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Abstract

This paper studies majority voting over the size and location of a public good when voters
differ both in income and in their preferences for the public good location. Public good
provision is financed either by a lump sum tax or by a proportional income tax. We ana-
lyze both the simultaneous and the sequential determinations of the public good’s size and
location. We show that, while the choice of the type of public good follows the traditional
median logic, the majoritarian determination of the taxation rate need not coincide with the
preferences of a median income citizen.

With lump sum financing, income heterogeneity plays no role and the sequential equi-
librium consists of the median location together with the public good level most-preferred
by the individual located at the median distance from the median. This policy bundle also
constitutes an equilibrium with simultaneous voting in the special case of a uniform bivari-
ate distribution of individuals’ income and location. With proportional taxation, there is
no policy equilibrium with simultaneous voting. We offer a complete characterization of the
equations describing the sequential equilibrium in the general case and we show why and
how our results depart from those most-preferred by the median income individual located
at the median distance from the median. We also compare these majority voting allocations
with the socially optimal one.

Keywords: proportional income taxation, bidimensional policy and trait spaces.
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1 Introduction

Our main objective in this paper is to contribute to the analysis of majority voting over
public good provision when both the policy space and the space of voters’ traits are multidi-
mensional. Models of democratic public good provision are of interest by themselves, since
they shed light on the determinants of the size and type of public goods offered in democ-
racies. Such models are also at the center of the emerging literature on nation formation,
whose main objective is to understand the determinants of the number, size and stability of
nations. Although our paper does not attempt to introduce such considerations, surveying
this literature allows us to take stock of how public good provision under majority voting
has been analyzed and to improve upon the models developed.

Contributions to this literature differ according to several dimensions. First, they ei-
ther deal with the case where the policy choice is horizontal (with citizens selecting the
location of their capital or the proportion of a fixed budget to be allocated to a specific
public good), vertical (with citizens typically choosing the quantity of a public good), or
where both the horizontal and vertical components are voted upon. Second, the citizens
may be heterogeneous in their preferences for the public good, in their income, or in both.
Papers differ also in whether the distribution of the source of heterogeneity (income and/or
preferences) is restricted to be uniform, or whether more general distribution functions are
considered. Finally, they differ in how the public good is to be financed: by a lump sum tax
or by a proportional income tax. Table 1 summarizes how articles differ according to these

dimensions.

[Insert Table 1 around here]

Our paper generalizes the existing literature by incorporating simultaneously the follow-
ing characteristics: we study the determination by majority voting of both the (horizontal)
type and (vertical) size of a public good, when voters differ both in income and in their
preferences for the type (i.e., location) of good provided. The distribution of voters’ traits is
given by a generic bivariate distribution function (i.e., we go beyond the uniform distribution
case). We also study both the simultaneous and the sequential determinations of the type
and size of the public good.

We now explain why the generalizations we propose are relevant and how the results
we obtain qualify and extend those obtained in the literature. Decisions regarding the type

and size of the public good to be provided are obviously closely linked and would be better



understood with a simultaneous voting model. Unfortunately, moving to more than one
dimension leads to a discontinuous leap in complexity, as it is well known that simultaneous
majority voting on multidimensional policy spaces generically has no equilibrium.! Our
first objective is to clarify under which circumstances (i.e., characteristics of the bivariate
distribution of individual traits) a majority voting (or Condorcet) equilibrium exists when
voting simultaneously over the type and size of the public good. The answer to this question
depends on the type of public good financing considered: lump sum or with a proportional
income tax. In the first case, we obtain that a majority voting equilibrium exists only if
the distribution of preferences in the economy is median uniform. This condition, which we
precisely define, is very stringent (although satisfied by the uniform distribution) and non
generic. In the case of proportional income taxation, a majority voting equilibrium never
exists.

These results explain why the few papers (Alesina et al. (1999), Etro (2006), Gregorini
(2009), Perroni and Scharf (2001))? studying both public good dimensions assume that
majority voting is sequential. At first glance, a sequential mechanism looks safe from the
point of view of existence as soon as preferences are regular enough (in particular, single-
peaked on each dimension) since each vote is unidimensional. Note however that, unless its
is assumed that the two components are totally separable, the backward resolution will lead
to a reduced utility function in the first stage which need not be single-peaked. In order
to circumvent this difficulty, existing papers make additional assumptions. First, they all
consider an ordering of the votes (first on size, then on type) which guarantees the existence
of an equilibrium: Alesina et al. (1999) recognize for instance that “this assumption is
made for tractability, in order to avoid issues of multidimensional voting, which is not our
focus.” Second, most papers restrict themselves to lump sum taxation. In our paper with
income and preference heterogeneity, lump sum financing results in the median location being
chosen together with the size most-preferred by the individual with the median distance to
the median agent. This is the same result as the one obtained by Alesina et al. (1999),
Perroni and Scharf (2001) and Etro (2006), which all consider that agents do not differ in
income. This shows that introducing income heterogeneity has no impact on the results in
the presence of lump sum taxation.

We then study the financing of the public good through proportional income taxation.

Such an assumption is much closer to practice than lump sum financing. Observe that

'More precisely, the set of regular (in particular convex) preference profiles with a majority equilibrium
in multidimensional policy spaces is generically empty (Banks and Austen-Smith (1999)).
2See also Alesina, Baquir and Hoxby (2004).



citizens’ income does matter in such a context, as people varying in income favor different
quantities of public good even if they have the same preference for its location. Also, as people
differ in two dimensions, we describe the polity by a two-dimensional statistical distribution
that need not be uniform on any dimension.®> Assuming uniformity is indeed a very special
case and makes it difficult for the reader to assess which results (such as the features of the
equilibrium policy) may be generalized to other distributions. Also, assuming uniformity
eliminates the possibility of discussing the impact of some societal characteristics like for
instance polarization (Haimanko, Le Breton and Weber (2005)) or correlation between taste
and income on the policy outcome.

