and the subsidy to sequestered carbon (�), a

subsidy to labor in CCS has no e¤ect on the economy. This can be observed in equations (28)

and (30). One can see that, if � = � = 0, then LQ = 0, that is, there is no CCS activity, and

gR = �� since G = 0. Indeed, carbon - sequestered or emitted - has no price, and thus CCS

activity is not pro�table.

When this policy is implemented together with a carbon tax and/or a subsidy to sequestered

carbon, the subsidy to labor does have an impact. First, the pro�tability of CCS resulting from

the implementation of the carbon tax and/or the subsidy to sequestered carbon is strengthened

by the subsidy to labor. Thus LQ=hR and Q=hR increase.

Second, the subsidy accelerates resource extraction. To understand this, we again need to

analyze how this tool a¤ects the dynamics of the total price paid by the resource user. By

using equation (22), we get @M=@' < 0 and thus @gM=@' > 0. The subsidy to labor therefore

accelerates the growth of the total price of the resource, and consequently its extraction.

If � t > 0 and �t = 0, we have seen in Section 4.2.1 that ~pR grows less fast than pR. Hence

the subsidy to labor in CCS goes against the e¤ect of the carbon tax on resource extraction.

If � t = 0 and �t > 0, as stated in Section 4.2.2, ~pR grows faster than pR; so ' strengthens

the e¤ect of the subsidy to sequestered carbon. This obviously means that, like the subsidy to

sequestered carbon, the subsidy to labor in CCS can yield a green paradox.

When � t > 0 and/or �t > 0, the subsidy to labor ' a¤ects the levels and growth of output and

consumption in the same way as �, since their impact on knowledge accumulation and resource

extraction are alike. For the same reasons, this policy can be seen as a good complement

to a carbon tax since, while strengthening its impact on CCS activity, it can favor its social

acceptance by alleviating its burden at the early stages.
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5 Conclusion

We have developed an endogenous growth model with climate change that features CCS tech-

nology. Such an abatement technology can be used to endogenize CO2 emissions for a given use

of fossil fuel.

We have fully depicted the socially optimal outcome of this economy and we have shown

that the greatest e¤ort in CCS should be undertaken today. Moreover, the availability of CCS

technology can produce a rise in CO2 emissions in the short run since it speeds up the pace of

resource extraction, which can o¤set the CCS activity. We have computed the �rst-best carbon

tax, which is unique and generally increasing over time.

We have fully characterized the decentralized economy�s trajectories and, when the Pigovian

carbon tax cannot be implemented, we have studied three types of second-best economic policies.

The �rst one is a standard unit tax on carbon emissions. The second and the third are subsidies

to sequestered carbon and the e¤ort in CCS, respectively. The latter has an impact on the

economy only if it is implemented together with at least one of the two other climate policies

(the carbon tax or the subsidy to sequestered carbon). If so, the two subsidies have similar

impacts.

The three tools foster CCS activity. However, their impacts on resource extraction are

opposite: the carbon tax postpones resource extraction whereas the two subsidies accelerate it.

Therefore, while the tax unambiguoulsy decreases short-term carbon emissions, the two subsidies

can yield a green paradox in the form of a rise in short-term emissions.

The carbon tax has a negative impact on the levels of output and consumption in the short

term contrary to the subsidies. In this sense, the subsidies can favor the public acceptance of a

carbon tax. The e¤ects on growth are more complex. The carbon tax generally fosters growth

whereas the subsidies reduce it. However, when the weight of the CCS sector in the economy is

high, that is, if the rise in CCS drains an important amount of labor from research activities,

the carbon tax can reduce output growth while the two subsidies can foster it in the long term.

It remains necessary to move away from a carbon economy by switching to renewable or

non-fossil fuel based energy sources (Gerlagh, 2006). In order to keep the model tractable, the

availability of a clean and renewable energy source has not been introduced. This so-called

backstop would not drastically alter the qualitative properties of our results. Nevertheless, it

would be interesting to study the impact of the CCS option on the adoption timing of these

alternative sources of energy. We can infer that the possibility of sequestering carbon emissions

would delay the introduction of renewable energy.
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Appendix

Appendix 1: Welfare

We drop time subscripts for notational convenience. The social planner maximizes U =
R +1
0 (lnC�

!Z)e��tdt subject to (1)-(9). We assume that [�!(1� �)=�(�+ �)]1=� < 1 (see equation (11))

in order to avoid a corner solution in which carbon emissions are fully abated, i.e. LQ = hR.

