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Abstract

What is the social value of innovations in Schumpeterian growth models? This issue is tackled by intro-
ducing the concept of Lindahl equilibrium in a standard endogenous growth model with vertical innovations
which is extended by explicitly considering knowledge diffusion. Assuming that knowledge diffuses on a Salop
(1979) circle allows us to formalize the creation of the pools of knowledge in which research and development
(R&D) activities draw from to produce innovations. Within this model, we compare two equilibria. The stan-
dard Schumpeterian equilibrium à la Aghion & Howitt (1992) is mainly characterized by incomplete markets
since knowledge is not priced. It provides the usual private value of innovations. The Lindahl equilibrium is a
benchmark enabling us to compute the system of prices that sustains the first-best social optimum, and thus
to define and to determine analytically the social value of innovations. It provides a suitable methodology for
revisiting issues involving the presence of knowledge, often studied in the industrial organization and endoge-
nous growth literatures. This comparison sheds a new light on the consequences of non-rivalry of knowledge
and of market incompleteness on innovators’ behavior in the Schumpeterian equilibrium. We notably revisit
the issues of Pareto sub-optimality and of R&D incentives in presence of cumulative innovations. Basically,
the key externality triggered by market incompleteness implies that knowledge creation is indirectly funded
by means of intellectual property rights on rival goods embodying knowledge. Therefore, because the private
value of innovations differs from the social one, innovators are not given the optimal incentives.

Keywords: Schumpeterian growth theory - Lindahl equilibrium - Social value of innovations - Pareto
sub-optimality - Cumulative innovations - Knowledge spillovers
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1 Introduction

The first purpose of this paper is to precisely define and to analytically determine the social value of
innovations in a standard endogenous growth model with vertical innovations. Since the starting point of
our analysis of the decentralized economy is based on the equilibrium with creative destruction introduced
by Aghion & Howitt (1992), we will refer to this type of growth model as Schumpeterian. Understanding
what is the social value of innovations in Schumpeterian models is of several interests. First, this requires
to provide a precise definition of an innovation. The main difficulty here lies in that, in standard growth
theory, an innovation involves two types of goods: the new knowledge (a non rival good) inherent in this
innovation and the intermediate good (a rival good) which embodies knowledge. Consequently, we define
an innovation as a pair “new knowledge / intermediate good”. Second, it also allows us to revisit key
issues widely analysed in the economics of innovation. In particular, regarding welfare issues, we shed a
new light on the Pareto sub-optimality of the standard Schumpeterian equilibrium à la Aghion & Howitt.
In the same way, it enables us to come back to the issues of R&D incentives in presence of cumulative
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innovations. Third, and more generally, we clarify the nature of the equilibria usually considered in growth
literature (as for instance the ones considered in Romer 1990, in Grossman & Helpman 1991, in Aghion
& Howitt 1992, and in most of the subsequent literature); in particular, we analyse the consequences
of the market incompleteness resulting from the fact that, in those equilibria, knowledge is not priced.
Basically, this incompleteness is the keystone of our analysis.
In order to define and to compute the social value of innovations we use the concept of Lindahl

equilibrium, which deeply departs from the Schumpeterian equilibrium generally studied in the standard
literature. Indeed, since an innovation goes along with the creation of knowledge, one needs to construct
a benchmark equilibrium which enables to price a non rival good. In our general equilibrium analysis, the
Lindahl equilibrium provides naturally this benchmark in an Arrow-Debreu perspective. We know that
this equilibrium exhibits, by construction, the system of prices that sustains the first-best social optimum
in presence of non rival goods.1 Accordingly, since the social value of an innovation is by definition its
optimal value,2 this value can be obtained using the Lindahl equilibrium.
Our methodology is twofold. First, we consider a model in line with the standard growth models

with vertical innovations, as for instance the ones of Grossman & Helpman (1991) and Aghion & Howitt
(1992). In this first step, the model is defined stricto sensu by technology and preferences, which is
sufficient to characterize the first-best social optimum. The novelty of our formalization lies in the fact
that we propose an extension of these models such that we explicitly introduce knowledge diffusion across
sectors. Second, within this basic model, we study and compare two types of equilibria. The first one is
the standard Schumpeterian equilibrium à la Aghion & Howitt (1992), in which markets are incomplete
since knowledge is not priced. In this equilibrium, as usual in the literature, we define the private value
of an innovation as the sum of the expected present values of the monopoly profits on intermediate goods
received by the latest innovator who has been granted a patent. The second equilibrium we consider is
the Lindahl one, in which markets are complete. In this equilibrium, we define the social value of an
innovation as the sum of the expected present values of the income received by the innovator; at each
date, this income is the sum of the Lindahl prices of all the users of each unit of knowledge inherent
in her innovation. In the remaining of the introduction, we present the structure of the paper and we
discuss the main results.
In Section 2, we present a scale-invariant fully endogenous growth model with vertical innovations.

This model is standard except that we explicitly formalize knowledge diffusion ( i.e. we detail the pro-
cess underlying the “knowledge spillovers” often quoted in the standard literature), which allows us to
apprehend better the non-rivalry property of knowledge. In this respect, we introduce the circle of Sa-
lop (1979). A continuum of intermediate sectors is located over the circle. Each of them has its own
R&D activity producing knowledge, and produces an intermediate good that embodies this knowledge. 3

Furthermore, knowledge diffuses over the Salop circle, each intermediate sector simultaneously sending
and receiving new knowledge. This formalization includes all possible cases ranging from intra-sectorial
diffusion only (as for instance in the models of Grossman & Helpman 1991, Segerstrom 1998, or Peretto
1999) to global inter-sectorial diffusion (as for instance in Aghion & Howitt 1992, Young 1998, Howitt
1999, or Segerstrom 2000). In other words, it encompasses many models used in growth literature. Fur-
thermore, it provides a mechanism through which the pools of knowledge in which R&D activities draw
from to produce new knowledge are created. In particular, the broader the scope of knowledge diffusion
is (i.e. the stronger the intensity of knowledge spillovers is), the wider these pools are. Regarding the
innovation process in each sector, we use two basic assumptions to derive a fairly general law of knowledge
accumulation: the creation of new knowledge depends on the level of R&D effort as well as on those pools
of knowledge. Once we have presented the technology and the preferences of the model, we compute the
first-best social optimum. We show notably that the optimal R&D effort, and thus the optimal growth
rate of the economy, depend on the productivity of the labor devoted to R&D and on the productivity of
the knowledge used by R&D activities. These two determinants of the innovation process are commonly
found in the literature. The novelty in our formalization lies in the fact that this process also depends on
the scope of knowledge diffusion, and thus on the size of the pools of knowledge. This novelty leads us to
introduce the concept of dimension of innovations ; this dimension is function both of the productivity
of knowledge in R&D and of the scope of knowledge diffusion. This concept will turn out to particularly
matter in our analysis, because the larger the dimension of innovations is, the stronger the externality

1For further details and discussion, one can for instance refer to Milleron (1972) or to Mas-Colell, Whinston & Green
(1995 - Ch. 11 and Ch. 16).

2More precisely, we will see that the social value of an innovation is the optimal value of the new knowledge inherent in
this innovation.

3As it will be underlined, a fundamental point is that, in each sector, the intermediate good embodies the whole stock
of knowledge created so far in this sector: not only the knowledge newly produced by the latest innovator, but also the one
produced by each of her predecessors.
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triggered by the non-rivalry of knowledge is.
In Section 3, we consider the decentralized economy and we study two types of equilibria: the Schum-

peterian equilibrium à la Aghion & Howitt and the Lindahl equilibrium. The former is standard; as
mentioned above, it considers incomplete markets (knowledge is not priced). Accordingly, R&D is indi-
rectly funded by monopoly profits on intermediate goods which embody knowledge: intellectual property
rights (IPRs), like patents, on these rival goods are introduced as a means to provide incentives to firms
to invest in R&D. Therefore, as usual in the literature, the value of innovations stems only from the
stream of monopoly profits; that is why we refer to this value as the private value of innovations.
The Lindahl equilibrium has never been introduced in growth theory, at least to the best of our

knowledge. In this equilibrium, knowledge is priced using Lindahl prices and thus markets are complete.
Formally, when an innovation occurs in a given intermediate sector, each unit of knowledge inherent in
this innovation has an impact on three types of activities in the economy: the production of final good,
the production of the intermediate good of this sector, and the production of knowledge in all sectors up
to which this knowledge diffuses. Then, each of these users pays each unit of knowledge at a personalized
price (the Lindahl price) which is equal to the marginal profitability of that unit for this user. Finally, the
innovator receives the sum of these Lindahl prices for each unit of knowledge inherent in her innovation.
At this stage of the analysis, we know that we have determined the system of prices sustaining the first-
best social optimum. Thus, we have obtained the instantaneous optimal value of each unit of knowledge.
Since knowledge is infinitely-lived, we can determine the social value of each unit of knowledge as the
discounted sum of these instantaneous social values. Finally, to obtain the social value of an innovation,
we multiply the social value of each unit of knowledge by the number of units of knowledge inherent in
this innovation.
The comparison between the two equilibria allows us to present the basic intuitions on the conse-

quences of the non-rivalry of knowledge and of market incompleteness on the innovators’ behavior in the
Schumpeterian equilibrium. Note that, in order to focus on the distortions involved by market incom-
pleteness, we correct the well known static monopoly distortion present in this equilibrium.
In Section 4, we use the concepts of Lindahl equilibrium and of social value of innovations to investigate

and revisit issues related to R&D incentives and innovators’ behavior.
In 4.1, we revisit the well known issue of the Pareto sub-optimality of the Schumpeterian equilibrium.

We show that market incompleteness leads to a discrepancy between the private value of innovations and
their social value because, in the Schumpeterian equilibrium, innovators do not fully internalize all the
effects of knowledge creation in their behaviors. Accordingly, we demonstrate that R&D investment is
under (resp. over) optimal in the Schumpeterian equilibrium if and only if the private value is below
(resp. above) the social value. Furthermore, under optimal R&D investment is more likely to occur if
the dimension of innovations is large (formally, if it is greater than a threshold determined in the paper).
Indeed, in this case, because of the externality implied by market incompleteness, the monopoly profits
are lower than the revenues that the innovators should get so that R&D would be optimally funded.
Conversely, the smaller the dimension of innovations is, the weaker the externality is, and thus the more
likely R&D investment will be over optimal.
In 4.2 and 4.3, we analyse more technically the incentives issues raised in 4.1 and we revisit R&D

funding issues raised by the presence of cumulative innovations. These issues have been tackled in many
papers both in industrial organization literature (e.g. Scotchmer 1991; Green & Scotchmer 1995; Bessen
& Maskin 2009) and in growth literature (e.g. O’Donoghue & Zweimüller 2004; Acemoglu & Akcigit 2012;
Chu, Cozzi & Galli 2012). Given the fact that an innovation may foster subsequent innovations in the same
sector but also in other unrelated sectors, the typical focus is on issues regarding profit division between
sequential innovators along a quality ladder, and on the appropriate design of intellectual property rights
to provide sufficient incentives to innovators. Naturally, innovations are cumulative in the sense that the
new knowledge builds on previously created knowledge. Providing the first-best prices system thanks to
the Lindahl equilibrium enables us to determine exactly the payments that each innovator should receive
in order to implement the social optimum. This establishes - within a dynamic general equilibrium
framework - the suitable benchmark to tackle the issue of profit division in case of sequential innovations.
Besides, the methodology we introduce points out the significance of distinguishing an intermediate good,
which embodies knowledge, and this knowledge per se. Formally, we study the link between the social
value of an intermediate good (which is given by its net surplus) and the value of the knowledge which
is embodied in it. Then, we can better understand why the Schumpeterian decentralized economy may
lead to too little or to too much R&D investment. Indeed, clearly distinguishing between knowledge
and the intermediate good in which it is embodied (i.e. completing the markets as it is done in the
Lindahl equilibrium) enables us to explain why innovators are not given the optimal incentives in the
Schumpeterian equilibrium. The level of R&D investment in the Schumpeterian equilibrium à la Aghion
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& Howitt deviates from the optimal one firstly owing to the well known appropriability issue: innovators
do not extract the whole surplus. However, even if they were doing so, this equilibrium would still
not provide the optimal R&D incentives for three reasons: two of them are static, and the third one is
dynamic.
First, since an intermediate good is the result of several steps of invention, modification, and improve-

ment in a given sector, it incorporates not solely the knowledge inherent in the latest innovation ( i.e. the
incremental knowledge) but also the whole knowledge produced by prior innovators in this sector. Thus,
when the latest innovator sells an intermediate good, she implicitly sells the whole stock of knowledge
created in the sector so far, that is the knowledge she created as well as all the knowledge created by
each of her predecessors in this sector. Therefore, the quantity of knowledge sold is not the proper one;
the latter should be the incremental flow of knowledge inherent in her innovation only (as shown in the
Lindahl equilibrium). This first static distortion tends to provide too much R&D incentives to innovators,
and thus to lead to an excessive level of resources devoted to R&D.
Second, this knowledge is not sold at the proper price. Indeed, each innovator does not take into

account knowledge spillovers because the knowledge she creates is used freely to produce new knowledge in
her sector as well as in other sectors (contrary to the Lindahl equilibrium in which each user of knowledge
pays for it). This second static distortion tends to provide too little R&D incentives, and hence to lead
to an insufficient level of R&D investment. Indeed, as argued by Green & Scotchmer (1995), “the social
value of an early innovation includes the net social value of the applications it facilitates”. Here, we
determine exactly what part of the social value of an innovation is missing in the private value (resulting
from the Schumpeterian equilibrium) when an innovation is assimilated only to the intermediate good in
which the knowledge inherent in this innovation is embodied.
Third, in this Schumpeterian equilibrium, the period during which an innovation provides revenue to

its producer is not the proper one. The underlying reason is as follows. Because of the creative destruction
mechanism, an innovator has a monopoly whose lifespan is finite in average. However, since knowledge
is infinitely-lived, the innovator should receive revenue forever (like in the Lindahl equilibrium). This
dynamic distortion, which relates to the fact that intertemporal knowledge spillovers are underestimated,
tends to provide too little R&D incentives.
Fundamentally, introducing the Lindahl equilibrium in a standard Schumpeterian growth model en-

ables us to show that these distortions - which all arise from market incompleteness - have opposite effects
on R&D incentives. This is precisely the reason why the Schumpeterian equilibrium à la Aghion & Howitt
may lead to too little as well as too much R&D investment, and may thus exhibit an under-optimal or
an over-optimal growth rate.
After the presentation of the model (Section 2), the analysis of the two equilibria (Section 3), and

the study of some key issues tackled in the economics of innovation that we revisit thanks to the Lindahl
equilibrium (Section 4), we conclude in Section 5, and we provide all computations in Section 6.

2 Model and welfare

In this section, we present a continuous-time scale-invariant fully endogenous Schumpeterian growth
model, in which knowledge can diffuse, with more or less intensity, across the sectors’ R&D activity.
First, we present the technologies and the preferences, which are independent of the two concepts of
equilibria that will be studied in Section 3 below. Then, we characterize the first-best social optimum.