We show that, while the choice of the type of public good follows the traditional median
logic, the majoritarian determination of the taxation rate is more subtle and need not coincide
with the preferences of a citizen with a median trait. More precisely, we take as benchmark
the natural extension of the sequential equilibrium identified by Alesina et al. (1999) in
a lump sum setting (median location together with public good amount favored by the
individual with the median distance to the median location and the median income level)
and we show that this benchmark corresponds to the sequential equilibrium with proportional
taxation if (i) the distributions of income and of location are independent from each other, (ii)
the location distribution is uniform, and (iii) the income distribution is symmetrical. In that
case, the sequential voting equilibrium and the benchmark both lead to the socially optimal
public good’s level and location. If only the first two assumptions are satisfied, then the size
of the public good is smaller (resp., larger) than the level identified by this benchmark if the
income distribution is everywhere concave (resp., convex). For instance, if income follows a
Beta distribution that is positively skewed (as in all OECD countries), then the equilibrium
public good level is lower than the one identified by our benchmark, while both levels are
larger than socially optimal. As for the correlation between income and location preferences,
we investigate numerically the case where both distributions are uniform. We obtain that the
benchmark corresponds to the case where they are either perfectly correlated or independent
from each other. In the case where both traits are positively but imperfectly correlated, the
equilibrium public good level is lower than the one identified by this benchmark, which is

socially optimal.*

3We follow the same approach as the one adopted by Le Breton and Weber (2003) in the traditional
unidimensional model.

41t is difficult to compare our results with the two other papers studying proportional taxation. Bolton
and Roland (1997) assume that people differ only in income and vote over the size of the public good. They
obtain the classical result that the voter with the median income is decisive. Gregorini (2009) introduces
heterogeneity in both preferences and income but only considers two income groups. Moreover, he assumes
that the public good amount is determined by a social planner rather than by majority voting.



The paper is structured as follows. Section 2 presents the model. Section 3 studies the
case where the public good is financed by lump sum taxation while section 4 is devoted
to the financing with proportional income taxation. In both sections, we start with the
simultaneous voting game before analyzing the sequential voting game. Section 5 compares
the equilibrium allocation with sequential voting with the benchmark allocation obtained
from Alesina et al. (1999) and with the socially optimal allocation. We also show in this
section how equilibrium allocations are impacted by the shape of the income distribution
and by its correlation with the location distribution.

We now turn to the setting of our model.

2 The Model

We consider an economy populated by a continuum of citizens of unitary mass. This economy
has to select a public policy consisting of two components: a horizontal component, which is
described as a continuous variable in the interval [0, 1], and a vertical component described
as a continuous variable in ®,. While the model can accommodate several alternative
interpretations, it is useful to think of the public policy as a decision on both the type p
of a pure public good, facility or service to produce (the horizontal dimension) and on the
quantity or size g of this particular public good (the vertical dimension). A nice illustration
is the case where the horizontal dimension is simply the location of the public good.

Citizens are heterogeneous in two dimensions. First, they differ according to their pref-
erences for the different types of public goods. In that respect, each citizen is described by
a parameter « in [0, 1]. Second, each citizen is described by his/her private income y in the
interval [0,7].°> The statistical distribution of types across citizens is described by a joint
distribution F' on [0, 1] x [0, 7] which is assumed to be absolutely continuous with respect to
the Lebesgue measure on %?. We will denote by f its density and by F,, and F, the marginal
of F on [0,1] and [0, 7], respectively.

The payoff of an individual of type («,y) when the policy (p, g) is selected is equal to

V(g) [N =l —pl] +y —t(y)

where V' > 0, V" < 0,V(0) > 0 and where A > 1 is a parameter and ¢(y) denotes the tax paid
by such a citizen. Therefore, the parameter o represents the most-preferred type of public

good by a citizen with type «, irrespective of his/her income. Note also that preferences are

>This is without loss of generality since we can set 7j = 400, for instance to consider popular income
distributions such as the Pareto and Beta distributions.



quasi-linear with respect to income which is implicitly assumed to be equivalent to private

consumption.® We focus on the case where the tax is an affine function of income - i.e.,
t(y) = ay + b,

where a € [0,1] and b € [O, 5] . The technology used to produce the public good in quantity g
is assumed to exhibit constant returns to scale irrespective of the type of public good which
is selected — i.e., up to a normalization, g units of numeraire are needed to produce g units

of public good. The government budget constraint is then given by

= o [ sty

= b+ayy (2)

Yu = /Olda/ogyf(a,y)dy

is the average income in the economy.”

where

Combining all these elements, we deduce that the (indirect) utility of a citizen of type

(e, y) for the policy (p,a,b) is
V(b-+ aya) A — o —pll + (1 — @)y — b

We restrict ourselves to two categories of tax functions belonging to the affine family:
pure lump sum taxation (b > 0,a = 0) and pure proportional taxation (b = 0,a > 0).®
We start with the simpler case, lump sum taxation, then moving to proportional taxation,
where additional effects crop up. In both cases, we first assume that individuals vote simul-
taneously over the type and the size of the public good. We show that the conditions (on

the distribution of traits) to have an equilibrium (a Condorcet winning policy pair —i.e., a

6Most contributions to the nation formation literature consider a quasi-linear setting. This simplifying
assumption has two important implications. First, it simplifies the analysis as we rule out direct income
effects (preferences for public goods are unrelated to income levels). Second, it implies that (Pareto) efficiency
is equivalent to the maximization of social surplus which is here V(g) [ fol A= Ja—pl] Fada} — g. We come
back to the optimal allocation in section 5.

TAll our results are robust to the introduction of a distortionary cost of taxation as in Bolton and Roland
(1997), in the form of a small quadratic cost that decreases each individual’s tax proceeds by & %2y where §
is a positive parameter.