Thus, it is unnecessary to incorporate a Kuhn-Tucker condition for LQ � hR. The Hamiltonian

of the program is

H = (lnC � !Z)e��t + ��A(1� LY � LQ)� �R+ �
h
h(R� h��1R�L1��Q ) + �(Z0 � Z)

i
+�

�
(

Z A

0
x�i di)L

�
YR


 � C �
Z A

0
xidi

�
;

where �, �, � and � are the co-state variables. The �rst order conditions @H=@C = 0 and

@H=@xi = 0 yield

e��t=C � � = 0; (33)

and �x��1i L�YR

 � 1 = 0; for all i. (34)

Note that this implies xi = x, for all i. @H=@LY = 0, @H=@LQ = 0 and @H=@R = 0 yield

� ��A+ ��Y=LY = 0; (35)

���A� �h�(1� �)R�L��Q = 0; (36)

and �h(1� �h��1R��1L1��Q ) + �
Y=R� � = 0: (37)

Moreover, @H=@A = � _�, @H=@S = � _�; and @H=@Z = � _� yield

� _� = ��LA + �(x
�L�YR


 � x); (38)

� _� = 0; (39)

and � _� = �!e��t � ��: (40)

i) Computation of LY .

(34) can be rewritten as Y = Ax=�. Since Y = C +Ax, one gets C = (1� �)Y .
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Dividing both hand sides of (38) by � gives �g� = �LA + (x
�L�YR


 � x)�=�. The term

between brackets can be rewritten as Y=A � �Y=A, which is equal to (1 � �)Y=A. Moreover,

from (35), we have �=� = �ALY =�Y and g� + gA = g� + gY � gLY . Since (33) yields g�

= ���gC = ���gY , one gets �g� = gA+�+gLY . Plugging these results in the �rst expression

of �g�, we obtain the following Bernoulli di¤erential equation: _LY = (�(1 � �)=�)L2Y � �LY :

In order to transform this equation into a �rst-order linear di¤erential equation, we consider

the new variable z = 1=LY , which implies _z = � _LY =L2Y . The di¤erential equation becomes

_z = �z � �(1 � �)=�, whose solution is z = e�t [z0 � �(1� �)=��] + �(1 � �)=��. Replacing

z by 1=LY leads to LY = 1
e�t[1=LY 0��(1��)=��]+�(1��)=�� . Using the transversality condition

lim
t�!+1

�A = 0, one can show that LY immediately jumps to its steady-state level:

LY = ��=�(1� �): (41)

Indeed, using (35) it turns out that the transversality condition is only satis�ed when LY =

LY 0 = ��=�(1� �).

The optimal level of LY results from an arbitrage in the allocation of labor between produc-

tion and research activities. The heuristic argument is the following. Suppose a marginal increase

of labor in production, �LY t = 1; at date t. This leads to an increase in production and thus in

consumption: �Yt = �Ct = �Yt=LY t. Since Ct = (1 � �)Yt, one gets �Ct = �Ct=(1 � �)LY t,

which yields the following increase in utility: �Ut = �Ct=Ct = �=(1 � �)LY t: Assume now

�LAt = 1; at date t. This leads to an increase in knowledge, �As, and thus in net production:

�Ys = (@Ys=@As � xs)�As, for all s � t. Since @Ys=@As = Ys=As, and xs = �Ys=As, one gets

�Ys = (1 � �)Ys�As=As. Moreover, As = A0e
R s
0 �LAudu, thus dAs = As�dLAt = �As, for all

s � t. This yields �Ys = �(1��)Ys. Since �Ys = �Cs and Cs = (1��)Ys, one gets �Cs = �Cs.

The increase in the instantaneous utility at s is thus �. Finally, since
R +1
0 e��tdt = 1=�, we see

from (10) that the increase in the intertemporal utility is equal to �=�. Equating both increases

in the intertemporal utility leads to LY = ��=�(1� �):

ii) Computation of �.

The solution for equation (40) is � = e�t(
R t
0 !e

�(�+�)sds + �0): Moreover, the transversality

condition associated to Z writes

lim
t�!+1

�Z = lim
t�!+1

e�t
hR t
0 !e

�(�+�)sds+ �0

i h
X0 +

R t
0 Pse

�(s�t)ds
i
= 0.