2.1 Technologies and preferences

We begin this subsection by presenting a general law of knowledge accumulation. Then, we introduce
explicitly inter-sectorial knowledge diffusion by exploiting the circular product differentiation model of
Salop (1979). Finally, we plug this technology of knowledge creation in a standard endogenous growth
model with vertical innovations in the line of Grossman & Helpman (1991) and Aghion & Howitt (1992).
There is a continuum Ω, of measure N , of intermediate sectors uniformly distributed on a clockwise

oriented circle. Each sector ω, ω ∈ Ω, is characterized by a stock of knowledge χω and by an intermediate
good ω, produced in quantity xω, which embodies this stock of knowledge. As usual in endogenous growth
theory, we assume that all sectors have an identical initial level of knowledge, i.e. χω0 = χ0, ∀ω ∈ Ω.4

Each sector has its own R&D activity which is dedicated to the creation of innovations. In the remaining
of the paper, an innovation is defined as follows:

4The assumption of symmetry across sectors is standard in endogenous growth theory; see, for instance, Aghion & Howitt
(1992 or 1998 - Ch. 3), or Peretto & Smulders (2002). For more details on this issue, the reader can refer to Peretto (1998,
1999) or to Cozzi, Giordani & Zamparelli (2007) in which the relevancy of the symmetric equilibrium is discussed.
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Definition 1. An innovation at date t in any sector ω, ω ∈ Ω, consist in i) an increase of Δχωt units of
new knowledge in this sector, and ii) the embodiment of this new knowledge in the intermediate good ω.

This definition - in which we carefully distinguish between the intermediate good embodying knowledge
and knowledge itself - will turn to be crucial in Section 3 when we determine the values of innovations.

2.1.1 Knowledge accumulation

It is commonly agreed that new knowledge is produced using two types of inputs: rival goods (e.g. labor,
physical capital, final good), and a non rival one (a stock of knowledge previously created). In the present
model, like in the standard Schumpeterian growth theory, the mechanism at the source of the creation
of knowledge relies on two core assumptions. Firstly, the innovation process is uncertain:

Assumption 1. If lωt is the amount of labor devoted to R&D at date t in any intermediate sector ω,
ω ∈ Ω, to move on to the next quality of intermediate good ω, innovations occur randomly with a Poisson
arrival rate λlωt, λ > 0.

Secondly, each R&D activity creates new knowledge making use of previously created knowledge. This
idea is formalized by considering that, in order to produce new knowledge, in each sector ω, RD activity
draws from a specific pool of knowledge Pωt:

Assumption 2. For any intermediate good ω, ω ∈ Ω, if an innovation occurs at date t, the increase in
knowledge Δχωt (i.e. the quality improvement of the intermediate good) depends on the current size of
the pool of knowledge in which this sector’s R&D activity draws from: Δχωt = σPωt, ∀ω ∈ Ω, σ > 0.

From Assumptions 1 and 2, one derives the law of motion of the average knowledge inherent in any
sector ω:

Lemma 1. Under Assumptions 1 and 2, the expected knowledge in any intermediate sector ω, ω ∈ Ω,
is a differentiable function of time. The law of motion of the knowledge characterizing any intermediate
sector ω is χ̇ωt = λσlωtPωt , ∀ω ∈ Ω.5

Proof. See Appendix 6.1.1.

As underlined for instance by Aghion & Howitt (1998), Howitt (1999), Jones (1999), Laincz & Peretto
(2006), or Dinopoulos & Sener (2007), most growth models differ mainly in the specification of the knowl-
edge production technology.6 The law of knowledge accumulation derived in Lemma 1 encompasses sev-
eral of the ones assumed in the standard fully endogenous growth theory. Indeed, depending on the
specification of the pools of knowledge Pωt, a large number of growth models can be obtained using
the present formalization. In Appendix 6.1.2, we provide several illustrations: models without knowl-
edge spillovers, models considering only intra-sectorial knowledge spillovers, models assuming knowledge
spillovers which depend on average knowledge, models in which spillovers depend on the knowledge level of
the frontier firms (“leading-edge technology”) and models with global knowledge spillovers ( i.e. knowledge
diffuses to the whole economy).

2.1.2 Knowledge diffusion and pools of knowledge

In Lemma 1, it appears that the new knowledge created in each sector ω depends on the pool of knowledge
Pωt used by this sector. Now, we propose a mechanism formalizing how these pools are shaped. As a
matter of fact, the constitution of each of these pools relies on the influence that R&D activities have
on each other. The significance of the interactions between sectors has universally been underlined.
In particular, several empirical studies stress that R&D performed in one sector may produce positive
spillovers effects in other sectors (see, for instance, Griliches 1992; Griliches 1995; or Hall, Mairesse &
Mohnen 2010). As stated by Hall et al., “such spillovers are all the more likely and significant as the sender
and the receiver are closely related”. Moreover, as argued in Hall (2004), “it is safe to say that without

5The expectation operator is dropped to simplify notations: ∂E[χωt]
∂t

≡ χ̇ωt.
6The overviews provided by these authors propose a classification of the various growth models according to their key

result with respect to the presence of scale effects. Three classes of models emerge: endogenous growth models exhibiting
this non desirable property (e.g. the models of Romer 1990, Grossman & Helpman 1991, or Aghion & Howitt 1992),
semi-endogenous growth models introducing decreasing returns to scale to suppress scale effect (e.g. the models of Jones
1995, Kortum 1997, or Segerstrom 1998), and fully endogenous growth models, which eliminate scale effects by allowing
for expansion in the number of sectors (e.g. the models of Aghion & Howitt 1998 - Ch. 12, Dinopoulos & Thompson 1998
Peretto 1998, Young 1998, Howitt 1999, Peretto 1999, or Aghion & Howitt 2009 - Ch. 4).
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diffusion, innovation would have little social or economic impact. In the study of innovation, the word
diffusion is commonly used to describe the process by which individuals and firms in a society/economy
adopt a new technology, or replace an older technology with a newer”. In direct line with these statements,
we explicitly introduce a process of knowledge diffusion within and across sectors.7

Formally, each sector can be simultaneously a sender and a receiver of knowledge: in the following,
the index h, h ∈ Ω, is used to point out a sector from which knowledge χh diffuses (the sender); the
index ω, ω ∈ Ω, is used to point out the sector that may potentially use this knowledge (the potential
receiver). For any R&D activity ω, ω ∈ Ω, the disposable pool of knowledge, Pωt, is composed of the
knowledge produced in this sector so far, as well as of knowledge diffused from other sectors. For any
sector h, let us define the scope of diffusion of knowledge χh, denoted by θ, where 1 ≤ θ ≤ N , as the
measure of the subset of sectors of Ω which use this stock of knowledge. It is a measure of the intensity of
inter-sectorial knowledge spillovers, which is comprised between one (only intra-sectorial spillovers, and
thus no inter-sectorial spillovers) and N (global inter-sectorial spillovers). In the case of sector specific
innovations (θ = 1), there is no sector using knowledge χh besides sector h itself. In the case in which
there is inter-sectorial knowledge diffusion (θ > 1), we assume that knowledge diffuses symmetrically over
the circle Ω. This formalization of knowledge diffusion implies the following:

Lemma 2. The neighborhood of diffusion of knowledge χh inherent in sector h, h ∈ Ω, is Ωh ≡
[h − θ/2 ; h + θ/2], where Ωh ⊆ Ω. Then, at each date t, in any intermediate sector ω, the pool of
knowledge used by the R&D activity is Pωt =

∫
Ωω

χht dh, ∀ω ∈ Ω.

From Lemmas 1 and 2, it is straightforward to establish the following:

Proposition 1. At each date t, in any intermediate sector ω, knowledge is produced along with

χ̇ωt = λσlωtPωt, where Pωt =
∫

Ωω

χht dh and Ωω ≡

[

ω −
θ

2
; ω +

θ

2

]

, ∀ω ∈ Ω (1)

At each date t, the whole disposable knowledge in the economy is

Kt =
∫

Ω

χωt dω, (2)

and the initial stock K0 is normalized to one.
Proposition 1 underlines the fact that the R&D activity of a given sector always uses the knowledge

accumulated so far in this sector and potentially captures part of the mass of the ideas created in all
other ones. This subset of Kt is more or less large depending on θ, the scope of knowledge diffusion. This
formalization generalizes the standard innovation-based endogenous growth theory. Indeed, depending on
the choice of the parameter θ, one obtains a large collection of pools, Pωt, and thus of models, ranging from
models with only intra-sectorial knowledge diffusion and no inter-sectorial knowledge diffusion (θ = 1),
to models with global inter-sectorial diffusion (θ = N), that is in which knowledge diffuses to the whole
economy. In the corollary below, we recap these two polar cases; they exhibit laws of motion commonly
used in growth models with vertical knowledge accumulation.

Corollary. The two polar cases are summarized as follows.

• If θ = 1, then knowledge spillovers are only intra-sectorial. One has:

Ωω = {ω} , Pωt = χωt, and thus χ̇ωt = λσlωtχωt, ∀ω ∈ Ω

• If θ = N , then knowledge spillovers are global. One has:

Ωω = Ω, Pωt = Kt, and thus χ̇ωt = λσlωtKt, ∀ω ∈ Ω

Our formalization thus encompasses the one of growth models assuming that sectors do not share
knowledge (as, for instance, in Grossman & Helpman 1991, in Segerstrom 1998, in Peretto 1999, in
Acemoglu 2009 - Ch. 14, or in Aghion & Howitt 2009 - Ch. 4) and the one of growth models assuming

7The term “diffusion” has often been used to refer to the phenomenon involving that, as stated by Chari & Hopenhayn
(1991), “there is a lag between the appearance of a technology and its peak usage”. The fact that a lag can be involved by
technology adoption remains to be explored within our model and is left for further research (one could for instance consider
that the more distant two sectors are, the longer the lag in technology adoption). This temporal dimension of knowledge
diffusion is undoubtedly important. However, in this paper, we abstract away from it by considering instantaneous diffusion,
and we focus on “spacial diffusion”.
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that any sector benefits from the whole stock of disposable knowledge in the economy (as, for instance
in Aghion & Howitt 1992, Young 1998, Howitt 1999, Segerstrom 2000).8 In this second polar case, the
expression of the law of knowledge accumulation, which is here endogenously derived from assumptions
made in a stochastic quality ladders model, leads to a law of motion of the whole disposable knowledge
which is formally identical to the knowledge production function initially introduced by Romer (1990). 9

2.1.3 Other assumptions

The remaining assumptions are standard in Schumpeterian growth theory. Intertemporal preferences of
the representative household are given by

U =
∫ ∞

0

u(ct)e
−ρtdt, (3)

where ρ is the subjective discount rate and u(ct) is the individual instantaneous utility at date t, which is
given by u(ct) = ln(ct).10 At each date t, each of the L identical households is endowed with one unit of
labor that is supplied inelastically.11 In order to remove the non-desirable scale effects property, we use
the commonly shared assumption of proportionality between the size of the population and the number
of sectors: N = γL, where γ is a strictly positive parameter.12 The total quantity of labor, L, is used to
produce the final good and in R&D activities. Thus, the labor constraint is

Lt = LY
t +

∫

Ω

lωt dω (4)

Besides labor, the production of the final good requires the use of all available intermediate goods, each
of which is associated with its own level of knowledge. The final good production technology is

Yt = (LY
t )1−α

∫

Ω

χωt(xωt)
αdω , 0 < α < 1 (5)

The final good has two competing uses. Firstly, it is consumed by the representative household in
quantity ct. Secondly, it is used in the production of intermediate goods along with

xωt =
yωt

χωt
, ω ∈ Ω , (6)

where yωt is the quantity of final good used to produce xωt units of intermediate good ω. This usual
technology illustrates the increasing complexity in the production of intermediate goods: the higher the
level of knowledge, the more costly the production of the intermediate good embodying it. One gets the
following constraint on the final good market:

Yt = Lct +
∫

Ω

yωtdω (7)

2.2 First-best social optimum

The first-best social optimum is the solution of the maximization of the representative household’s dis-
counted utility (3) subject to (1), (2), (4), (5), (6) and (7). Proposition 2 gives the complete characteri-
zation of the optimum. From now on, we denote by gzt

the rate of growth, żt/zt, of any variable zt, and
we use the superscript “o” is for “social optimum”.

8In these models, the increase in knowledge consecutive to the occurrence of an innovation in sector ω at date t depends
on the level of knowledge reached in the most advanced sector (i.e. it is assumed that Pωt = max {χωt, ω ∈ Ωt}). Insofar
as they consider spillovers depending on the knowledge level of the frontier firms (“leading-edge technology”), these models
relate to a framework assuming global knowledge spillovers. A similar interpretation can be found, for instance, in Jones
(1999), in Dinopoulos & Sener (2007), or in Ha & Howitt (2007).

9Differentiating (2) with respect to time yields K̇t =
∫
Ω χ̇ωt dω = λσ

(∫
Ω lωtdω

)
Kt ⇔ K̇t = λσLR

t Kt, where LR
t =∫

Ω lωtdω is the total amount of labor used in R&D.
10The results are robust if one considers a more general C.E.S. instantaneous utility function of parameter ε, u(ct) =

c1−ε
t /(1 − ε).
11The results are robust if one considers constant population growth.
12This assumption - which is a necessary condition to cancel scale effects in fully endogenous growth model - has been

justified both theoretically and empirically (see, for instance, Jones 1999, Segerstrom 2000, Laincz & Peretto 2006, or
Dinopoulos & Sener 2007). Besides, it is not needed for obtaining the main insight of this paper and is introduced only in
order to consider a scale-invariant fully endogenous growth model.
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Proposition 2. In the first-best social optimum, the repartition of labor, the quantity of each intermediate
good ω, and the growth rates are respectively

LY o
t = LY o =

ργL

λσθ
, loωt = lo =

1
γ
−

ρ

λσθ
, xo

ωt = xo = α
1

1−α
ργL

λσθ
,

and go
ct

= go
Yt

= go
Kt

= go
χωt

= go =
λσθ

γ
− ρ, ∀ω ∈ Ω, ∀t

Proof. See Appendix 6.2.

The three parameters λ, σ and θ all account for the productivity of R&D activities. The parameter
λ stands for the productivity of the labor devoted to the creation of innovations (see Assumption 1).
The parameter σ stands for the productivity of knowledge used by a given sector in the creation of new
knowledge: it indicates to which extent the pools of knowledge contribute to the increases in knowledge
when innovations occur (see Assumption 2). More precisely, σ is a measure of the contribution of the pool
of knowledge to the height of the jump in knowledge Δχωt = σPωt. These two parameters are commonly
used in standard growth theory. The present paper introduces a new parameter θ, θ ∈ [1; N ], which is
another measure of the efficiency of knowledge; more precisely, θ stands for the overall influence of an
innovation in the constitution of these pools of knowledge. Hence, the product σθ is an index of what
we can call the “dimension” of innovations. It depends both on σ, the productivity of knowledge, and
on θ, the scope of knowledge diffusion (i.e. the intensity of knowledge spillovers). Finally, these three
parameters have the same impact on the first-best: an increase in any of them leads to a reallocation of
labor from the production to R&D activity, and thus to a higher growth rate.