8We leave the analysis of the (simultaneous or sequential) determination of the more general 3-parameter
(a, b and p) model for future research.



policy pair that is preferred by a majority of voters to any other feasible policy pair) are very
restrictive. We next introduce a sequential way to choose the two policies, assuming that
people vote first over the tax policy and then over the type of public good. This sequence
of votes seems reasonable and is indeed the one most often studied in the literature.” We
identify the equilibrium policy pair under this sequence of votes, and we study how it is

affected by the bivariate distribution of voters’ traits.

3 Lump sum taxation

In this section, we consider the case analyzed by Alesina et al. (1999) and Etro (2006) where
t(y) = b — i.e., a tax which is the same for all citizens. The (indirect) utility of a citizen of

type («,y) for the policy (p,b) is'”

Ulp,b) =V (b)) [A = la =pl[+y —b. (3)

We see immediately that the individual’s income plays no role in determining his prefer-
ences for either b or p. Obviously, individuals’ most-preferred policy position p corresponds
to their own position «. As for their most-preferred lump sum tax b, conditional on p = «,

it is given by the following first-order condition
AV'(b) =1,

and is thus the same for all individuals. Figure 1 illustrates the preference upper contour
sets of four individuals, when V (b) = v/b and A = 3/2. Comparing the top left panel with the
two bottom ones (where individuals differ in income but share the same position «) confirms
that the upper contour sets are not affected by the individual’s income level. Comparing
the two top panels allows to see the impact of modifying the individual’s position « on his

preferences.

Insert Figure 1 around here

We first study the simultaneous determination of p and b.

9 Alesina et al. (1999) motivate the order of this sequence by arguing that it “resembles common budget
procedures in which the size of the budget is decided before its composition.” The opposite voting sequence,
when type is chosen before size, is more complex, because the public good’s type has an impact on individuals’
most-preferred size. We compare the two sequential voting procedures with lump sum taxation in De Donder
et al. (2011).

10We assume that individuals have enough income or (unmodelled) wealth to pay any lump sum transfer
lower than or equal to b.



3.1 Simultaneous vote over both policy dimensions

Our objective in this section is to assess under which circumstances (i.e., distributions of
individuals’ traits) a Condorcet winning pair (p, b) exists when voting simultaneously over p
and b. We proceed as follows. In this section, we assume that the indirect utility functions
of the citizens are strictly quasi-concave (in Appendix 1, we show that a sufficient condi-
tion for quasi concavity is that V' is concave enough and/or \ is large enough). Under this
assumption, an alternative (p,b) is a Condorcet winner if and only if there exists a neigh-
borhood centered on (p, b) which does not contain an alternative defeating (p,b) —i.e., (p,b)
is a Condorcet winner if and only if (p, b) is a local or differential Condorcet winner (Banks
and Austen-Smith (1999)).

We first characterize the set of voters who would favor a policy change in the generic
direction d to some given policy bundle. By looking at a specific direction, we show that
any equilibrium policy must entail the provision of the public good with the median most-
preferred location. Using this information, we characterize the tax component of the equilib-
rium policy as well. Finally, by looking at all possible deviations, we show that the conditions
that the bivariate distribution of characteristic F' must satisfy for a Condorcet winner to exist
are very restrictive, and satisfied mainly by the uniform distribution.

Starting from a generic policy bundle (p, b), the individuals who (weakly) favor a deviation
in the direction d are such that

<d, (8U§;,b)’ 8Ug;,b))> >0,

where (.,.) denotes the scalar product and where!!

oU(p, b) :
' e Cla—p] -1
LD v sl -1,
%ﬁ’b) = V(b) if a > p,

= V() ifa<p,

= 0if a=0p.

If we denote by d, the horizontal component of the vector d, and by d, its vertical

component, we obtain that the set of individuals favoring the direction d (starting from

1 Gtrictly speaking, the function U is not differentiable with respect to p when p = a, but since p = «
corresponds to the peak of the function, we set its derivative equal to zero. Not having to deal explicitly
with the non-differentiability at one point allows us to simplify a lot the exposition of the results, without
of course affecting them.



(p,b)) is given by!?

{(a,y) such that o > p and d,V(b) + d, [V'(b) [\ — a + p] — 1] > 0}
U{(a,y) such that & < p and — d,V(b) + dp, [V'(b) [N\ —p+ o] — 1] > 0}.

If we take a direction such that d, > 0 and d, = 0 (i.e., an increase in p without
modification of b), we obtain the straightforward result that all individuals with o < p
oppose this move while all those with o > p favor this move. We then obtain that, to be
immune to deviations in this direction, the starting pair must be such that p = a,,eq, with

Qmeq the unique solution of the equation

In words, any public good location different from the median most-preferred one in the

population would be defeated by a proposal moving this location closer to the median.
From now on, we assume that p = a,,.¢ as initial location and we focus on the tax

component of the policy bundle. If we consider a deviation d such that d, > 0, we obtain

that the set of individuals (weakly) favoring this deviation from (ceq,b) is given by

V) 1 }
V' (b)

4LVE) 1
dpV'(b) ~ V'(b) } '

{(a,y) such that o > aeq and o < aypeq + A +

(4)

U {(a,y) such that @ < apeq and a > Qpeq — A +

It is convenient to denote by (5 the variable A — |« — aypeq|- Loosely speaking, this variable
measures how much an individual located at « values a public good of type a,,.4. Note that
[ varies in the interval [n, \] where n = A — Max (ned, | — Qumeq). Formally, let H denote
the joint distribution of (5,y) in [n, A] X [0,7] and let Hz and H, be the corresponding two

marginal distributions. We have
Hs(z) = Fo(z — A+ amea) + [1 — Fo (A + Qpea — )]
leading to the first marginal density

h@((ﬂ) = fa (.17 — A + amed) + fa()\ + Quned — IE)

12The assumption that F is absolutely continuous with respect to the Lebesgue measure guarantees that
the set of individuals with @ = g has zero measure. To simplify notation and save space, we restrict
ourselves to the description of sets with strictly positive measure.