We obtain �0 =
R +1
0 (�!)e�(�+�)sds; which gives � = e�t

R +1
t (�!)e�(�+�)sds = e��t

R +1
t (�!)e�(�+�)(s�t)ds
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= e��t
R +1
0 (�!)e�(�+�)udu. Finally, we get

� = �!e��t=(�+ �): (42)

� is the discounted value at t = 0 of the social cost of one unit of carbon emitted at date t,

expressed in terms of utility. This expression can be linked to the value of the optimal carbon tax

at date t, measured in �nal good, in Proposition 1: � o = [!(1� �)=(�+ �)]Y = ��e�t(1��)Y .

iii) Computation of LQ.

Using (42), (36) becomes ���A + !e��th�(1 � �)R�L��Q =(� + �) = 0. Using (33), (35) and

(41), we get ��A = �e��t=�. Plugging this result into the preceding one, we get (11).

iv) Computation of R.

Using (37), (42) and (11), we obtainR = 

�0e

�t+B , in whichB =
(1��)!h
�+�

�
1� �

�
�!(1��)
�(�+�)

�(1��)=��
:

Since we have assumed [�!(1� �)=�(�+ �)]1=� < 1 at the beginning of this appendix, then

B > 0.

We compute �0 using the constraint
R +1
0 Rtdt = S0. We have S0 =

R +1
0



�0e

�t+Bdt =R +1
0


e��t

�0+Be
��tdt. Consider the new variable u = �0 +Be��t, which gives du = ��Be��tdt. We

have S0 =
R �0
�0+B

�

�B

du
u = �


�B ln
�

�0
�0+B

�
. From this equation, one obtains �0 = B=(e

B�S0

 � 1):

Finally, we get goRt =
��

1+(eB�S0=
�1)e��t .

v) Computation of Q and P .

Plugging (11) into Q = (hR)�L1��Q , one gets Q =
�
�!(1��)
�(�+�)

�(1��)=�
hR.

Then, using P = hR�Q ; we have P =
�
1�

�
�!(1��)
�(�+�)

�(1��)=��
hR.

vi) Computation of x.

(1) can be rewritten as Y = (Ax)x��1L�YR

 . Since Ax = �Y and using (41), we get

x = �1=(1��)(��=�(1� �))�=(1��)R
=(1��):

vii) Computation of growth rates.

The growth rates directly follow from the log-di¤erentiation of the preceding results.

In summary, one gets:

LoY = ��=�(1� �);

LoQt =

�
�!(1� �)
�(�+ �)

�1=�
hRot ;

LoAt = 1� LoY � LoQt;
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Rot =



�0e
�t +B

;

where �0 = B=(e
B�S0

 � 1) and B = (1��)!h

�+�

�
1� �

�
�!(1��)
�(�+�)

�(1��)=��
,

Qot =

�
�!(1� �)
�(�+ �)

�(1��)=�
hRot ;

P ot =

"
1�

�
�!(1� �)
�(�+ �)

�(1��)=�#
hRot ;

goAt = �LoAt;

goRt = goLQt = goQt = goPt =
��

1 + (e
B�S0

 � 1)e��t

;

goY t = goAt + (
=(1� �))goRt:

Appendix 2: Welfare in the no-CCS case

When no CCS technology is available, maximizing welfare leads to the following results (recall

that we denote by Xo?
t the optimal level of any variable Xt in this case):

Lo?Y = ��=�(1 � �), Lo?A = 1 � ��=�(1 � �), Ro?t = 


�?0 e
�t+B?

, go?R = ��

1+(e
B?�S0


 �1)e��t
,

go?A = �Lo?A , g
o?
Y = �Lo?A +(
=(1��))go?R , where �

?
0 =

B?

e(B
?�S0=
)�1

and B? = (1��)!h=(�+�):

Since B < B?, we have goRt < go?Rt .

Appendix 3: Equilibrium in the decentralized economy

Here also, we drop time subscripts for notational convenience.

i) Computation of LY

In this paper, we focus on climate policy and its impacts on the economy. Hence we assume

that research is optimally funded; in other words, we assume that both subsidies to research, s

and �, are set at their optimal levels. As in the standard case, the optimal level for the subsidy

to the demand for intermediate goods, s, is 1� �. This can be shown as follows. Equation (3)

shows that the marginal cost of xi is equal to 1. Thus, the socially optimal price paid by the

�nal sector, pi(1 � s), must be equal to 1. From (23), the monopoly price is pi = 1=� (> 1).

Hence, we have (1� s)=� = 1, that is, s = 1� �.

The optimal value of the subsidy to research � is obtained in what follows.