To conclude this section, let us underline that, in the technologies presented above in Subsection 2.1,
each unit of knowledge χω involved by any innovation produced in a given sector ω affects simultaneously
the final good sector (see (5)), the intermediate good sector ω (see (6)), and a more or less significant
range of R&D activities (see (1)): the presence of knowledge involves a public ( i.e. non rival) good issue.
In the standard literature, this issue is commonly referred to as “knowledge spillovers” and relates both to
knowledge diffusion and to an implicit market incompleteness (in the decentralized economies generally
studied, knowledge is not priced; see, for instance the equilibria studied in Romer 1990 and in Aghion
& Howitt 1992). The issue of knowledge spillovers has extensively been tackled in the literature, but to
the best of our knowledge, has never been linked to the Lindahl equilibrium. In Sections 3 and 4 below,
we deal with this concept of spillover by analysing and comparing two equilibria, namely the standard
Schumpeterian equilibrium à la Aghion & Howitt and the Lindahl one. In particular, we argue that
knowledge diffusion refers to the fact that knowledge is a non rival good, which can be priced (as in the
Lindahl equilibrium) or not (as in the Schumpeterian equilibrium).

3 Schumpeterian equilibrium à la Aghion & Howitt versus Lin-
dahl equilibrium

In the previous section, we have seen that innovations involve both new units of knowledge ( i.e. non
rival goods) and intermediate goods (i.e. rival goods) in which this knowledge is embodied. In all what
follows, it is fundamental to distinguish between the two.
In order to deal with the non-rivalry property of knowledge, the seminal papers by Romer (1990),

Grossman & Helpman (1991), and Aghion & Howitt (1992), focused on a decentralized equilibrium with
incomplete markets and imperfect competition. Indeed, in this type of equilibria, a market and a price
are specified for intermediate goods that incorporate knowledge, but not for knowledge itself; positive
monopoly profits on the sale of intermediate goods, which result from IPRs granted to innovators, are used
as incentives to invest in the creation of knowledge. This framework, which has become the standard
in endogenous growth literature, provides a realistic decentralized economy in which R&D activity is
privately and indirectly funded: the value of innovations stems from the stream of monopoly profits on
the sale of intermediate goods embodying knowledge. This is a key point that is discussed extensively
below.
The main motivation of our study is to address the following question: what is the social value of

innovations in a dynamic general equilibrium model in which knowledge accumulation plays a key part?
To answer this question, we first define the social value of an innovation in any sector ω as the optimal
value of the knowledge inherent in this innovation, Δχωt. How shall it then be computed? For that
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purpose, contrary to what is done in the standard Schumpeterian equilibrium, we price knowledge, that
is we complete the markets. Thus, we use the concept of Lindahl equilibrium which provides the system
of prices that sustains the first-best optimum in an economy with non rival goods.
In Subsection 3.1, we present the concepts. In particular, as mentioned above, we define two types

of equilibria: the standard Schumpeterian equilibrium à la Aghion & Howitt (1992), and the Lindahl
equilibrium. Then, we define the value of innovations in each of them. In the Schumpeterian equilibrium,
as in the standard literature, we consider the private value of innovations which results from the sale of
intermediate goods.13 In the Lindahl equilibrium we consider the social value of these innovations, which
is obtained by introducing the concept of Lindahl prices in endogenous growth theory.14 In Subsection
3.2, we compute explicitly these two equilibria and these two values of innovations.
In the remaining of the paper, we normalize the price of final good to one, and we denote respectively

by wt, rt and qωt (ω ∈ Ω) the wage, the interest rate and the price of intermediate good ω at date t.

3.1 General definitions

In this subsection, we start by providing the formal definitions of the two equilibria and of the two values
of innovations studied in this paper (see 3.1.1 and 3.1.2, respectively). Then, we underline the main
differences between the Schumpeterian equilibrium and the Lindahl one (see 3.1.3).

3.1.1 Schumpeterian equilibrium and private value of innovations

First, we recall the main features of the standard Schumpeterian equilibrium à la Aghion & Howitt (1992)
which involves a fundamental externality (knowledge is not priced). In order to indirectly fund knowledge
creation, one generally considers the following assumptions inspired by Schumpeter’s creative destruction
mechanism. Once an innovation occurs, the resulting knowledge is embodied in an intermediate good;
then, the innovator is granted an intellectual property right, like a patent, and monopolizes the production
and sale of this private good until replaced by the next innovator. In such a decentralized economy, Pareto
sub-optimality may arise (the equilibrium allocation of labor in R&D can either be sub-optimal or over-
optimal). The static distortion resulting from the presence of monopolies on the production and sale of
intermediate goods can be mitigated by an ad valorem subsidy ψ on each intermediate good demand. The
dynamic distortion relates to the externality triggered by the fact that there is no market for knowledge;
it can be corrected by a public tool ϕ which can consist in a subsidy or in a tax on the profits of
R&D activities, depending on whether the R&D effort is sub-optimal or over-optimal.15 To each public
tools vector (ψ,ϕ) is associated a particular equilibrium. The formal definition of the Schumpeterian
equilibrium is the following:

Definition 2. At each vector of public policies (ψ,ϕ) is associated a particular Schumpeterian equilibrium
à la Aghion & Howitt. It consists of time paths of set of prices

{(
wt (ψ,ϕ) , rt (ψ,ϕ) , {qωt (ψ,ϕ)}ω∈Ω

)}∞
t=0

and of quantities
{(

ct (ψ,ϕ) , Yt (ψ,ϕ) , {xωt (ψ,ϕ)}ω∈Ω , LY
t (ψ,ϕ) , {lωt (ψ,ϕ)}ω∈Ω , {χωt (ψ,ϕ)}ω∈Ω

)}∞
t=0

such that: the representative household maximizes her utility; firms maximize their profits; the final good
market, the financial market and the labor market are perfectly competitive and clear; on each intermediate
good market, the innovator is granted a patent and monopolizes the production and sale until replaced by
the next innovator; and there is free entry on each R&D activity (i.e. the zero profit condition holds for
each R&D activity).

This set of equilibria is characterized in Proposition 3 below. The agents’ behaviors and the detailed
computations are provided in Appendix 6.3.16 In the Schumpeterian equilibrium, in any sector ω, ω ∈ Ω,
the incumbent innovator having successfully innovated at date t receives, at any date τ > t, the net
profit πxω

τ (ψ,ϕ) with probability e−
∫ τ

t
λlωu(ψ,ϕ)du (i.e. provided that there is no innovation upgrading

13Alternatively, we could refer to the private value of an innovation as its Schumpeterian value, its rival value, or its
patent value.
14Alternatively, we could call the social value of an innovation, its Lindahl value, its non rival value, or its optimal value.
15We return in detail to the issue of Pareto sub-optimality in Subsection 4.1.
16The optimal public tools (ψo, ϕo) implementing the first-best optimum are provided below in the corollary to Proposition

3.
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intermediate good ω between t and τ). Given the governmental intervention on behalf of R&D activities
and the intermediate good production function (6), this profit writes:

πxω
τ (ψ,ϕ) = (1 + ϕ) [qωτ (ψ,ϕ) xωτ (ψ,ϕ) − yωτ (ψ,ϕ)]

= (1 + ϕ) [qωτ (ψ,ϕ) − χωτ (ψ,ϕ)] xωτ (ψ,ϕ) (8)

As usual in standard Schumpeterian growth theory, we define the private value of the latest innovation
in sector ω as the sum of the present values of the incumbent’s expected net profits on the sale of
intermediate good ω. Using (8), one gets the following formal definition.

Definition 3. Consider an innovation at date t in any sector ω, ω ∈ Ω. Its private value is

Πx
ωt (ψ,ϕ) =

∫ ∞

t

πxω
τ (ψ,ϕ) e−

∫ τ
t

[ru(ψ,ϕ)+λlωu(ψ,ϕ)]dudτ,

where πxω
τ (ψ,ϕ) is given by (8) (9)

To conclude, note that the free entry condition in any R&D activity ω is

wt (ψ,ϕ) = λΠx
ωt (ψ,ϕ) (10)

The key point is that, because the knowledge inherent in innovations is not priced, the value of any
innovation stems only from the stream of monopoly profits given by property rights. Besides, recall that
in this type of equilibrium, because of the creative destruction mechanism, in each sector, at date t, only
the latest innovator (i.e. the incumbent) receives positive profits.

3.1.2 Lindahl equilibrium and social value of innovations

Now, we focus on the main purpose of this paper, which is to answer the following questions: what
is the social value of an innovation and how should it be computed? As explained above, the social
value of an innovation is the optimal one. Moreover, since an innovation consists in the creation of new
units of knowledge embodied in an intermediate good, one has to determine the social value of each
unit of knowledge inherent in an innovation. Finally, since knowledge is a non rival good, we construct a
Lindahl equilibrium (which differs significantly from the standard Schumpeterian equilibrium à la Aghion
& Howitt 1992) as follows. First, we complete the markets, that is, contrary to what is done in standard
Schumpeterian equilibria, we price knowledge.17 Each user of knowledge pays each unit of knowledge at
a personalized price (the Lindahl price) which is equal to the marginal profitability of this unit for this
user (i.e. its willingnesses to pay), and each innovator receives the sum of these Lindahl prices for each
unit of knowledge inherent in her innovation. Second, all rival goods are priced at their marginal cost.
Since each unit of knowledge is simultaneously used by three types of economic activities, we have to

define a Lindahl price for each of them. Formally, we denote by vY
ωt, vx

ωt, and vχh
ωt , h ∈ Ωω, the Lindahl

prices of one unit of knowledge χωt, ω ∈ Ω, for the final sector, for the intermediate good sector ω, and for
each R&D activity h using this knowledge χω (i.e. for all h ∈ Ωω), respectively. These Lindahl prices are
the instantaneous marginal profitabilities for the various users. Then, the instantaneous price received
at date t by the producer for this unit of knowledge is vωt = vY

ωt + vx
ωt + vR&D

ωt , where vR&D
ωt =

∫
Ω

vχh
ωt dh

is the instantaneous value of this unit for the whole R&D activity of the economy.
From the first welfare theorem, we know that the Lindahl equilibrium is Pareto optimal (e.g. Mas-

Colell, Whinston & Green 1995 - Ch. 16 - P. 570); this result will indeed be verified within this endogenous
growth framework (see Propositions 2 and 5). Hence, as mentioned above, we are sure that the value of
knowledge computed in this equilibrium is the optimal one, that is the social one. Consequently, we use
the superscript “o” (introduced above in Subsection 2.2) for all variables associated to this equilibrium.
The Lindahl equilibrium is formally defined as follows.

Definition 4. The Lindahl equilibrium consists of time paths of set of prices
{(

wo
t , r

o
t , {q

o
ωt}ω∈Ω ,

{
vY o

ωt

}
ω∈Ω

, {vxo
ωt}ω∈Ω , {vχho

ωt }ω∈Ω,h∈Ω

)}∞

t=0

and of quantities {(
co
t , Y

o
t , {xo

ωt}ω∈Ω , LY o
t , {loωt}ω∈Ω , {χo

ωt}ω∈Ω

)}∞
t=0

17It is undoubtedly a crucial question to understand why knowledge can be priced or not. Fundamentally, this refers to
the non-rivalry property of knowledge, and thus to the issues of observability, information, or excludability. This remains
out of the scope of the present paper.
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such that: the representative household maximizes her utility; firms (final good producer, intermediate
goods producers, R&D activities) maximize their profits; all rival goods markets (final good market, labor
market, intermediate goods markets, and financial market) are perfectly competitive and clear; each user
of knowledge pays each unit of knowledge at its Lindahl price; for each unit of knowledge inherent in
her innovation, the innovator receives the sum of the Lindahl prices of this unit; and all knowledge
expenditures are funded by the government.

We now define the social value of an innovation. First, since knowledge is infinitely-lived, the social
value of one unit of knowledge χωt at date t is the discounted sum of these instantaneous social values:

V o
ωt =

∫ ∞

t

vo
ωτe−

∫ τ
t

ro
ududτ , where vo

ωt = vY o
ωt + vxo

ωt + vR&Do
ωt (11)

Second, as explained above (see Definition 1 and Assumption 2), an innovation involves an increase in
knowledge of Δχωt = σPωt new units. Accordingly, the definition of the social value of an innovation in
sector ω is the following:

Definition 5. Consider an innovation at date t in any sector ω, ω ∈ Ω. Its social value is

Vo
ωt = σPo

ωtV
o
ωt, where V o

ωt is given by (11) (12)

Definition 5 provides, in a Schumpeterian growth model, a formal expression which corresponds
precisely to the statement of Green & Scotchmer (1995) when they write that “the social value of an early
innovation includes the net social value of the applications it facilitates”. In the Lindahl equilibrium, at
any date t, all innovators, whether the incumbent or any previous one, receive positive income; recall
that, on the contrary, in the Schumpeterian equilibrium only the latest innovator receives positive income
(monopoly profits).
Obviously, the realism of this type of decentralized economy is more than questionable. First, due

to the non-convexities of the technologies in which knowledge is an input, R&D expenditures must be
publicly funded.18 This is strongly at odds with empirical evidences. Second, as stated in Mas-Colell,
Whinston & Green (1995 - Ch. 11 and Ch. 16) in their analysis of the issues involved by the presence
of public goods and by their funding, the concept of Lindahl equilibrium implies several caveats. They
argue that “it is unlikely that the critical assumption of price taking will be satisfied”. Moreover, the
non-rivalry property of knowledge raises standard problems of public economics: they add that “the fact
that the prices are personalized means that personal, private information is required”. Finally, they insist
on the fact that “this [type of equilibrium] requires that the public good be excludable”. In the present
paper, these issues of realism are irrelevant; indeed, what matters here is that the concept of Lindahl
equilibrium allows us to compute the system of prices which sustains the first-best optimum, and thus to
unveil the social value of innovations.
In order to clarify the concept of Lindahl equilibrium, we present the agents’ behaviors. In partic-

ular, we determine the Lindahl prices of each unit of knowledge χωt produced in any sector ω. These
personalized prices are given by the marginal profitabilities of this unit for its various users.