We can now express (4) in a more concise way:

{(% y) such that & > ameq and 5 > V/l(b) de/(((;?))}
L pV(b)
U {(aay) such that o < aeq and 8 > %0 + de/( )}

If d, = 0 and d, > 0, we obtain that the individuals who favor the direction d are

characterized by
1

> —. )
It is easy to interpret this inequality. Observe from (3) that the utility of individual (5, y)
when p = qyeq is

U(med, ) = BV (b) +y — b.

The first-order condition for b is then given by
BV (b) —1=0.

Condition (5) then means that all individuals whose most-preferred lump sum tax is larger
than b support a move in any direction d that increases b with p constant (d, = 0,d, > 0).
By contrast, individuals whose most-preferred lump sum tax is strictly lower than b would
support a move in the opposite direction, —d. For a majority of voters to prefer b to a move

in either direction d or —d, we must have

Bmedvl(b) = 1
1, 1
= V' ,
(Bmed)
where f3,,., is the median value of j3:
Hy (Bd) = 5
B med/) 2

We have thus proved the following:

Proposition 1 Assume that t(y) = b and that individuals vote simultaneously over p and
b. Then, if a Condorcet winning pair (p,b) exists, p = Qmeq and b is the most-preferred lump

sum tax of the individuals with the median distance to the median c.

It is interesting to note that the most-preferred lump sum tax of the median individual

(such that & = peq, or B = A) is not part of the Condorcet winning policy pair. Indeed,

9



it is easy to see that voters (other than ;,.q) unanimously support a decrease in taxation
from the policy (mea, V' - (%)) The reason for this is intuitive: since p = a,.q, the median
individual «,,.q obtains exactly the kind of public good he most prefers. He is then the
individual whose marginal valuation of the public good is the largest in the polity. In other
words, if this voter has his say on the lump sum tax, everyone would like to decrease this

tax because they all value the public good less (at the margin) than him.

We now turn to the conditions under which the policy pair (cmeq, V'~ ( 3 ! d)) is a Con-
dorcet winner. A first necessary condition is that, whatever d, and for any d, > 0, the set
of people who (weakly) favor a move in the direction d has a measure at most equal to one

—1-) to obtain

half. This set of individuals is given by (4) where we replace b by V' ( -

{(cv, y) such that o > ayeq and a < ¢y (dp, dp) }
U{(c,y) such that & < ayeq and a > ¢y(d,, dy)}, (6)

where

d a1
() = M (s 4 (1= o) + Bea VO ) ).
med
dp

1 1
bp(dypody) = Min (amed—<x—6med>+ﬁmedd—bv<w (5—d>>,am6d).

The first necessary condition is then that the measure of this set equals at most one half:

(7)

N | —

Fa(¢1(dp7 db)) - Fa(gbz(dpv db)) <

To shed some light on this condition, we first assume that d, = 0. In that case, condition

(7) simplifies to

N —

Fa(91(0, db)) — Fa(9(0,dp)) <

where

61(0,dp) = amea + (A

- /Bmed) > AOmed,
¢2(0> db) = Omed — ()‘ - 6med) < Omed-

In that case, the set of voters who prefer the direction d (i.e., an increase in b without
change in the location) is given by an interval of people centered on the individual with the
median most-preferred location. Recall that people close to the median location have the
highest willingness to pay for this kind of good — it is thus no surprise that an interval of

people around that median prefer a higher value of b. The fact that this interval is exactly

10



centered on e crucially depends on the assumption that d, = 0: in that case, people
equidistant from «,,.q have exactly the same preference for an increase in b.

If we rather consider that d, > 0 (together with d, > 0), the interval of people who prefer
an increase in b moves to the right: distance from ;.4 is not the only thing that matters
anymore, since people to the right of a,,.qs benefit from d, > 0 while people to the left of
Qmeq dislike this component of d. As d, becomes large compared to dp, ¢,(d,,dy) becomes
larger than a,,.s and the only people favoring such a move have a larger-than-average value
of . Similarly, if we consider d, < 0 (together with d, > 0), the interval of people who
favor direction d shifts to the left, and as d,,/d;, becomes sufficiently large (in absolute value),
¢1(dy, dp) becomes smaller than a;,.q and only people with lower-than-average values of a
are in favor of direction d.

When d, < 0, the set of people who (weakly) favor a move in the direction d is given by

{(c,y) such that o > peq and o > ¢, (dp, dp) }
U{(c,y) such that & < ayeq and a < ¢y(d,, dp)}, (8)

which is the complement to set (6). The necessary and sufficient condition for (p,b) to be a
Condorcet winning pair is then that both sets (6) and (8) have a measure at most equal to

one half, with translates to

Fo(1(dy, ) — Fuly(dy, o) = 5. 9

By definition of condition (9) is satisfied when d, = 0. On the other hand, this

measure will generically move away from one half as d, is increased (for any constant d;),

med>

except in very special circumstances. Note that condition (9) can be reformulated as
~ ~ 1 ~
Ful@mea+d+d) = Ful@mea —d+d) = 5 forall d € |~d.d] | (10)
where F,(Qneq) = % and d is such that Fo(amed + @ — Famed — c?) = % When d = c?,
this implies F,(meaq + 26/[) — Fo(amed) = % and therefore F,(meq + ZC/i\) = 1. Similarly,
when d = —cz this implies Fi,(@med) — Fo(Qmed — 2c/l\)) = % and therefore F,,(ameq + 23) =0.

Hereafter, the distributions satisfying (10) are called median uniform. We have then proved:

Proposition 2 Assume that t(y) = b and that individuals vote simultaneously over p and

b. A Condorcet winning pair (p,b) exists only if the distribution of a is median uniform.

The uniform distribution is of course median uniform, but there are other examples.