Equation (18), in which pi(1 � s) = 1 (from (23)), can be rewritten Y = Ax=�. Since

Y = C +Ax, one gets C = (1� �)Y , as it is the case at the social optimum.
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From (15) and (26), we have r = �+ gC = gV +
�m+�
V , where gC = gY .

From (27) and (19), after log-di¤erentiation, we get gV = gw�gA = gY �gLY �gA. Moreover,

from (19), (25) and (27), we obtain �m=V = �(1 � �)AxLY =��Y ; since Ax = �Y , we get

�m=V = �(1 � �)LY =�. Plugging these two results into the expression of r given above yields

� = �gLY � gA+ �(1��)LY =�+�=V . It is now obvious that, if �=V = gA = �LA, the previous

equation becomes the following Bernoulli di¤erential equation _LY = (�(1 � �)=�)L2Y � �LY :

This equation is identical to the equation obtained in Appendix 1 (Section i). We thus solve it

in the same way, only this time we use the transversality condition of the household�s program.

One can show that LY immediately jumps to its steady-state level:

LY = ��=�(1� �): (43)

ii) Computation of LQ, Q and P .

From (19), (21) and (43), we have Y �(1 � �)=� = (� + �)(1 � �)(hR=LQ)
�=(1 � '). This

yields

LQ =

�
(� + �)�(1� �)
(1� ')�(1� �)Y

�1=�
hR. (44)

Plugging (44) into (6), we get

Q =

�
(� + �)�(1� �)
(1� ')�(1� �)Y

�(1��)=�
hR. (45)

Finally, (45) and (5) yield

P =

"
1�

�
(� + �)�(1� �)
(1� ')�(1� �)Y

�(1��)=�#
hR. (46)

iii) Computation of R.

Basically, R is obtained from (20). In order to express R as a function of time and of the

climate policy, we need to rewrite three elements of this equation. First, LQ=hR is obtained

from (44). Secondly, using (15) in which gC = gY , we get Y = Y0e
R t
0 (ru��)du. Finally, from (16),

we have pR = pR0e
R t
0 rudu. Plugging these three results into (20) yields R = 


(pR0=Y0)e�t+G
, where

G = h�
Y ��h

�
�(1��)

(1�')�(1��)

� 1��
� �

�+�
Y

� 1
� . Since �=Y and �=Y are assumed constant, G is constant.

Hence using the condition
R +1
0 Rtdt = S0 and the method used in Appendix 1 (Section iv), one

gets:

R =



 0e
�t +G

, (47)
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where  0 = G=(e
G�S0

 � 1).

iv) Computation of the rates of growth.

The growth rates directly follow from the log-di¤erentiation of the preceding results. We

obtain

gA = �

"
1� ��

�(1� �) �
�
(� + �)�(1� �)
(1� ')�(1� �)Y

�1=�
hR

#
; (48)

and gR = gLQ = gQ = gP =
��

1 + (e
G�S0

 � 1)e��t

: (49)

Finally, we know that xi � x (see equation (24)) and Y = Ax=�: Replacing x by its value in (1)

gives Y = ��=(1��)AL
�=(1��)
Y R
=(1��): Thus we have

gY = gA + (
=(1� �))gR: (50)

v) Impact of carbon tax.

In order to analyze the impact of a change in �=Y on the economy, one has to study its

impact on G. One can easily see that G � 0 if and only if

�t � ��� [�(1� �)=Yt(1� ')�(1� �)]��1 ��t � � t - see equation (29). In particular, if � t > 0

and �t = 0, then G > 0, that is, with the carbon tax alone, the growth rate of resource extraction

is higher than its value in the absence of climate policy, ��.

One gets: (1=h) @G
@(�=Y ) = 1 �

�
(� t+�t)�(1��)
Yt(1�')�(1��)

�(1��)=�
, which is positive, since we assume

0 � (� t + �t)=Yt � (1 � ')�(1 � �)=�(1 � �). Then, using equations (28)-(30), and (45), (46),

(49) and (50), the results described in Proposition 2 follow.

vi) Impact of the subsidy to sequestered carbon.

We have seen that G < 0 if and only if �t > ��� [�(1� �)=Yt(1� ')�(1� �)]��1 ��t � � t.

In particular, if �t > 0 and � t = 0, then G < 0, which means that, with the subsidy alone,

the extraction growth rate is lower than its value in the absence of climate policy, ��. More

generally, it is straightforward that @G=@(�t=Yt) is negative; for this reason, @gRt=@(�t=Yt) is

negative. As in Subsection v), the results described in Proposition 3 follow.
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