• In the final sector, the competitive firm maximizes its profit (purchases of knowledge not included)
πY

t = (LY
t )1−α

∫
Ω

χωt(xωt)αdω − wtL
Y
t −

∫
Ω

qωtxωtdω. The first-order conditions yield:

wt = (1 − α)
Yt

LY
t

and qωt = α(LY
t )(1−α)χωt(xωt)

α−1, ∀ω ∈ Ω (13)

At each date t, the marginal profitability of one unit of knowledge χωt produced in any sector ω for the
final sector is:

vY
ωt =

∂πY
t

∂χωt
= (LY

t )(1−α)(xωt)
α, ∀ω ∈ Ω (14)

18Basically, the replication argument states that technologies display constant returns to scale with respect to private
inputs and increasing returns to scale with respect to private and public factors taken jointly. In a competitive market, the
payment of private factors fully exhausts revenue and firms are thus unable to pay for the public good they use; hence, such
an equilibrium would exist only if the purchase of knowledge is entirely financed by public expenditures (see, for instance,
Kaizuka 1965; Manning, Markusen & Mc Millan 1985; or Romer 1990).
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• In any intermediate sector ω, ω ∈ Ω, as explained above, we assume in this framework that, contrary
to the standard literature, intermediate goods producers behave competitively. The profit on the sale of
intermediate good ω (purchases of knowledge not included) is πxω

t = (qωt −χωt)xωt. Perfect competition
and (13) imply that:

qωt = χωt and xωt = xt = α
1

1−α LY
t , ∀ω ∈ Ω (15)

At each date t, the marginal profitability of one unit of knowledge χωt produced in any sector ω for the
production of intermediate good ω is negative:

vx
ωt =

∂πxω
t

∂χωt
= −xωt, ∀ω ∈ Ω (16)

• In any intermediate sector h, h ∈ Ω, given the technology of production of innovations (1), the
expected profit of R&D activities (purchases of knowledge not included) is πχh

t = λlhtVht − wtlht, where
Vht is the value of an innovation (i.e. the value of Δχht = σPht new units of knowledge) in sector h.
Perfect competition in any R&D activity h gives the following free-entry condition:

wt = λVht = VhtλσPht, ∀h ∈ Ω (17)

In the present model, we consider explicitly inter-sectorial knowledge spillovers. Accordingly, the presence
of knowledge produced by R&D activity ω in the pool used by R&D activity h is contingent on the scope
of knowledge diffusion. This has a major implication in the determination of the marginal profitability
of one unit of knowledge χωt, ω ∈ Ω, for any R&D activity h, h ∈ Ω. Indeed, the willingness to pay of
R&D activity h for knowledge inherent in an innovation in sector ω depends on whether knowledge χωt

belongs to the pool Pht used by R&D activity h,19 or not. In the former case, the marginal profitability
is positive, in the latter, it is zero. Formally, one has

vχh
ωt =

∂πχh
t

∂χωt
= Vhtλσlht

∂Pht

∂χωt
=

{
Vhtλσlht, if h ∈ Ωω

0, if h /∈ Ωω

, ∀ω ∈ Ω (18)

In Lemma 3, we recapitulate the results relative to the marginal profitabilities of one unit of knowledge
χωt, ω ∈ Ω, given by (14), (16) and (18), obtained by studying the individual behaviors of the various
users of this unit.

Lemma 3. At date t, the Lindahl prices (marginal profitabilities) of one unit of knowledge χωt produced
in any sector ω, for the final good sector, the intermediate sector ω, ω ∈ Ω, and the R&D sector h, h ∈ Ω,
respectively are:

vY
ωt = (LY

t )(1−α)(xωt)
α, vx

ωt = −xωt, and vχh
ωt =

{
Vhtλσlht, if h ∈ Ωω

0, if h /∈ Ωω

, ∀ω ∈ Ω

The instantaneous price received by the producer of one unit of knowledge χωt is vωt = vY
ωt + vx

ωt + vR&D
ωt ,

where vR&D
ωt =

∫
Ω

vχh
ωt dh.

It is not surprising that the marginal profitabilities are positive for the final good production and
for R&D activities. Conversely, one may wonder why it is negative for the production of the associated
intermediate good. This results from the fact that the intermediate good production technology accounts
for the increasing complexity in the production of intermediate goods (see (6)).

3.1.3 R&D incentives: Schumpeterian equilibrium versus Lindahl equilibrium

We now summarize the main points developed in this section, and we relate them to the issue of R&D
incentives. Let us first recall that an innovation in any given sector involves the creation of a flow of new
knowledge which increases the stock of knowledge previously embodied in the intermediate good produced
in this sector. This point is considered differently in the two equilibria presented above. Indeed, there is
a fundamental difference between the Schumpeterian equilibrium and the Lindahl equilibrium which lies
in the fact that markets are incomplete in the former (knowledge is not priced) while they are complete
in the latter (knowledge is priced). Accordingly, R&D is not funded the same way in these two types
of equilibria. In the Schumpeterian equilibrium, when an innovator ( i.e. a producer of new knowledge)

19This is the case if h ∈ Ωω ≡ [ω − θ/2 ; ω + θ/2] (see Lemma 2), that is if sector h is located in the neighborhood of
diffusion of knowledge χω .
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sells an intermediate good (a rival good), she indirectly sells knowledge (a non rival good).20 Therefore
R&D investments are indirectly funded by monopolies profits on a rival good embodying knowledge (see
πxω

τ (ψ,ϕ ) in (9) above). In the Lindahl equilibrium, R&D investments are directly funded by pricing
knowledge (see the Lindahl prices, vY

ωt, vx
ωt and vχh

ωt , h ∈ Ωω, in (12) above) and each intermediate good
is priced at its marginal cost (see (15)).
This difference has several implications which turn out to particularly matter when it comes to study

R&D incentives in presence of sequential and cumulative innovations, and in particular to revisit the issue
of Pareto sub-optimality arising in the Schumpeterian equilibrium. We summarize these implications in
three points.21

a) The quantities of knowledge sold - whether indirectly, as in the Schumpeterian equilibrium, or
directly, as in the Lindahl equilibrium - differ in the two equilibria. In the Schumpeterian equilibrium, an
entrant (i.e. the latest innovator) sells an intermediate good which embodies the whole stock of knowl-
edge, χωt, created in the sector so far (i.e. including the knowledge produced by its predecessors) and
thus benefits from previously conducted R&D. In contrast, in the Lindahl equilibrium, the knowledge sold
by an innovator includes only the incremental knowledge, Δχωt = σPωt, associated to her innovation.
This difference can be clearly identified by comparing the expressions of the private value and of the
social value of an innovation (see Definitions 3 and 5, respectively): the flow of knowledge σPωt does not
appear in Πx

ωt (ψ,ϕ) while it does in Vωt. In terms of R&D incentives provided in the Schumpeterian
equilibrium, this tends to lead to an excessive level of resources devoted to R&D.

b) This knowledge is not sold to the same economic agents in the two equilibria. In the Schumpeterian
equilibrium, the innovator’s behavior depends on the fact that the knowledge embodied in the intermedi-
ate good has an impact on two agents. First, the final sector; indeed, she is the only agent to whom the
intermediate good - and thus the knowledge embodied in it - is sold. Second, the innovator herself, since
she produces this intermediate good and since her production costs increase with the level of knowledge
accumulated in the sector (see the expressions of the technology of intermediate good production (6) and
of monopoly profits (8)). On the contrary, in the Lindahl equilibrium, each unit of knowledge inherent
in an innovation is valued for all of its users: for the producer of the final good (vY

ωt), for the producer
of the intermediate good embodying this knowledge (vx

ωt), but also for all the R&D activities using this
knowledge - the one of the intermediate sector in which it has been produced (vχω

ωt ), as well as the ones
of a more or less wide range of intermediate sectors (vχh

ωt , ∀h ∈ Ωω). Obviously, in the Schumpeterian
equilibrium, each innovator neglects the fact that her innovation may be of some use for producing new
knowledge in her sector as well as in other sectors. In terms of R&D incentives, the fact that the Schum-
peterian equilibrium considers only the private value of innovations, and that this value disregards (both
intra and inter-sectorial) knowledge spillovers, tends to yield to insufficient R&D effort. Thereupon, one
can observe that, the more intense knowledge spillovers are (i.e. the larger θ is), the higher the value
of one unit of knowledge for R&D activities is (indeed, from Lemma 3, one has vR&D

ωt =
∫
Ωω

vχh
ωt dh,

where vχh
ωt > 0, ∀ω ∈ Ωω ≡ [h − θ/2 ; h + θ/2]), and thus the more this effect will be likely to imply a

sub-optimal level of R&D investment.

c) Finally, the two equilibria differ regarding the period during which an innovation provides revenues
to its producer. In the Schumpeterian equilibrium, since there is no distinction between an intermediate
good and the knowledge embodied in it, one neglects that goods disappear while knowledge persists.
Indeed, in each intermediate sector, the latest innovator (a producer of knowledge) monopolizes the
production and sale of the intermediate good (which embodies knowledge) until replaced by the next in-
novator. This creative destruction mechanism implies that there is a “business stealing effect” in the sense
that, in each sector, the patent owner has a monopoly whose lifespan is finite in average. Accordingly,
the period during which an innovation yields some return is also finite in average. This appears in (9), in
which the discount factor includes the term λlωu (ψ,ϕ ) (the rate of creative destruction). In the Lindahl
equilibrium, in each intermediate sector, the instantaneous profit of the intermediate good producer is
nil because of perfect competition and, as in the Schumpeterian case, this good disappears when a higher
quality good can be produced (i.e. consecutively to each innovation). However, the innovator receives
revenues forever because each unit of knowledge constituting her innovation is infinitely-lived and priced
at each instant of time (at each date t, each innovator receives the sum of the Lindahl prices vωt). This

20We return to this point below in Subsection 4.2 in which we compute the value of the stock of knowledge embodied in
the intermediate good.
21Through those three points, we aim to clarify the notion of “intertemporal spillovers” already mentioned in the literature

(see, for instance, in Romer 1990 or in Aghion & Howitt 1992).
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clearly appears in (12), in which λlωu (ψ,ϕ ) does not appear in the discount factor. Regarding R&D
incentives provided within the Schumpeterian equilibrium, this conduces to too little R&D investments.

This analysis reveals that the reason why Schumpeterian models typically predict that the allocation
of resources in R&D - and thus the growth rate - can either be insufficient or excessive stems precisely
from the fact that innovators do not consider the proper good, do sell it neither at the proper price, nor
during the proper period of time. We return in detail to these issues in Section 4 below. In particular,
in Subsection 4.1, we revisit the issue of Pareto sub-optimality of the Schumpeterian equilibrium by
exhibiting how under (resp. over) optimal R&D investment relates to the fact that the private value of
innovations can be below (resp. above) the social one, and by revealing the part played by the dimension
of innovations σθ. In Subsection 4.2, we develop the ideas sketched in the paragraphs a), b) and c) by
studying the link between the social value of each intermediate good ( i.e. its social surplus) and the value
of the knowledge which is embodied in it; then we come back to the issues of R&D incentives and welfare
in the Schumpeterian equilibrium.

3.2 Characterization of the two equilibria and values of innovations

In the previous subsection, starting from the difference between knowledge and the intermediate good
which embodies it, we have distinguished Schumpeterian and Lindahl equilibria. Then, this allowed us
to define the private value and the social value of innovations. We now compute these two equilibria and
the two corresponding values of innovations. The Schumpeterian equilibrium and the private value of
innovations are computed in Propositions 3 and 4, respectively. The Lindahl equilibrium and the social
value of innovations are computed in Propositions 5 and 6, respectively.

Proposition 3. At each vector of public policies (ψ,ϕ) is associated a particular Schumpeterian equilib-
rium à la Aghion & Howitt. It is characterized, at each date t, as follows.

• The quantities and the growth rates are LY
t (ψ,ϕ) = LY (ψ,ϕ) =

γL(λ
γ +ρ)

λ(1+ 1+ϕ
1−ψ α) ; lωt (ψ,ϕ) = l (ψ,ϕ) =

1
γ − LY (ψ,ϕ)

γL , ∀ω ∈ Ω;

xωt (ψ,ϕ) = x (ψ,ϕ) =
(

α2

1−ψ

) 1
1−α

LY (ψ,ϕ) , ∀ω ∈ Ω;

gct = gYt = gKt = gχωt = g (ψ,ϕ) = λσθ l (ψ,ϕ) , ∀ω ∈ Ω.

• The prices are wt (ψ,ϕ) = (1 − α)
(

α2

1−ψ

) α
1−α

Kt (ψ,ϕ); r (ψ,ϕ) = g (ψ,ϕ) + ρ qωt (ψ,ϕ) = qt (ψ,ϕ) =
Kt(ψ,ϕ)

αγL , ∀ω ∈ Ω, in which Kt (ψ,ϕ) = eg(ψ,ϕ)t.

Proof. See Appendix 6.3.

The first-best social optimum can be implemented within this Schumpeterian equilibrium à la Aghion
& Howitt. The optimal set of public tools (ψo, ϕo) correcting the two distortions inherent in that equi-
librium (namely the monopoly distortion and the market incompleteness) can be obtained by identifying
the equilibrium growth rate and quantities of intermediate goods, g (ψ,ϕ) and x (ψ,ϕ), with the optimal
ones, go and xo.22 One gets the following corollary to Proposition 3.

Corollary. The optimal tools are ψo = 1 − α, and ϕo = σθ
ρ

(
λ
γ + ρ

)
− 2.

The optimal tool used to correct the static distortion entailed by monopolies is the usual subsidy
(ψo > 0) on each intermediate good demand; the optimal tool correcting the externality entailed by
market incompleteness can consist either in a subsidy (ϕo > 0) or in a tax (ϕo < 0) on monopoly profits,
depending on whether the R&D effort is sub-optimal or over-optimal. It is here obvious that the optimal

22One gets:

{
g (ψo, ϕo) = go

x (ψo, ϕo) = xo
⇔






LY (ψo, ϕo) = ργL
λσθ(

α2

1−ψo

) 1
1−α

LY (ψo, ϕo) = α
1

1−α ργL
λσθ

⇔

{
ϕo = σθ

(
λ
γρ

+ 1
)
− 2

ψo = 1 − α
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R&D policy should depend on σθ, the dimension of innovations.23 Indeed, one has

ϕo T 0 ⇔ σθ T
2ρ

λ
γ + ρ

≡ ϑ̃ (19)

We return to these points in Subsection 4.1, in which we revisit the issue of Pareto sub-optimality of the
Schumpeterian equilibrium. In Proposition 4, we provide the value of an innovation in the Schumpeterian
equilibrium, that we have called private value.

Proposition 4. Consider an innovation at date t in any sector ω, ω ∈ Ω. Its private value is

Πx
ωt (ψ,ϕ) = Πx

t (ψ,ϕ) =
1 − α

λ

(
α2

1 − ψ

) α
1−α

Kt (ψ,ϕ) ,

where Kt (ψ,ϕ) = eg(ψ,ϕ)t and g (ψ,ϕ) = λσθ

[
1
γ −

λ
γ +ρ

λ(1+ 1+ϕ
1−ψ α)

]

.

Proof. See Appendix 6.3 (see equation (43)).

Now, we depart from the standard Schumpeterian equilibrium à la Aghion & Howitt and focus on
the Lindahl equilibrium. Since we know that a Lindahl equilibrium is Pareto optimal, the repartition of
labor, the quantities of intermediate goods and the growth rates are the optimal ones (they are given
in Proposition 2).24 The system of prices that sustains the first-best is provided in Proposition 5 (as
previously, the superscript “ o” is used for “social optimum”).

Proposition 5. In the Lindahl equilibrium, the system of prices is the following.