Take for instance any function h on [1, 2] such that h(t) = k(1 —t) for all t € [1,1] and

11



1
J2 h(t)dt = ;. Let f be the function defined on [0, 1] as
4

h(3 —t) forall ¢t € [0, §]
fla) = h(t) for all t € 1, 2]
h(3—t) forallte [3,1]
It is straightforward to check that f is the density of a median uniform distribution.
Despite some flexibility, it should however be clear that median uniformity is not generic —
i.e., the condition is violated for some small perturbations of any median uniform distribution.
Since a Condorcet winning pair (p,b) generically does not exist, we consider in the next

section a sequential determination of the two policy dimensions.

3.2 Sequential vote

In this section, we proceed as in Alesina et al. (1999) and consider a sequential majority
procedure where citizens vote first on the lump sum tax b and then on the type p. It is
immediate to see from (3) that there is a majority equilibrium in the second stage which is
independent of the decision on b in the first stage. This majority equilibrium corresponds to
the median value o4 of .

Solving backward, in the first stage the individuals anticipate the value of p that will be
chosen in the second stage and vote according to their utility function (3) where we make

use of p = a,,eq and of the definition of 3 to obtain
U(med, ) = BV (b) +y — b.

This utility function is concave in b, and individual §’s most-preferred value of b (given

that o = aypeq), which we denote by b*(3), is the solution to
BV () —1=0 (11)
in the case of an interior solution. We have that

b*(B) = 0if pV'(0) <1 - i.e., if B is low enough and
bv'(B) = bif BV'(b) > 1 —i.e., if 3 is large enough.

Using the implicit function theorem, we obtain that

b(3) _ V'(b)
98 BV)

> 0. (12)

12



The sensitivity of the most-preferred tax of an individual to his distance to the median type
depends on the shape of V.
Figure 2 illustrates the iso-tax lines in the (3,y) space. They are vertical, since the

income dimension does not play any role here.
Insert Figure 2 around here

Applying the usual median voter theorem, we obtain that the result of the vote is b =
b*(Bpeq) — 1-€., the lump sum tax most-preferred by the individuals located at the median
distance from the median, which is the rule derived by Alesina et al. (1999). Note that, in
stark contrast with the preceding section, a sequential equilibrium always exists, whatever
the distribution F'.

We have obtained the following proposition.

Proposition 3 Assume that t(y) = b and that individuals vote sequentially, first over the
lump sum tax b and then over the public good type p. The unique equilibrium of this voting
procedure is given by p = Qumeq and b = b*(B,,.q4) — i-e., the chosen type is the median one,
while the lump sum tax is the one most-favored by the individuals with the median distance

from the median on the location dimension.

Corollary 1 The Condorcet winning pair (p,b) obtained with simultaneous voting over p
and b, if it exists, is identical to the equilibrium of the sequential voting game where b is

chosen first and p second.

When the public good is financed with a lump sum transfer, the income heterogeneity
among individuals plays absolutely no role. We now turn to the richer case where propor-

tional income taxes are used.

4 Proportional income taxation

In the case of a proportional income tax ¢(y) = ay, the (indirect) utility of a citizen of type

(cv,y) for the policy (p,a) is

W(p,a) =V(g(a)) A= la—=pl[+ (1 —a)y, (13)
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where g(a) is given by the government budget constraint (2) when b = 0. We proceed as
in the previous section: we first show that there is in general no Condorcet winner when
individuals vote simultaneously over p and a. We then study the sequential game where
individuals vote first over a and then over p. We provide in Appendix 2 the proof that
indirect utilities are quasi-concave with proportional income taxation if V' is concave enough
and/or \ is large enough. We then assume quasi-concavity of indirect utility preferences in

this section.

4.1 Simultaneous vote over p and «a

We start by looking at the optimal policy (p*(a,y),a*(a,y)) of a citizen of type («,y).
Clearly, p*(a,y) = a: whatever the size of the public good, the individual would like its
favored type to be provided. We then obtain that a*(«a,y) is solution to the following first-

order condition

V'(g(a)) = AyLM. (14)

It is immediate to see from (14) that the most-preferred tax rate of an individual now
depends on his income, in sharp contrast with the lump sum financing case. Figure 3 depicts
the preference upper contour sets of four individuals when V(b) = v/b and A\ = 3/2. Not
surprisingly, the most-preferred tax rate is decreasing with the individual’s income, since

taxes owed increase with income.
Insert Figure 3 around here
We proceed as in the previous section, starting from a generic policy bundle (p,a) and

looking for necessary conditions that its components have to satisfy in order for the pair to

be a Condorcet winner. Starting from (p, a), the individuals who favor a deviation in the

<d, <8W(p, a)j oW (p, a))> >0,

direction d are such that

dp da
where

OW (p,a ,
TP, g fa)yums A~ o))~
oW (p,a) :
o V(g(a)) if a > p,

= —Vi(g(a)) if o < p,

= Oifa=p



We denote as previously by d, the horizontal component of the vector d, and by d, its
vertical component. The set of individuals favoring the direction d (starting from (p,a)) is

given by

{(a,y) such that o > p and d,V(b) + d, [V'(g(a))ym [\ — o+ p] — y] > 0}
U{(a, y) such that o < p and — d,V(b) + do [V'(g(a))ym [\ —p+a] —y] > 0}.

We use the same argument as in the preceding section to show that a Condorcet winning
policy pair must involve p = qu,eq: if it were not the case, a majority of voters would like to
deviate in the direction of the median o while keeping the tax rate a constant.