• The prices of rival goods are wo
t = (1 − α)α

α
1−α Ko

t ; ro
t = λσθ

γ ; qo
ωt = qo

t = χo
t = Ko

t

γL , ∀ω ∈ Ω, where

Ko
t = egot and go = λσθ

γ − ρ.

• Each unit of knowledge is priced as follows:

- The Lindahl prices of one unit of knowledge χωt for the final good sector, for the intermediate
sector ω, and for the R&D activity of intermediate sector h, h ∈ Ω, are respectively

vY o
ωt = α

α
1−α

ργL

λσθ
; vxo

ωt = −α
1

1−α
ργL

λσθ

and vχho
ωt =






(1−α)α
α

1−α

θ

(
L − ργL

λσθ

)
, if h ∈ Ωω

0, if h /∈ Ωω

, ∀ω ∈ Ω.

- The instantaneous income received by the innovator for each unit of knowledge χωt she produced
is

vo
ωt = vY o

ωt + vxo
ωt + vR&Do

ωt = vo = (1 − α)α
α

1−α L, ∀ω ∈ Ω,

where vR&Do
ωt is the instantaneous value of one unit of knowledge χωt for the whole R&D

activity of the economy, given by vR&Do
ωt =

∫
Ω

vχho
ωt dh = (1 − α)α

α
1−α

(
L − ργL

λσθ

)
, ∀ω ∈ Ω.

Proof. See Appendix 6.4.

The Lindahl equilibrium allows us to determine the value of each unit of knowledge (the sum of the
Lindahl prices). In the following corollary, we provide the Lindahl equilibrium value of each unit of
knowledge produced in sector ω, V o

ωt. It is derived in Appendix 6.4 (see equation (56)). Alternatively, it
can also be computed from its definition given in (12), using the expressions of the instantaneous social
value, vo

ωt, and of the interest rate, ro
t , provided in Proposition 5.

23From here, one could develop an analysis close to ones of Segerstrom (1998) or Li (2003) and study the relation between
the optimal R&D subsidy (or tax) and the dimension of innovations. More details on this issue are provided in Section 4.
24This result is indeed verified in the Appendix 6.4 (see (59)).
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Corollary. The social value of one unit of knowledge χωt is

V o
ωt = V o =

(1 − α)α
α

1−α γL

λσθ
, ∀ω ∈ Ω.

Finally, in Proposition 6, we provide the value of an innovation in the Lindahl equilibrium, that we
have called social value.

Proposition 6. Consider an innovation at date t in any sector ω, ω ∈ Ω. Its social value is

Vo
ωt = Vo

t =
(1 − α)α

α
1−α

λ
Ko

t ,

where Ko
t = egot and go = λσθ

γ − ρ.

Proof. See Appendix 6.4 (see equation (60)).

To conclude this analysis, in the following corollary, we provide a somehow intuitive result which
contributes to explain the link between the private value and the social value of an innovation.

Corollary. The optimal private value of innovations - i.e. the private value when the two distortions
present in the Schumpeterian equilibrium (namely the monopoly distortion and the market incompleteness)
are corrected - is the social value: Πx

t (ψo, ϕo) = Vo
t .

Proof. The proof is straightforward. Plugging the optimal tools (derived in the corollary to Proposition
3) into the expression of the private value of innovations given in Proposition 4, one gets the expression
of the social value of innovations given in Proposition 6.

This result shows that one could have directly computed the social value of an innovation in the
Schumpeterian equilibrium. In that respect, it would be sufficient to set the two public tools, ψ and ϕ, at
their optimal level. In this case, the innovators are given the optimal incentives via the discounted sum of
the expected monopoly profits monopoly, and thus the private value and the social value of innovations
are the same. However, introducing the concept of Lindahl equilibrium allows us to understand what is
fundamentally the social value of an innovation: since an innovation involves new knowledge, that is a
non rival good, it is the sum of the Lindahl prices paid by all the users of this knowledge. We return to
this point in the applications provided below in Section 4.
To conclude, let us note that all results established in Section 3.2 involve the parameter θ, which stands

for the scope of knowledge diffusion. In particular, one can express these results in the two polar cases
(intra-sectorial knowledge spillovers only and global knowledge spillovers) summarized in the corollary to
Proposition 1. Fundamentally, introducing explicitly knowledge diffusion on the Salop circle enables us
to precisely apprehend the non-rivalry property of knowledge.

4 Applications: Pareto sub-optimality of the Schumpeterian equi-
librium and R&D incentives in presence of cumulative innova-
tions

In Section 3, we have insisted on the necessity to distinguish the intermediate good from the knowledge
which is embodied in it; thereby, we used the concept of Lindahl equilibrium to determine the social value
of innovations. Now, we use this methodology to revisit key issues widely analysed in the economics of
innovation. Subsection 4.1 focuses on the Pareto sub-optimality of the standard Schumpeterian equilib-
rium à la Aghion & Howitt (1992). We show that it basically results from market incompleteness, which
implies that the private value of innovations might diverge from their social value. Furthermore, we un-
derline the key part played by the dimension of innovations. In Subsection 4.2, we study the link between
the social value of each intermediate good (i.e. its social surplus) and the value of the knowledge which
is embodied in it. This enables us to come back to the reasons why, in the Schumpeterian equilibrium,
the innovators are not given the optimal R&D incentives. In Subsection 4.3 we show how the Lindahl
equilibrium enables us to shed a new light on the issue of R&D incentives in presence of cumulative
innovations. In particular, we revisit, within a Schumpeterian growth model, some arguments found in
Scotchmer (1991), in Green & Scotchmer (1995), or in Chu, Cozzi & Galli (2012), among others.
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The issues studied in these three subsections are intrinsically related. They all stem from the fact
that the Schumpeterian equilibrium exhibits incomplete markets, and that, in order to provide R&D
incentives, it introduces intellectual property rights on rival goods in which knowledge is embodied.

4.1 Pareto sub-optimality revisited, market incompleteness and dimension
of innovations

Many R&D-based endogenous growth models predict that the decentralized economy can lead to either an
insufficient or an excessive allocation of resources in R&D activity, leading to an insufficient or excessive
growth. This well-known result of Pareto sub-optimality, which can arise in vertical differentiation class of
models (e.g. Grossman & Helpman 1991; Aghion & Howitt 1992) but also in expanding variety models à
la Romer (e.g. Benassy 1998; Jones & Williams 2000; Alvarez-Pelaez & Groth 2005), has been extensively
discussed in the growth literature. One can find several complementary approaches trying to understand
why the equilibrium allocation can either be sub-optimal or over-optimal. The first one could be described
as market oriented: Aghion & Howitt (1992, 1998) or Jones & Williams (2000), for instance, focus on
the various market failures of the equilibrium considered to explain why Pareto sub-optimality may arise.
Basically, it is generally argued that the surplus appropriability problem and knowledge spillovers both
promote under-investment in R&D whereas creative destruction and duplication effects both foster over-
investment in R&D. In a complementary approach, Grossman & Helpman (1991) or Segerstrom (1998),
among others, relate the fact that there is too little or too much R&D to the “size of innovations” ( i.e. to
the height of the jumps on the quality ladder) but omit to consider inter-sectorial knowledge spillovers.
Grossman & Helpman show that only intermediate-size innovations should be subsidized, while small and
large-size innovations should be taxed, whereas Segerstrom finds that it is optimal to subsidize small-size
innovations and to tax large-size innovations. Li (2003) generalizes Segerstrom’s analysis by taking into
account the effect of inter-sectorial spillovers. As already mentioned, and as usual in Schumpeterian
growth theory, in the Schumpeterian equilibrium à la Aghion & Howitt (1992) studied in this paper, the
laisser faire growth rate, g (0, 0), can either be sub-optimal, optimal, or over-optimal, depending on the
values of the parameters of the model:

g (0, 0) = λσθ

[
1
γ
−

λ
γ + ρ

λ (1 + α)

]

S go = g (ψo, ϕo) =
λσθ

γ
− ρ (20)

The purpose of this subsection is to shed a new light on this Pareto sub-optimality issue; in what
follows, we show that this issue is basically related to the market incompleteness of the Schumpeterian
equilibrium. We know, from the corollary to Proposition 3, that the first-best optimum can be imple-
mented in this equilibrium with two public tools: a subsidy (ψo > 0) on each intermediate good demand,
and a subsidy (ϕo > 0) or a tax (ϕo < 0) on the innovator’s monopoly profits. First, it can easily be
verified that the static distortion entailed by monopolies leads to sub-optimal investment in R&D, and
thus tends to lower down the growth rate. Indeed, one has g (0, ϕo) < go. In other words, if the dynamic
distortion (more precisely, the market incompleteness) is perfectly corrected ( i.e. if ϕ = ϕo) and if there is
no subsidy to correct the static distortion (i.e. if ψ = 0), then the R&D investment in the Schumpeterian
equilibrium is sub-optimal.25 Second, if the static distortion is perfectly corrected (i.e. if ψ = ψo) and
if the dynamic one is not (i.e. if ϕ = 0), then the R&D investment - and thus the growth rate - can
be lower, equal, or greater the optimal ones. Formally, one has indeed g (ψo, 0) S go. These results are
summarized in Proposition 7.

Proposition 7. The optimal set of public tools, (ψo, ϕo), that allows to implement the first-best social
optimum within the Schumpeterian equilibrium à la Aghion & Howitt is such that one has the following
inequalities between the decentralized and the optimal growth rates:

g (0, 0) S go, g (0, ϕo) < go and g (ψo, 0) S go

The inequalities exhibited in Proposition 7 show that the monopoly distortion necessarily leads to
a sub-optimal investment in R&D, whereas the dynamic distortion can lead either to sub-optimal or to
over-optimal level of R&D investment. Hence, it is by considering only the distortion resulting from
market incompleteness that one shall understand accurately the issue of Pareto sub-optimality. That is
why, in order to better understand this issue, in all what follows, the monopoly distortion is perfectly
corrected, that is ψ = ψo.

25Note that an alternative argument would be the following: the growth rate in the case in which the monopoly distortion
is corrected is always higher than in the laisser faire case: g (ψo, 0) > g (0, 0).
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Now, in order to examine thoroughly this Pareto sub-optimality issue and its link with market incom-
pleteness, we present several equivalences.
i) The growth rate of the Schumpeterian equilibrium is lower (resp. greater) than the optimal one, that

is the market incompleteness leads to a sub-optimal (resp. over-optimal) R&D investment, if and only if
the optimal tool used to deal with this market incompleteness is a subsidy (resp. a tax). Formally, one has:
g (ψo, 0) S go ⇔ ϕo T 0. This result is somehow intuitive and does not require any particular comment.
For instance, it means that, if the R&D investment is insufficient, one has to subsidize innovators.
ii) The growth rate of the Schumpeterian equilibrium is lower (resp. greater) than the optimal one if

and only if the private value of innovations in any sector ω is smaller (resp. higher) than the social one.
Formally, one has the following equivalence: g (ψo, 0) S go ⇔ Πx

ωt (ψo, 0) S Vo
ωt, ∀ω, ∀t. This equivalence

has been obtained thanks to the comparaison between the Schumpeterian and the Lindahl equilibria,
and more precisely between the private and the social values of innovations. It underlines that these two
values are at the heart of the design of R&D incentives; we return to this point below. For instance, if
the private value of innovations is lower than the social one, R&D investment is insufficient (and thus
the growth rate is too low) because the are not enough R&D incentives (that is why, as explained in i)
above, R&D has to be subsidized).
iii) The growth rate of the Schumpeterian equilibrium is lower (resp. greater) than the optimal one if

and only if the dimension of innovations, σθ, is above (resp. below) the threshold ϑ̃. Formally, one has
the following equivalence: g (ψo, 0) S go ⇔ σθ T 2ρ

λ
γ +ρ

≡ ϑ̃. This last equivalence is fundamentally linked

to market incompleteness; it emphasizes the key part played both by σ, the productivity of knowledge,
and by θ, the scope of knowledge diffusion. We clarify this point below.
The three equivalences i), ii) and iii) are summarized in Proposition 8.

Proposition 8. If the monopoly distortion only is corrected (i.e. ψ = ψo and ϕ = 0), one has the
following equivalences:

g (ψo, 0) S go ⇔ ϕo T 0 ⇔ Πx
ωt (ψo, 0) S Vo

ωt ⇔ σθ T
2ρ

λ
γ + ρ

≡ ϑ̃, ∀ω, ∀t

Proof. The proof of i), ii) and iii) are straightforward.
i) From Proposition 2 one has go = λσθ

γ − ρ; and from Proposition 3 and its corollary, one gets

g (ψo, 0) = λσθ
[

1
γ −

(
λ
γ + ρ

)
/2λ

]
. Hence, one has g (ψo, 0) S go ⇔ 0 S σθ

ρ

(
λ
γ + ρ

)
− 2 = ϕo; this

proves the first equivalence. ii) At each date t, one has, for all ω ∈ Ω, Πx
ωt (ψo, 0) = Πx

t (ψo, 0) =
(1−α)α

α
1−α

λ Kt (ψo, 0), where Kt (ψo, 0) = eg(ψo,0)t and Vo
ωt = Vo

t = (1−α)α
α

1−α

λ Ko
t , where Ko

t = egot. One

immediately gets g (ψo, 0) S go ⇔ Πx
ωt (ψo, 0) S Vo

ωt, the second equivalence. iii) Then, the third equiva-
lence is obtained directly from (19).

Proposition 8, which is illustrated by Figure 1, shows that, in the Schumpeterian equilibrium, in-
novators do not take into account the dimension of innovation, σθ, in their behavior. That is, they
neither consider the productivity of knowledge σ, nor the scope of knowledge diffusion θ. This appears
in some previous results. First, it can be seen if one returns to the expression of the quantities of labor
devoted to R&D. In the first-best social optimum, one has lo = 1/γ − ρ/λσθ, which clearly depends on
the dimension of innovations: the higher σθ, the more resources allocated to R&D in the first-best. To
the contrary, the dimension of innovations has no effect on the Schumpeterian equilibrium allocation of
labor: l (ψo, 0) = 1/γ − (λ/γ + ρ) /2λ = 1/2γ − ρ/2λ. Second, this can also be seen by returning to the

expression of the optimal tool, ϕo = σθ
ρ

(
λ
γ + ρ

)
− 2, that allows to correct the market incompleteness.

As mentioned in the comments of Proposition 3 above (see (19)), the higher σθ, the larger ϕo, and thus
the more likely R&D should be subsidized. Conversely, the lower σθ, the smaller ϕo, and thus the more
likely R&D should be taxed. Indeed, one has σθ T ϑ̃ ⇔ ϕo T 0.
The basic point is that, in the Schumpeterian equilibrium, because of market incompleteness, inno-

vators’ behavior is based on the monopoly profit on intermediate goods (rival goods) which embodies
knowledge (a non rival good) and not on the value of this knowledge which depends on its Lindahl prices.
This incompleteness has a straightforward consequence. If the dimension of innovations σθ is large, the
more likely R&D investment will be insufficient, that is why it should be subsidized. Conversely, if σθ is
small, the more likely R&D investment will be excessive and should be taxed.
To conclude, the question on whether there is too little or too much R&D investment in the Schum-

peterian equilibrium arises from the R&D incentives introduced in this framework. In this equilibrium,
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Figure 1: Pareto sub-optimality revisited

the innovators’ behavior depends on the private value of innovations (see for instance the free entry con-
dition (10)). In the Lindahl equilibrium, it depends on the social value of innovations (see for instance
the free entry condition (17)). As exhibited in Proposition 8 and illustrated in Figure 1, the comparison
of these two values allows us to apprehend better the Pareto sub-optimality issue. In Subsection 4.2, we
investigate why these two values differ.

4.2 Social surplus of intermediate goods, social value of knowledge and R&D
incentives

Our aim now is twofold. First, we study the link between the social value of each intermediate good and
the value of the knowledge which is embodied in it. Second, we use this analysis to come back to the
issues of R&D incentives and welfare in the Schumpeterian equilibrium.
The social value of an intermediate good is given by the social surplus, that we compute as follows.

At the first-best, the inverse demand function of intermediate good ω at date t is obtained from (13).
One has qo

ωt(xωt) = α(LY o
t )(1−α)χo

ωt(xωt)α−1, where LY o
t and χo

ωt are given in Proposition 2. Then,
the instantaneous net social surplus generated by the production and use of this intermediate good is
So

ωt =
∫ xo

ωt

0
qo
ωt(x)dx − qo

ωtx
o
ωt, where xo

ωt and qo
ωt are given in Propositions 2 and 5, respectively. After

computation, one gets

So
ωt = (1 − α)α

α
1−α

ργL

λσθ
χo

ωt (21)

Expression (21) shows that the surplus depends on the stock knowledge χo
ωt which is embodied in the

intermediate good ω. Using the Lindahl prices allows us to exhibit the value of this knowledge in
Proposition 9 below.

Proposition 9. The instantaneous net social surplus generated by intermediate good ω at date t is the
value of the stock of knowledge χo

ωt embodied in it for the user and the producer of this good:

So
ωt =

(
vY o

ωt + vxo
ωt

)
χo

ωt

Proof. The proof is straightforward. In Proposition 5, we have shown that the Lindahl prices of one
unit of knowledge χωt for the final sector and for the intermediate sector ω are vY o

ωt = α
α

1−α
ργL
λσθ and

vxo
ωt = −α

1
1−α

ργL
λσθ , respectively. Summing vY o

ωt and vxo
ωt , one gets (1 − α)α

α
1−α

ργL
λσθ .

Proposition 9 shows that the surplus So
ωt is equal to the value of the stock of knowledge χo

ωt for the
two agents involved in the production and in the use of the intermediate good: the producer of this good
(for whom, as seen in (16) and in Proposition 5, the Lindahl price vxo

ωt is negative) and the final good
producer (for whom, as seen in (14) and in Proposition 5, the Lindahl price vY o

ωt is positive).
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Now, we use this result to study the issues of R&D incentives and welfare in the Schumpeterian
equilibrium. More precisely, we explain why the incentives provided in that framework deviate from
optimal ones which are given by the Lindahl equilibrium. In particular, we use the surplus to formalize
the intuitions developed in 3.1.3.
Let us first recall that, in the Schumpeterian equilibrium, the incentives provided to innovators rest

upon IPRs that ensure them monopoly power: as seen in Definition 3 (which gives the private value
of innovations as the sum of the present values of the incumbent’s expected net profits on the sale of
intermediate goods), the key variable in the design of R&D incentives in each sector ω is πxω

t (ψ,ϕ), the
monopoly profit on intermediate good ω.

The first evident result is that the monopoly does not extract the whole surplus. This issue of
appropriability has been extensively studied in the literature (see, for instance, Aghion & Howitt 1992,
1998 - Ch. 2, or Acemoglu 2009 - Ch. 14). At this stage of the analysis, one can easily observe that, even
if the monopoly was able to extract the whole surplus at each date t, this would not provide the proper
R&D incentives. The reason is twofold.
Firstly, as seen in (21) and in Proposition 9, the surplus directly depends on the whole quantity of

knowledge embodied in intermediate good ω, χωt. As explained in paragraph a) of 3.1.3, this stock χωt

is different from the quantity of knowledge entailed by the latest innovation, that is from the flow Δχωt.
In any sector, the incumbent sells an intermediate good that embodies all the knowledge accumulated so
far in this sector even though she has produced only part of this knowledge. This first effect results in
too strong R&D inventives in the Schumpeterian equilibrium.
Secondly, the unit price of this knowledge χωt is not the one that would provide the proper incentives.

Indeed, we have shown in Proposition 9 that the surplus So
ωt is equal to the value of χo

ωt exclusively
for two agents: the producer of the intermediate good and the final good producer. As mentioned in
the paragraph b) of 3.1.3, the producer and the user of an intermediate good ω are not the only agents
affected by the knowledge entailed by the innovation associated to this good. Indeed, so is any R&D
activity whose pool of knowledge contains the knowledge embodied in intermediate good ω. Therefore,
the unit price of knowledge appearing in the expression of the surplus given in Proposition 9, vY o

ωt + vxo
ωt ,

does not provide the appropriate incentives to innovators since it does not include the Lindahl prices of
the R&D activities. As argued in 3.1.2, the optimal price that the innovator should receive at each date t
- that is the one that would give her the appropriate incentives - is vo

ωt = vY o
ωt +vxo

ωt +vR&Do
ωt . Accordingly,

the surplus can be rewritten as follows:

So
ωt =

(
vo

ωt − vR&Do
ωt

)
χo

ωt (22)

The expression (22) shows that, as argued throughout this paper and in particular in the paragraph b)
of 3.1.3, knowledge is not priced in the Schumpeterian equilibrium. Therefore, this equilibrium omits
the fact that knowledge produced in sector ω may have positive spillovers effects on other sectors’ R&D
activities: part of the social value generated by knowledge spillovers is neglected.26 This second effect
results in too weak R&D inventives.
The analysis conducted so far is static: it involves only the instantaneous profits, πxω

t (ψ,ϕ), appearing
in (9). Let us now consider the dynamic angle of the links between the surplus and the issues of R&D
incentives and welfare. Recall that, as explained in the paragraph c) of 3.1.3, in the Schumpeterian
equilibrium à la Aghion & Howitt each innovator receives the private value of her innovation; this value
is computed on a period which is finite in average because the expected value of an intermediate good
lifespan is finite (see Definition 3). On the contrary, in the Lindahl equilibrium, each innovator receives
the social social value of this innovation; this value is computed on an infinite period (see Definition 5).
Hence, the Schumpeterian equilibrium omits the fact that knowledge is infinitely-lived. This third effect
results in too weak R&D inventives.
This leads us to come back to the issue of R&D incentives in presence of cumulative innovations.

4.3 Optimal R&D incentives in presence of cumulative innovations

In the previous subsections, we showed that, because it exhibits market incompleteness, the Schumpete-
rian equilibrium à la Aghion & Howitt (1992) does not provide the appropriate incentives for static and
dynamic reasons. Regarding the static ones, there is first the appropriability issue; furthermore, even
if the monopolies were able to extract the whole surplus, the incentives would not be the good ones
since the surplus takes into account neither the proper quantity of knowledge (χωt instead of Δχωt)

26The knowledge spillovers issue has extensively been tackled in the literature (e.g. Aghion & Howitt 1992, 1998, 2009;
Li 2002; Peretto & Smulders 2002; Jones 2005; Acemoglu 2009). We think that introducing Lindahl prices - and thus the
Lindahl equilibrium - in the analysis allows us to clarify this issue.

20



nor the proper prices (vR&D
ωt =

∫
Ωω

vχh
ωt dh is missing). Regarding the dynamic one, the period during

which an innovation yields some return is too short. The reason why there can be too little or too
much R&D investment in the Schumpeterian equilibrium, which has been sketched above in 3.1.3, is
now clearly identified: the issues of appropriability, of non proper prices, and of non proper duration
lead to insufficient R&D investments; in contrast, the issue of non proper quantity of knowledge leads to
excessive R&D investments. Basically, this underlines why it is crucial to distinguish between knowledge
and the intermediate goods embodying it. More precisely, the comparison between the net social surplus
generated by an intermediate good and the social value of the knowledge embodied in it enabled us to
show how patenting intermediate goods embodying knowledge neglects several important features of the
cumulativeness of innovation, and is therefore unlikely to provide optimal incentive to innovators.
In what should consist these optimal incentives? Let us briefly recall the main characteristics of the

cumulative feature of innovations in our Schumpeterian growth model with explicit knowledge diffusion.
There is a large number of agents, the innovators, who exchange knowledge, an infinitely-lived and non
rival good. In each intermediate sector, innovators use knowledge produced in a subset of sectors whose
measure depends of θ, the scope of knowledge diffusion (for example, only the knowledge produced in this
sector in the polar case of only intra-sectorial knowledge spillovers, and the whole disposable knowledge
in the economy in the polar case of global knowledge spillovers). Simultaneously, each innovator produces
new knowledge which is used in a subset of sectors that is more or less large, depending on θ.

We have shown that the Lindahl equilibrium is the way to determine the income that each innovator
should receive for an innovation created at date t in order to implement the first-best social optimum.
This is line with ideas developed, for instance, in Tirole (1988), in Scotchmer (1991), or in Dasgupta,
Mäler, Navaretti & Siniscalco (1996). Formally, in our Schumpeterian growth framework, this income
is provided by the social value of the innovations, Vo

ωt. In the most general case, it is given by (12) in
Definition 5; in the specified case, it is provided in Proposition 6.

5 Conclusion

This paper arises from the observation that, traditionally, the social value of innovations is not explicitly
determined in standard growth theory. Our main purpose was to compute it. The Lindahl equilibrium
enabled us to define and to determine analytically the social value of innovations in a Schumpeterian
growth model.
Using the formalization of Salop (1979), we introduced knowledge diffusion in a standard endogenous

growth model with vertical innovations following on from the seminal ones of Grossman & Helpman
(1991) or Aghion & Howitt (1992). Intermediate sectors are uniformly distributed on the circle. In each
intermediate sector, knowledge accumulates as innovations occur, and an intermediate good embodies this
stock of knowledge. Accordingly, we defined an innovation as a pair “new knowledge / intermediate good”
and, since knowledge is a non rival good, we explicitly formalized knowledge diffusion: the knowledge
produced in each sector diffuses both within this sector and across sectors with more or less intensity.
Since each sector is simultaneously sending and receiving new knowledge, in each of them, R&D activity
draws knowledge from a pool which stems from knowledge diffusion. This formalization implies that the
broader the scope of knowledge diffusion in the economy is (i.e. the stronger the intensity of knowledge
spillovers is), the wider these pools are, and therefore the higher the optimal growth rate is. Basically,
our framework encompasses all possible cases ranging from intra-sectorial diffusion only to global inter-
sectorial diffusion, and allows us to revisit the standard (fully) endogenous growth literature.
Within this general model, we studied two equilibria. First, we recalled the standard Schumpete-

rian equilibrium à la Aghion & Howitt (1992). In this equilibrium, we computed the private value of
innovations: as usual in the literature, it is the sum of the expected present values of the monopoly
profits on intermediate goods received by the latest innovator who has been granted a patent. Second, we
defined and we computed the Lindahl equilibrium. In this respect, we completed the markets by pricing
knowledge; then, each innovator receives the sum of the Lindahl prices of all the users of each unit of
knowledge inherent in her innovation. Because the Lindahl equilibrium provides the system of prices
that sustains the first-best social optimum, this equilibrium enabled us to compute the social value of
innovations. Since an innovation involves an increment of several units of knowledge, the social value of
this innovation (i.e. the optimal value of the knowledge inherent in it) is thus obtained by multiplying
this flow of knowledge by the sum of the expected present values of the Lindahl prices of each of these
units.
Besides providing the system of first-best prices, and thus allowing to determine the social value of

innovations, the Lindahl equilibrium is a benchmark which also makes possible to revisit key issues anal-

21



ysed in the economics of innovation. As a matter of fact, we think that this methodology is likely to be a
suitable way to come back on issues involving the presence of knowledge, which are often studied in the
industrial organization literature and in endogenous growth theory. Indeed, it enables to better under-
stand the consequences of the non-rivalry of knowledge and of market incompleteness on the innovators’
behavior. As a case in point, in this paper, we came back on the issue of Pareto sub-optimality of the stan-
dard Schumpeterian equilibrium and on the one of R&D incentives in presence of cumulative innovations
within a dynamic general equilibrium framework. Basically, the key point here is that the fundamental
externality resulting from market incompleteness implies that it is not possible to fund directly R&D
activities. Indeed, in this type of decentralized economy, since knowledge is not priced, its creation is
indirectly funded by means of intellectual property rights on intermediate goods embodying knowledge.
Therefore, in the standard Schumpeterian equilibrium, because the private value of innovations differs
from the social one, innovators are not given the optimal incentives.
Regarding the Pareto sub-optimality issue, we derived several results revealing the link between the

level of R&D investment, the fact that the private value of innovations can be lower or greater than
the social one, and the dimension of innovations (a variable which is a function of the productivity of
knowledge in R&D and of the scope of knowledge diffusion). In particular, we showed that, when the
monopoly distortion is corrected, the Schumpeterian equilibrium growth rate is sub-optimal ( resp. over-
optimal) if and only if the private value of innovations is below (resp. above) the social one. We also show
that, if the dimension of innovations is large (resp. small), under (resp. over) optimal R&D investment is
more likely to occur. Basically, our formalization enabled us to exhibit the following key fact: the impact
of the externality triggered by market incompleteness - which implies a difference between the private
and the social values of innovations - depends on the dimension of innovations.
In order to better apprehend this issue, we analysed the link between the surplus derived from the pro-

duction and use of an intermediate good and the value of the knowledge embodied in it. Simultaneously,
we shed a new light on the issue of optimal R&D incentives in presence of sequential and cumulative
innovations within a Schumpeterian growth model which explicites knowledge diffusion. We showed that,
even if the incumbent innovator was able to extract the whole surplus, the incentives provided in the
Schumpeterian equilibrium would not be optimal for two static reasons and a dynamic one. First, when
the latest innovator sells an intermediate good, she implicitly sells the whole stock of knowledge created in
the sector so far; whereas she should sell only the incremental flow of knowledge inherent in her innovation
(as it is shown in the Lindahl equilibrium). This first static distortion tends to provide too much R&D in-
centives to innovators and thus to lead to an excessive level of R&D investment. Second, the knowledge is
valued exclusively for two agents: the intermediate good producer and the final good producer. However,
it should also be valued for R&D activities using it, as it is the case in the Lindahl equilibrium. In other
words, each innovator does not take into account the fact that the knowledge she creates is used by other
R&D activities (i.e. knowledge spillovers are disregarded). This second static distortion tends to provide
too little R&D incentives, and hence to lead to an insufficient level of R&D investment. Third, the period
during which an innovation yields revenues is finite in average (the creative destruction implies that the
monopoly power of the innovator has a lifespan which is finite in average). Yet, like in the Lindahl equi-
librium, an innovator should receive revenue forever for the knowledge inherent in her innovation because
it is infinitely-lived. This dynamic distortion tends to lead to to an insufficient level of R&D investment
as well. The Lindahl equilibrium allowed us to determine what should be the optimal R&D incentives
provided to each innovator in a dynamic general equilibrium model with cumulative innovations: each
innovator should receive the social value of her innovation resulting from this equilibrium.
Certainly, as explained in Section 3 (see 3.1.2), the Lindahl equilibrium is clearly non realistic, contrary

to the ones introduced initially by Romer (1990) or Aghion & Howitt (1992) for instance. However, our
goal was not to provide an acceptable decentralized economy but to compute the social value of innovations
and to understand better the consequences of the non-rivalry property of knowledge in an endogenous
growth model. In particular, it is a benchmark to tackle the issue of the division of profit in case of
sequential and cumulative innovations since it enables to determine the optimal sharing of profit among
successive innovators.
To conclude, let us underline that the Lindahl equilibrium is a relevant concept in order to study

the functioning of new technology sectors such as the software or biotechnology industries. Indeed, in
these sectors, knowledge is embodied in intermediate goods that are akin to non rival goods (whereas
they are rival in standard endogenous growth models). For instance, in the case of software, knowledge
can be embodied in a CD-ROM, in a DVD, or even in other immaterial supports (e.g. via downloading)
whose marginal costs of production are almost nonexistent. One faces here a weightless economy in which
non rival goods - that are named “knowledge-products” by Quah (1997, 2001) or “information goods” by
Scotchmer (2005) - do have a price. This price is positive (even though the marginal cost is zero) because
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these knowledge good can be directly protected by patents (several examples can be found in Chantrel,
Grimaud & Tournemaine, 2012). Introducing these new sectors in a endogenous growth model with
vertical innovations is left for future research; in any case, we are convinced that the Lindahl equilibrium
is the proper benchmark since it provides the first-best prices.