From now on, we assume that p = a,,.q and focus on the tax component of the policy
bundle. If we consider a deviation d such that d, > 0, we obtain that the set of individuals

favoring this deviation from (,eq, @) is given by

{(a,y) such that a > qeq and y < V' (g(a))yw + Z—Z (g(a))} (15)

d

U {(a,y) such that a < aeq and y < V' (g(a))yy — d—pV(g(a))} :

If d, = 0, we obtain that all individuals who (weakly) favor the direction d (an increase

in b while keeping p constant) are such that

y < BV'(g(a))ym- (16)

Observe that the first-order condition for an individual (3, y) faced with p = eq is given
by
y = BV'(g(a))ym- (17)

To illustrate the joint effect of y and 5 on the optimal choice, we denote by 7(/3,a) the
income level that satisfies (17) —i.e., the income of an individual of type 5 who most prefers
a proportional tax rate of a when faced with p = a,,eq. Condition (16) shows that all
individuals who have an income lower than § are in favor of an increase in a (i.e., d, > 0).
Figure 4 (a) illustrates condition (16) in the (o, y) space. Assume that we start with the
value of a that is most-preferred by the individual with the median income and the median
location, so that §(\,a) = Ymeq- Among individuals located at cv,eq, those who favor an
increase in a are those whose income is lower than the median income in the population.
Individuals located further from ;s on the horizontal axis have a lower marginal valuation
of the public good. As the benefit from this good decreases with the distance between

individual location « and median location, so does the threshold value of income below
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which voters favor an increase in the tax rate. To satisfy the optimal behavior described by

(17), p and y must be comonotonic (in other words, they must change in the same direction).
Insert Figure 4 around here

One immediately infers from this figure that the policy bundle composed of a4 and of
the most-preferred tax rate of the individual with both the median location and the median
income is always defeated by a majority of voters who prefer a lower tax rate (and the
same location). The intuition is similar to the one exposed in the lump sum case, and is
based upon the observation that individuals with the median location are those who have
the largest direct benefits from the public good. Consequently, a move to decrease the tax
rate from their most-preferred level is favored not only by all individuals with above-median
income, but also by poorer-than-median individuals who are located far enough from the
median location. This holds true whatever the distribution function F' or H.

Let us denote by (eq, a°) the policy pair that is such that exactly one half of the polity is
in favor of an increase in the tax rate when the location of the public good is kept unchanged.
It is clear from above that this policy is the most-preferred one of an individual with median
location and with a larger-than-median income: §(\,a°) > yeq. For instance, in the case
where the distributions of locations and of income are both uniform (and independent), the

tax rate a° is given by
A
oy Y
| aviatan 2 ds =12
n -7
Making use of the first-order condition of the individual §(\, a®), we obtain that
A A

~>\ O: =
@) An o 22—17

N =

i.e. that (A, a®) > Ymea as explained above.

It is interesting to note that, in the case of the uniform and independent distributions
of § and y, the tax rate a° is also the most-preferred tax of an individual with the average
income gy, and with the median distance to the median location, 5,,.;: 9(Bed @°) = Yun-
To prove this, it is enough to observe that the first-order condition for an individual with

B =Xandy =y(X a®),
A

AV (gla)yss = 5
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is the same as the first-order condition for individual with g = 3,,.; and y = yu

(A - i) V'(g(a))ymr = yu-

We summarize our results so far in the next Proposition.

Proposition 4 Assume that t(y) = ay and that individuals vote simultaneously over p and
a. Then, if a Condorcet winning pair (p,a) exists, it is such that p = Quueq and that a is the
most-preferred proportional tax of individuals with median location and with a larger-than-
median income. In the special case of uniform and independent distributions of o and y, this
policy a is also the one most-preferred by an individual with the average income yy; and the

median distance to the median location, B,,.q-

We now look at the set of people who prefer an increase in taxation coupled with an
increase in the location of the public good (i.e., a move d, > 0 and d, > 0), starting from
(Qmea, @). This set is defined in (15) and is represented on Figure 4 (b). The threshold
income below which individuals favor a move in the direction d remains decreasing in the
distance between individual’s location and policy location, as in Figure 4 (a), but we now
observe a discontinuity for a = a,,.q = p. To the left of .4, individuals do not favor an
increase in p as it moves the location of the public good further away from their bliss point,
while to the right of a,,.q individuals do favor such a move. The size of the discontinuity
increases with d,,, the horizontal component of the move considered (for a given d,). More
precisely, as d, increases the threshold income level decreases by V(g(a))/d, to the left of
Qmeq and increases by the same amount V' (g(a))/d, to the right of aeq-

The conclusion we draw from Figure 4 is that the existence of a Condorcet winning
policy pair when voting simultaneously over the two dimensions is extremely unlikely. Even
if we start from a policy pair ((uneq, a®) such that exactly one half of the polity would like
to increase the tax rate while keeping the location constant, when we consider directions
where both dimensions are modified simultaneously, Figure 4 (b) shows that the bivariate
distribution of o and y must exhibit a lot of symmetry for the policy pair to remain immune
to these deviations. Moreover, even in the case of the uniform independent distributions,
there is no Condorcet winner. This can be seen from the fact that the income distribution
is bounded above and that (A, a®) > yp. This last observation means that, if d, is large
enough, then the threshold income of an individual who is located immediately to the right
of (neq reaches the upper bound of the distribution. As is shown on Figure 4 (c), we obtain
in that case that a majority of voters favor a decrease in p coupled with a decrease in the

tax rate. We then obtain
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Proposition 5 Assume that t(y) = ay and that individuals vote simultaneously over p and
a. There is no Condorcet winning pair (p,a), even in the case of uniform and independent

distributions of o and y.

We now turn to the sequential determination of both policy dimensions.

4.2 Sequential vote

In what follows, we consider a sequential majority procedure where citizens vote first on the
tax rate a and then on the type p. We see immediately from (13) that there is a majority
equilibrium in the second stage which is independent of the decision on a in the first stage.

This majority equilibrium, which we denote by ps, corresponds to the median value of «:

P2 = Qimed-

Solving backward, citizens are aware that their choice of @ has no influence at all on the
result of the second stage vote. Their most-preferred value of a, denoted by a(/3,y), is then
obtained as a solution to the following first-order condition

V'(g(a) = ﬁyLM (18)

This first-order condition is sufficient since the second derivative of the indirect utility func-
tion
V'(g(a)) = 6V'(g(a))
is negative. If
BV (0)yy —y <0, then a(B,y) =0
and if
BV (ys)ysr —y > 0, then a(B,y) = 1.