6 Appendix

6.1 Law of Knowledge Accumulation

6.1.1 Proof of Lemma 1

Consider any given sector ω, ω ∈ Ω, and a time interval (t, t + Δt). At date t, the knowledge in this
sector is χωt. Let k, k ∈ N, be the number of innovations that occur during the interval (t, t + Δt).
Under Assumptions 1 and 2, the knowledge at date t + Δt, χω t+Δt, is a random variable taking the

values {χωt + kσPωt}k∈N with associated probabilities

{
(
∫

t+Δt
t

λlωudu)k

k! e−
∫ t+Δt

t
λlωudu

}

k∈N

. Accordingly,

the expected level of knowledge at date t + Δt is:

E [χω t+Δt] =
∞∑

k=0

(∫ t+Δt

t
λlωudu

)k

k!
e−
∫ t+Δt

t
λlωudu [χωt + kσPωt]

=




χωt

∞∑

k=0

(∫ t+Δt

t
λlωudu

)k

k!
+ σPωt

(∫ t+Δt

t

λlωudu

)
∞∑

k=1

(∫ t+Δt

t
λlωudu

)k−1

(k − 1)!




 e−

∫ t+Δt
t

λlωudu

The MacLaurin series
∑K

k=0
(
∫ t+Δt

t
λlωudu)k

k! converges to e
∫ t+Δt

t
λlωudu as K → ∞. Thus, one gets:

E [χω t+Δt] =

[

χωte
∫ t+Δt

t
λlωudu + σPωt

(∫ t+Δt

t

λlωudu

)

e
∫ t+Δt

t
λlωudu

]

e−
∫ t+Δt

t
λlωudu

⇔ E [χω t+Δt] = χωt + λσ

(∫ t+Δt

t

lωudu

)

Pωt

Let Λωu denote a primitive of lωu with respect to the time variable u. Rewriting the previous expres-
sion, one exhibits the Newton’s difference quotients of E [χωt] and of Λωt:

E [χω t+Δt] − χωt

Δt
= λσ

Λωt+Δt − Λωt

Δt
Pωt

Finally, letting Δt tend to zero, one gets ∂E[χωt]
∂t ≡ χ̇ωt = λσlωtPωt. This proves that the expected

knowledge in any sector ω, is a differentiable function of time. Its derivative gives the law of motion of
the expected knowledge as given in Lemma 1, in which the expectation operator is dropped to simplify
notations.

6.1.2 Particular Cases

The law of motion derived in Lemma 1 is quite general. Indeed, choosing particular specifications of
the pools Pωt, enables us to obtain several laws of knowledge accumulation commonly used in the fully
endogenous growth Schumpeterian theory. We propose to classify the various models proposed in this
literature in four main ranges according to the considered pools of knowledge ( i.e. the considered types
of knowledge spillovers).

No knowledge spillovers (neither inter nor intra-sectorial knowledge spillovers). In Barro
& Sala-i-Martin (2003 - Ch. 6) or in Peretto (2007), for instance, the knowledge production technology
uses final good only. In this extreme case, there are neither inter-sectorial nor intra-sectorial knowledge
spillovers. A similar framework in which new knowledge is produced only with private inputs can also be
considered using our formalization. Assume that Pωt = 1; accordingly, one has χ̇ωt = λσlωt, ∀ω ∈ Ω. In
this case, the only input used in the production of knowledge is labor.
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Only intra-sectorial knowledge spillovers (no inter-sectorial knowledge spillovers). In the
models proposed by Grossman & Helpman (1991), Segerstrom (1998), Peretto (1999), Acemoglu (2009
- Ch. 14), or Aghion & Howitt (2009 - Ch. 4), among others, it is implicitly assumed that spillovers
are only intra-sectorial (there are no spillovers across sectors): the pool of knowledge used in each sector
comprises only the knowledge previously accumulated within this sector. This type of model can be
obtained assuming that Pωt = χωt, ∀ω ∈ Ω. One gets the following knowledge production functions
χ̇ωt = λσlωtχωt, ∀ω ∈ Ω.

Knowledge spillovers depending on average knowledge. The models of Dinopoulos & Thomp-
son (1998), Peretto (1998), Li (2003), among others, consider firm-specific knowledge production functions
such that, as stated by Laincz & Peretto (2006), “spillovers depend on average knowledge”. Surveying this
literature, these authors formalize this assumption in equation (9) of their paper. One can equivalently
refer to equations (7) and (9) in Jones (1999), to equations (13) and (14) in Dinopoulos & Sener (2007),
to equation (5) in Ha & Howitt (2007), or to the framework used in Aghion & Howitt (2009 - Ch. 4).
Using our notations, this normalization assumption gives the following knowledge production function
χ̇ωt = λσlωtPωt, where Pωt =

∫
Ω

χht

N dh, ∀ω ∈ Ω. Here, the new knowledge produced in any given sector
depends on a knowledge aggregator, which is the average knowledge within the whole economy.
This formalization has been introduced to remove the scale effect property while maintaining the

endogenous ingredients of the seminal literature. Note however that it appears that the cases in which
knowledge spillovers are only intra-sectorial and those in which they depend on average knowledge are
closely related. Indeed, in both of these frameworks, there are no inter-sectorial knowledge spillovers:
since one generally considers the symmetric case in which χωt = χt, ∀ω ∈ Ω (e.g. Aghion & Howitt 1992,
1998 - Ch. 3; Peretto & Smulders 2002), one has Pωt = χt

N

∫
Ω

dh = χt, ∀ω ∈ Ω. Scale effects are canceled
by removing inter-sectorial knowledge diffusion.27

Knowledge spillovers depending on the knowledge level of the frontier firms (“leading-
edge technology”). In the models of Aghion & Howitt (1992), Young (1998), Howitt (1999), Segerstrom
(2000), or Garner (2010), among others, the increase in knowledge consecutive to the occurrence of an
innovation in sector ω at date t depends on the level of knowledge reached in the most advanced sector.
This type of framework can be directly obtained from our formalization. Indeed, assuming Pωt = χmax

t ,
where χmax

t ≡ max {χωt, ω ∈ Ω}, one gets χ̇ωt = λσlωtχ
max
t , ∀ω ∈ Ω.

Global knowledge spillovers. A last range of models assumes that knowledge spillovers are global:
each sector uses the whole disposable knowledge in the economy, that is Pωt =

∫
Ω

χht dh = Kt. Accord-
ingly, one gets the following knowledge production function:

χ̇ωt = λσlωtKt, ∀ω ∈ Ω (23)

Comments on the law of knowledge accumulation (23) are given in Section 2 (see 2.1.2). In particular, we
show how it relates to the ones originally introduced in the seminal papers of Romer (1990) and Aghion
& Howitt (1992) (see the comments of the corollary to Proposition 1).

6.2 First-Best Social Optimum - Proof of Proposition 2

The social planner maximizes the representative household’s discounted utility (3) subject to (2), (1),
(4), (5), (6) and (7). The maximisation program can be written as follows:

Max U=
∫∞
0

ln(ct)e−ρtdt subject to
{ct}t∈[0,∞[

{LY
t }t∈[0,∞[

{lωt}t∈[0,∞[, ω∈Ω

{xωt}t∈[0,∞[,ω∈Ω






Kt =
∫
Ω

χωt dω

χ̇ωt = λσlωtPωt , ω ∈ Ω

Pωt =
∫
Ωω

χht dh , ∀ω ∈ Ω

L = LY
t +

∫
Ω

lωt dω

Yt = (LY
t )1−α

∫
Ω

χωt(xωt)αdω

xωt = yωt

χωt
, ω ∈ Ω

Yt = Lct +
∫
Ω

yωtdω

where ct, LY
t , lωt and xωt , ω ∈ Ω, are the control variables, and χωt, ω ∈ Ω, the continuum of state

variables of the dynamic optimization problem.28 We denote by respectively by ιωt, ω ∈ Ω, νt and μt,
27The link between the scale effect property and knowledge diffusion is analysed in detail in Inter-sectorial Knowledge

Diffusion and Scale Effects by Gray & Grimaud (2013, working paper).
28Accordingly, note that the constraint relative to the law of motion of knowledge is in fact a continuum of constraints.
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the co-state variables associated to the continuum of state variables, to the labor constraint, and to the
final good resource constraint. After some rearrangement, one can write the Hamiltonian as:

H = ln(ct)e−ρt + μt

[

(LY
t )1−α

∫

Ω

χωt(xωt)αdω − Lct −
∫

Ω

χωtxωtdω

]

+ νt

[

L − LY
t −

∫

Ω

lωtdω

]

+
∫

Ω

ιωt

[

λσlωt

∫

Ωω

χhtdh

]

dω

The first-order conditions ∂H
∂ct

= 0 , ∂H
∂LY

t
= 0, ∂H

∂lit
= 0 (i ∈ Ω), ∂H

∂xit
= 0 (i ∈ Ω) and ∂H

∂χit
= − ˙ιit (i ∈ Ω)

respectively yield:29

c−1
t e−ρt = μtL (24)

μt(1 − α)
Yt

LY
t

= νt (25)

ιitλσ

∫

Ωω

χhtdh = νt, ∀i ∈ Ω (26)

μt

[
α(LY

t )1−αχit(xit)
α−1 − χit

]
= 0 , ∀i ∈ Ω (27)

μt

[
(LY

t )1−α(xit)
α − xit

]
+ λσ

∫

Ωi

ιhtlhtdh = − ˙ιit, ∀i ∈ Ω (28)

From (27), one gets:
xit = xt = α

1
1−α LY

t , ∀i ∈ Ω (29)

Plugging (29) in (5), and using the definition of the whole disposable knowledge in the economy (given
by (2)), one gets:

Yt = α
α

1−α LY
t Kt, and thus gYt

= gLY
t

+ gKt
(30)

Moreover, plugging (29) in the final good resource constraint, (7) becomes Yt = Lct+α
1

1−α LY
t Kt. Dividing

both sides of this expression by Yt and using the previous expressions of xt and Yt (respectively given in
(29) and (30)), one obtains Lct/Yt = 1 − α, yielding:

gct = gYt (31)

Finally, the first-order conditions (25) and (28) become respectively

μt(1 − α)α
α

1−α Kt = νt

and
μt

ιit
(1 − α)α

α
1−α LY

t + λσ

∫

Ωi

ιht

ιit
lhtdh = −gιit

, ∀i ∈ Ω (32)

We now consider the usual symmetric case in which lωt = lt and χωt = χt ∀ω ∈ Ω. Accordingly,
one has Pωt = Pt = θχt, ∀ω ∈ Ω, and thus the following expression of the growth rate of the stocks of
knowledge:

gKt = gχt =
χ̇t

χt
= λσθlt (33)

Moreover, (26) becomes ιitλσθKt/N = νt, ∀i ∈ Ω. Hence, one has ιit = ιt, ∀i ∈ Ω. Using (32) and the
labor resource constraint, one gets μt

ιt
= λσθ

(1−α)α
α

1−α N
, and thus:

gμt
= gιt

= −

(
λσθLY

t

N
+ λσθlt

)

= −
λσθL

N
= −

λσθ

γ
(34)

Furthermore, the labor constraint (4) is now:

LY
t + Nlt = L ⇔ LY

t + γLlt = L ⇔ lt =
1
γ

(

1 −
LY

t

L

)

(35)

Finally, log-differentiating (24) gives gct + ρ = −gμt ; using (34) allows us to derive the optimal growth
rate of per-capita consumption:

go
c =

λσθ

γ
− ρ (36)

29Plus the usual transversality conditions.
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The social optimum is completely characterized by (29), (30), (31), (33), (35) and (36); and therefore
by the following system of equations (the superscript “ o” is used for “social optimum”):






go
c = λσθ

γ − ρ (l1)

go
ct

= go
Yt

= go
LY

t
+ go

Kt
= go

LY
t

+ λσθlot (l2)

lot = 1
γ

(
1 − LY o

t /L
)

(l3)

xo
t = α

1
1−α LY o

t (l4)

(37)

From (l1), (l2) and (l3) one gets:

λσθ

γ
− ρ = go

LY
t

+ λσθ lot ⇔ go
LY

t
=

λσθLY o
t

γL
− ρ

In order to solve for LY o
t , we use a variable substitution. Let Xt = 1/LY o

t ; one gets the following
first-order linear differential equation: Ẋt − ρXt = −λσθ/N . Its solution is

Xt =

(

X0 −
λσθ

ρN

)

eρt +
λσθ

ρN
⇔ LY o

t =
1

(
1

LY o
0

− λσθ
ρN

)
eρt + λσθ

ρN

Using the transversality condition, it can be shown that LY o
t immediately jumps to its steady-state

level LY oss

= ρN/λσθ. The transversality condition is only satisfied when LY o
t = LY oss

, ∀t. Thus, one
has go

LY
t

= 0.

Finally, replacing LY o
t in the system of equations (37) and using the assumption N = γL, one obtains

the characterization of the social optimum as exhibited in Proposition 2.

6.3 Schumpeterian equilibrium à la Aghion & Howitt (1992) and private
value of innovations - Proof of Propositions 3 and 4

In this subsection, we provide the detailed analysis of a decentralised economy à la Aghion & Howitt
(1992), we fully characterize the set of equilibria as functions of the public tools vector (ψ,ϕ), and we
compute the private value of innovations. As stated in Definition 2, at each vector (ψ,ϕ) is associated a
particular Schumpeterian equilibrium, which consists of time paths of set of prices

{(
wt (ψ,ϕ) , rt (ψ,ϕ) , {qωt (ψ,ϕ)}ω∈Ω

)}∞
t=0

and of quantities
{(

ct (ψ,ϕ) , Yt (ψ,ϕ) , {xωt (ψ,ϕ)}ω∈Ω , LY
t (ψ,ϕ) , {lωt (ψ,ϕ)}ω∈Ω , {χωt (ψ,ϕ)}ω∈Ω

)}∞
t=0

such that: the representative household maximizes her utility; firms maximize their profits; the final
good market, the financial market and the labor market are perfectly competitive and clear; on each
intermediate good market, the innovator is granted a patent and monopolizes the production and sale
until replaced by the next innovator; and there is free entry on each R&D activity ( i.e. the zero profit
condition holds for each R&D activity). For all the computations, we drop the (ψ,ϕ) part on the variables
to simplify notations.
The representative household maximizes her intertemporal utility given by (3) subject to her budget

constraint, ḃt = wt +rtbt−ct−Tt/L, where bt denotes the per capita financial asset and Tt is a lump-sum
tax charged by the government in order to finance public policies. This yields the usual Keynes-Ramsey
condition:

rt = gct
+ ρ (38)

In the final sector, the competitive firm maximizes its profit given by πY
t = (LY

t )1−α
∫
Ω

χωt(xωt)αdω−
wtL

Y
t −

∫
Ω
(1 − ψ)qωtxωtdω. The first-order conditions yield

wt = (1 − α)
Yt

LY
t

and qωt =
α(LY

t )(1−α)χωt(xωt)α−1

1 − ψ
, ∀ω ∈ Ω (39)

Consider any sector ω, ω ∈ Ω. Given the governmental intervention on behalf of R&D activities, the
incumbent innovator, having successfully innovated at date t, receives, at any date τ > t, the net profit
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πxω
τ = (1 + ϕ) (qωtxωt − yωt) with probability e−

∫ τ
t

λlωudu. Differentiating (9) with respect to time gives
the standard arbitrage condition in each R&D activity ω:

rt + λlωt =
Π̇x

ωt

Πx
ωt

+
πxω

t

Πx
ωt

, ∀ω ∈ Ω (40)

Besides, the incumbent monopoly in each intermediate good sector ω, ω ∈ Ω, maximizes the instantaneous
profit πxω

t , where the demand for intermediate good ω, xωt, is given by (39). After maximization, one
obtains the usual symmetric use of intermediate goods in the final good production and mark-up on the
price of intermediate goods:

xωt = xt =

(
α2

1 − ψ

) 1
1−α

LY
t and qωt =

χωt

α
, ∀ω ∈ Ω (41)

Together with the definition of the whole disposable knowledge in the economy (2), (41) allows us to
rewrite the final good production function (5) and the wage expression given in (39) respectively as

Yt =

(
α2

1 − ψ

) α
1−α

LY
t Kt and wt = (1 − α)

(
α2

1 − ψ

) α
1−α

Kt (42)

The free entry condition condition in any R&D activity ω is given by (10). One has wt = λΠx
ωt, where

λΠx
ωt is the expected revenue when one unit of labor is invested in R&D (from Assumption 1), and wt is

the cost of one unit of labor (given in (42) above). This condition gives the private value of an innovation
in sector ω at date t, as defined in (9):

Πx
ωt = Πx

t =
(1 − α)

λ

(
α2

1 − ψ

) α
1−α

Kt, ∀ω ∈ Ω (43)

Consequently, one has Π̇x
ωt/Πx

ωt = gKt and πxω
t /Πx

ωt = (1+ϕ)λαχωtLY
t

(1−ψ)Kt
, ∀ω ∈ Ω. Replacing in (40), one

rewrite the arbitrage condition as follows:

rt + λlωt = gKt
+

(1 + ϕ)λαLY
t χωt

(1 − ψ)Kt
, ∀ω ∈ Ω (44)

Log-differentiating with respect to time the expression of the final good production function given in
(42), gives:

gYt = gLY
t

+ gKt (45)

Furthermore, using (2), (6), and (41), the final good resource constraint (7) can be rewritten as Yt =

Lct +
[
α2/(1 − ψ)

] 1
1−α LY

t Kt. Dividing both sides by Yt and using the expression of Yt given in (42), one
gets Lct/Yt = 1 − α2/(1 − ψ). Log-differentiating this expression gives:

gYt = gct (46)

As usually in the standard literature, we focus on the symmetric equilibrium, in which lωt = lt and
χωt = χt, ∀ω ∈ Ω.30 Consequently, one has Kt = Nχt. Hence, the growth rate of the whole disposable
knowledge is gKt = gχt . Moreover, the pools of knowledge and the laws of accumulation of knowledge in
each sector ω are respectively given by Pωt = Pt = θχt and χ̇ωt = χ̇t = λσθ ltχt. Therefore, one has:

gχωt = gχt = gKt = λσθ lt , ∀ω ∈ Ω (47)

Finally, we can rewrite (44), the arbitrage condition in any R&D activity ω, ω ∈ Ω, as:

rt + λlt = λσθlt +
(1 + ϕ)λαLY

t

(1 − ψ)N
(48)

30See, for instance, Aghion & Howitt (1992, 1998 - Ch. 3) or Peretto & Smulders (2002). Besides, the relevancy of the
symmetric equilibrium is discussed in details in Peretto (1998, 1999), or in Cozzi, Giordani & Zamparelli (2007).
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The equilibrium quantities, growth rates and prices are characterized by equations (4), (38), (41),
(42), (45), (46), (47) and (48):






Lt = LY
t + Nlt

rt = gct + ρ

xωt = xt =
(

α2

1−ψ

) 1
1−α

LY
t and qωt = χωt

α , ∀ω ∈ Ωt

Yt =
(

α2

1−ψ

) α
1−α

LY
t Kt and wt = (1 − α)

(
α2

1−ψ

) α
1−α

Kt

gYt = gLY
t

+ gKt

gYt
= gct

gχωt
= gχt

= gKt
= λσθlt , ∀ω ∈ Ω

rt + λlt = λσθlt + (1+ϕ)λαLY
t

(1−ψ)N

(49)

From (38) and (48), one gets gct
+ ρ + λlt = λσθlt + (1+ϕ)λαLY

t

(1−ψ)N ; and from (45), (46) and (47), one gets
gct = gYt = gLY

t
+ gχt = gLY

t
+ λσθ lt. Combining these two expressions, and using the labor constraint

(4) and the assumption N = γL gives the following differential equation in LY
t .

gLY
t
−

λ

γL

[

1 +
1 + ϕ

1 − ψ
α

]

LY
t = −

(
λ

γ
+ ρ

)

(50)

Now, we use the following variable substitution: Xt = 1/LY
t . Log-differentiation with respect to time

writes gXt
= −gLY

t
. Substituting into (50) gives

− gXt −
λ

γL

[

1 +
1 + ϕ

1 − ψ
α

]
1

Xt
= −

(
λ

γ
+ ρ

)

⇔ Ẋt −

(
λ

γ
+ ρ

)

Xt = −
λ

γL

[

1 +
1 + ϕ

1 − ψ
α

]

The solution of this first-order linear differential equation is

Xt = e(
λ
γ +ρ)t

(

X0 −
1

λ
γ + ρ

λ

γL

[

1 +
1 + ϕ

1 − ψ
α

])

+
1

λ
γ + ρ

λ

γL

[

1 +
1 + ϕ

1 − ψ
α

]

Accordingly, one gets:

LY
t =

1

e(
λ
γ +ρ)t

(
1

LY
0
− 1

λ
γ +ρ

λ
γL

[
1 + 1+ϕ

1−ψ α
])

+ 1
λ
γ +ρ

λ
γL

[
1 + 1+ϕ

1−ψ α
]

Using the transversality condition in the program of the representative household, we can show that

LY
t immediately jumps to its steady-state level LY ss

=
(

λ
γ + ρ

)
/
(

λ
γL

[
1 + 1+ϕ

1−ψ α
])
. The transversality

condition is only satisfied when LY
t = LY

0 = γL
(

λ
γ + ρ

)
/
(
λ
[
1 + 1+ϕ

1−ψ α
])

, ∀t. Thus, one has gLY
t

= 0.

Substituting into the system (49), one proves Propositions 3 and 4 in which we provide the complete
characterization of the decentralized Schumpeterian equilibrium, and the private value of an innovation,
respectively.

6.4 Lindahl equilibrium and social value of innovations - Proof of Proposi-
tions 5 and 6

The representative household maximizes her intertemporal utility given by (3) subject to her budget
constraint, ḃt = wt +rtbt−ct−Tt/L, where bt denotes the per capita financial asset and Tt is a lump-sum
tax charged by the government in order to finance public policies and fund R&D expenditures. This
yields the usual Keynes-Ramsey condition:

rt = gct
+ ρ (51)
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Differentiating (12) with respect to time gives an arbitrage condition stating that the rate of return
is the same on the financial market and on any R&D investment:

rt =
vωt

Vωt
+

V̇ωt

Vωt
, ∀ω ∈ Ω (52)

As usual in the standard literature, we focus on a symmetric equilibrium in which lωt = lt and
χωt = χt, ∀ω ∈ Ω.31 Consequently, since N = γL, one has Kt = Nχt = γLχt and L = LY

t + γLlt. The
pools of knowledge and the laws of accumulation of knowledge in each sector ω are now respectively given
by Pωt = Pt = θχt and χ̇ωt = χ̇t = λσθltχt. Therefore, one has

gχωt = gχt = gKt = λσθlt, ∀ω ∈ Ω (53)

Using (2), (6), and (15), the final good production function (5), the wage (13), and the final good resource
constraint (7) can be rewritten respectively as

Yt = α
α

1−α LY
t Kt, wt = (1 − α)α

α
1−α Kt, and Yt = Lct + α

1
1−α LY

t Kt (54)

Dividing both sides of the expression of the final good resource constraint given in (54) by Yt gives
Lct/Yt = 1 − α. Log-differentiating with respect to time this expression as well as the final good
production function given in (54), one gets:

gct = gYt = gLY
t

+ gKt (55)

From (17) and (54), one gets the following social value of one unit of knowledge χht:

Vht = Vt =
(1 − α)α

α
1−α γL

λσθ
, ∀h ∈ Ω (56)

Using (15), (56), the marginal profitabilities of knowledge given in Lemma 3 can be rewritten as:

vY
ωt = α

α
1−α LY

t , vx
ωt = −α

1
1−α LY

t and vχh
ωt =






(1−α)α
α

1−α (L−LY
t )

θ , if h ∈ Ωω

0, if h /∈ Ωω

, ∀ω ∈ Ω

Accordingly, the instantaneous social value of one unit of knowledge χωt, at date t, is:

vωt = vY
ωt + vx

ωt +
∫

Ω

vχh
ωt dh = (1 − α)α

α
1−α L, ∀ω ∈ Ω (57)

From (56) and (57), one has V̇ωt/Vωt = 0 and vωt/Vωt = λσθ/γ, ∀ω ∈ Ω. Thus, from the arbitrage
condition (52), one obtains the equilibrium interest rate:

rt =
λσθ

γ
(58)

The repartition of labor and the growth rates are characterized by (4), (51), (53), (55) and (58).
From (51), (55) and (58), one gets gct = gYt = gLY

t
+ gKt = λσθ/γ − ρ; and from (4) and (53), one gets

gKt
= gχt

= λσθ
(
1/γ − LY

t /γL
)
. From these two expressions, one obtains gLY

t
− λσθ

γL LY
t = −ρ. Using

the variable substitution, Xt = 1/LY
t , one gets a first-order linear differential equation:

gXt +
λσθ

γL

1
Xt

= ρ ⇔ Ẋt − ρXt = −
λσθ

γL

Its solution is Xt = eρt
(
X0 − λσθ

ργL

)
+ λσθ

ργL . Hence, one obtains

LY
t =

1

eρt
(

1
LY

0
− λσθ

ργL

)
+ λσθ

ργL

Using the transversality condition of the program of the representative household, it can be shown
that LY

t immediately jumps to its steady-state level LY ss

= ργL/λσθ. The transversality condition is
only satisfied when LY

t = LY
0 , ∀t. Hence, one has LY

t = ργL/λσθ = LY o, ∀t, and thus go
LY

t
= 0.

31See footnote 30.
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Thus, the repartition of labor, the quantities of intermediate good, the growth rates, and the quantities
of knowledge are

LY
t = LY o =

ργL

λσθ
; lωt = lo =

1
γ
−

ρ

λσθ
, ∀ω ∈ Ω;

xωt = xo = α
1

1−α
ργL

λσθ
, ∀ω ∈ Ω;

gct
= gYt

= gKt
= gχωt

= go =
λσθ

γ
− ρ, ∀ω ∈ Ω;

χωt = χo
t =

Ko
t

γL
, ∀ω ∈ Ω; and Ko

t = egot (59)

This proves that the quantities and growth rates computed in the Lindahl equilibrium are indeed those
of the first-best social optimum. The system of prices is as follows.

• The prices of rival goods are wo
t = (1 − α)α

α
1−α Ko

t ; ro
t = λσθ

γ ; qo
ωt = qo

t = χo
t = Ko

t

γL , ∀ω ∈ Ω.

• Regarding the pricing of knowledge, one has the following results.

• The personalized prices (Lindahl prices) of one unit of knowledge χωt for the final good
sector, the intermediate sector ω, and R&D sector h, h ∈ Ω, are vY o

ωt = α
α

1−α
ργL
λσθ , ∀ω ∈ Ω;

vxo
ωt = −α

1
1−α

ργL
λσθ , ∀ω ∈ Ω; and vχho

ωt =






(1−α)α
α

1−α

θ

(
L − ργL

λσθ

)
, if h ∈ Ωω

0, if h /∈ Ωω

, ∀ω ∈ Ω.

• The instantaneous income received by the producer of one unit of knowledge χωt is vo
ωt =

vY o
ωt + vxo

ωt + vR&Do
ωt = vo = (1 − α)α

α
1−α L, ∀ω ∈ Ω, where vR&Do

ωt =
∫
Ω

vχho
ωt dh = (1 −

α)α
α

1−α

(
L − ργL

λσθ

)
, ∀ω ∈ Ω.

This proves Proposition 5. Finally, as seen in (12), an innovation consists in an increase in knowledge of
Δχωt = σPωt new units; moreover, from (56), the social value of one unit of knowledge χωt at date t is
V o

ωt =
∫∞

t
vo

ωte
−
∫ s

t
rududs = (1 − α)α

α
1−α γL/λσθ. Hence, the social value of an innovation in any sector

ω is Vo
ωt = σPo

ωtV
o
ωt, where P

o
ωt = θχo

ωt = θKo
t /γL. Finally, one gets:

Vo
ωt =

(1 − α)α
α

1−α

λ
Ko

t (60)

This proves Proposition 6.
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