From the implicit function theorem and the second order conditions, we deduce immedi-

ately that, if a(f,y) is an interior solution, then

%aBy) _ V'g@ym _ o (19)

op pV"(g(a))

and

By L _, (20)

Ay BV (g(a))

Not surprisingly, citizens endowed with a large income or distant from the median type of

public good have a low most-preferred proportional tax rate. From (19) we observe that the

18



sensitivity of the most-preferred tax rate to the distance from the median type depends on
the curvature of V. This also guarantees a further degree of freedom for the model.'?
Figure 5 depicts the iso-tax curves in the type space [, A] x [0, 7] —i.e., the locus of types

(B,y) whose most-preferred tax policy is a.
Insert Figure 5 around here

From (19) and (20), we deduce that the slope dy/df of an iso-tax curve corresponding
to a = a(f,y) is equal to
Vi(g(a))yar,

which does not depend on 3 nor on y —i.e., the iso-tax curves are affine functions. In order to
find the equilibrium tax rate emerging from the first stage vote, we have to find the median
iso-tax line — i.e. the iso-tax line that separates the set of types into two halves, with one
half located above the line (and favoring a smaller tax rate) and the other half located below
(and supporting a larger tax rate).!* Formally, the equilibrium first stage tax rate, which we

denote by ay, is the solution to

A Be(a)
W(a) = / a8 / (B, y)dy = 3, (21)

where

o(a) = yuV'(9(a)).

Proposition 6 Assume that t(y) = ay and that individuals vote first over a and then over
p. The equilibrium policy pair is composed of the median policy location cu,.q together with

the proportional rate a; as defined in equation (21).

In the next section, we compare the public good levels and location emerging from this
sequential procedure under the proportional and lump sum financing schemes, as well as
their socially optimum levels. We also assess the role played by the bivariate distribution of

voters’ types in these comparisons.

13In the sense that even if we assume a high 3, meaning that people have similar preferences for location,
we can mitigate this effect by selecting an appropriate utility function. See also (12).

14 Given the absolute continuity of F with respect to the Lebesgue measure, the set of individuals located
exactly on the median iso-line has zero measure.
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5 Comparison between equilibrium and optimal allo-
cations

Up to now, we have been mainly concerned with the existence and the characterization of
equilibrium public good’s type and level under various arrangements. In this section, we
concentrate on sequential voting procedures, and we compare the equilibrium public good’s
type and level obtained with lump sum versus proportional financing to each other and to a
normative benchmark. This benchmark is easy to ascertain with quasi-linear preferences: it
is straightforward to check that the optimal policy (p*, g*) is such that p* = a;peq and g* is
solution of the equation:

Vig') = — (22)

where 3,, = fol A — o — apmed|] Fada.

We denote by g” and ¢ the equilibrium public good levels generated by sequential voting
(first over g and then over p) under lump sum and proportional financing, respectively. We
summarize the results obtained up to this point in the first three lines of Table 2. Observe
that both sequential procedures defined above result in the socially optimal public good’s
type, ameq-'> The remainder of the section then focuses on a comparison of public good
levels, with the objective to shed light on the relationships between g%, ¢ and g*, and on

the role played by the distribution of types in this comparison.
[Insert Table 2 around here]

We obtain from Table 2 that the ranking of g% (obtained from equation (11) with 3 =
Bmea) and g* (obtained from (22)) simply relies on the skewness of the distribution of tastes
(i.e., on the comparison of 3,,.; with 3;,). The comparison with g” is more complex because,
unlike g” and ¢*, ¢* is affected by the income distribution as well as by the taste distribution.
As we report in the third line of Table 2, the value of ¢* is determined by the proportional tax
rate a; implicitly defined by equation (21). This tax rate a; is most-preferred by individuals
with median preference f3,,., and some income level denoted by y and implicitly defined by
(18).

In order to compare g” with ¢* and ¢*, we define in the last row of Table 2 a natural
benchmark. This benchmark for the proportional tax rate, which we denote by a,,cq, corre-

sponds to the most-preferred tax rate of citizens with a median income y,,.q and a median

15This is due to the linear specification of the disutility from consuming a public good’s type distant from
one’s own most-favored type. See also Gregorini (2009) for a normative analysis when taxes are linear.
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distance to the median, f3,,., (see equation (18)). The corresponding public good level is

med
then g(med) = @meayar- Observe from the above formulas that ¢” and g(ameq) differ only
according to the income level of the decisive individual. Comparing the income levels y and
Ymeq under various assumptions regarding the distributions of income and taste will then al-
low us to compare g¥ to g(@meq), and even to g and g* when the comparison of § and 4,,cq
is extended to yj;. The benchmark g(a,,.q) is also interesting per se, because it constitutes
the natural extension to our setting of the equilibrium identified by Alesina et al. (1999)
(with lump sum financing).

We first study the case where the distributions of income and of location are independent
from each other. We then lift this assumption in order to understand the role played by the

correlation between types.

5.1 Independent distributions
We prove the following proposition in Appendix 3.

Proposition 7 Assume proportional income taxation, that individuals vote first over the
public good’s size and then over its type, and that the two individual traits 5 and y are in-
dependently distributed. If (i) the taste parameter B is uniformly distributed and (ii) the
distribution of income y is symmetrical around vy, then the equilibrium proportional public
good level is the one most-preferred by the individual with the median income and the median
distance to the median when faced with p = meq (i.€., g© = g(ameq)). If condition (i) holds
together with H, convex (resp., concave), then g(amea) < g* (resp., g(amea) > g*).

Observe first that the situation where the bivariate distribution H is uniform (which is
the one most of the literature has focused on, such as in Etro (2006), Gregorini (2009) and
Perroni and Scharf (2001)) is a special case where assumptions (i) and (ii) in Proposition 7
are satisfied. We now show how Proposition 7 allows us to rank the various levels of public
good reported in Table 2. Assumption (i) in Proposition 7 ensures that 5,,., = [, (and
hence that g© = ¢*) while (ii) guarantees that y,.q = yar. Put together, we show in the
appendix that they imply that a; = ayeq, and thus (see Table 2) that § = yeq —i.e., that
9" =g" = g(amea) = g*.

If condition (i) in Proposition 7 is satisfied while H,, is convex, Proposition 7 states that

g(amea) < g7 and we obtain that

~

Y
BmedyM

Ymed
BmedyM

=V'(arym) < V'(ameaynr) =
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If we further make the empirically relevant assumption that ,,.q < yar,'® we obtain that

med 1
V/ arynn) < V' (@manr) = 5 <
med med

i.e., that the public good is overprovided under our benchmark, and even more so with the
sequential procedure with proportional financing (g7 > g(ameq) > g* = g*).'7

Proposition 7 has not exhausted the set of possible (and interesting) distributions of
income. We now provide numerical illustrations of the comparison between g”, ¢” and ¢*
when the two individual traits are independently distributed, with Hgz uniform and H, a Beta
distribution. Figure 6 (a) varies the skewness of the income distribution for the family of
Beta distributions with linear frequencies (i.e., when either the first or the second parameter
of the distribution is equal to 1). It reports the values of the proportional tax rates aj,
ameq and also of a*, defined as the rate that ensures the provision of the socially optimal
amount of public good (i.e., a*yy = ¢*).'® The first condition of Proposition 7 is satisfied
by assumption, so that ¢* = ¢* = a*yy;. A skewness of zero corresponds to the uniform
distribution (Beta(1,1)), for which, according to Proposition 7, g(ames) = g, so that the
sequential procedure and our benchmark both correspond to the socially optimal public good
level (gF = g(amea) = g*). A negative skewness within the family of linear frequencies means
that the function H, is convex. Proposition 7 then shows that gt > 9(@meaq), but we are
not able to compare them analytically to g* since we have that y,eq > ya. Figure 6 (a)
shows that a; > a* > aeq (i€, gt > g* > g(ameq)) if the skewness of H, is very negative,
and that a* > a; > ameq (€., g° > g7 > g(ameq)) if the skewness is negative but small
in absolute value. In words, our benchmark leads to underprovision (compared with both
the socially optimal level and the result of a sequential voting procedure) in all cases with
negative skewness. Moreover, the sequential procedure overprovides public good (compared
to the social optimum) if the skewness is very negative. When the skewness of H, is positive
in Figure 6 (a), we obtain that H, is concave, and by Proposition 7 that g < g(ameq). In
that case, we obtain that 1,,.q < yar, so that we cannot compare analytically g*’ and 9(Cmed)
to g*. We obtain numerically that a* < a1 < apmeq (i-€., g* < g¥’ < g(@meq)) in Figure 6 (a):

both the sequential procedure and our benchmark lead to overprovision of the public good.

16Note that the assumption that H, is convex neither ensures nor precludes that ymeq < yars.

"In the case where assumption (i) in Proposition 7 is satisfied together with H, concave, proving that
the public good is underprovided under proportional taxation would require the unreasonable assumption
that Ymes > yn. However, if assumption (i) is dropped as well so that #med > Bg—;, we obtain that
gP S g(a'med) < g*

18We have chosen to report tax rates in Figures 6 and 7 because the scale is easier to interpret. The text
concentrates on public good levels, the link between comparison of tax rates and of public good levels being
straightforward since g = ayys for all values of a.
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Insert Figure 6 around here

Figure 6 (b) performs the same exercise for another family of Beta income distribution
functions, namely those with single-peaked and non-linear frequencies.!” A zero skewness
corresponds to a symmetrical h,, and thus by Proposition 7 to g© = g(ames) = g*. Observe
also that H,, is neither convex nor concave, so that we cannot apply Proposition 7 when the
skewness is not nil. We learn from Figure 6 (b) that a,..q < a1 < a* (i.e., g(ameq) < g* < g*)
when skewness is negative and that a* < a; < ayneq (1-€., g(Ameq) > gt > g*) when skewness
is positive. That is, both the sequential procedure with proportional taxation and our
benchmark underprovide (resp., overprovide) public good when the skewness of the income

distribution is negative (resp., positive).

In the next section, we go beyond the independent distributions assumption and study

the impact of the correlation between income and location.

5.2 Correlation between income and location

When the two marginal distributions are correlated, the picture becomes more complex.
Figure 7 shows both a,,.q and a; as functions of the correlation between 5 and y when Hpg
and H, are uniform and when the Gumbel copula is used (see Appendix 4 for details). With
By so that g = g*. With H, uniform, we obtain that

YM = Ymed, SO that we infer that a* = a,,.q. In words, the uniformity of the two marginal

Hp uniform, we have that 3,,., =
distributions ensures that both the sequential procedure (over public good’s size first and
then type) with lump sum financing and our benchmark lead to socially optimal public good
levels: g“ = g(amed) = g*. Moreover, in the case of independence between H, and Hg, we
know from Proposition 7 that g = g(ameq). Figure 7 shows that a,,.q = a; also when the
correlation between income and position is perfect; a simple look at Figure 5 should convince
the reader that this is so, since the median iso-tax line remains the same in both the cases
of perfect correlation and of independence. We further learn from Figure 7 that a,,.q > a4
when the correlation is strictly in between zero and one. This means that, except in the
cases of zero or perfect correlation between income and taste, the sequential determination
of the proportional tax rate a first and then p leads to systematic underprovision of public
good in the case illustrated in Figure 7, while the other equilibria studied ensure the socially

efficient public good level: g”" < g% = g(ameq) = g*

YMore precisely, we study Beta(c, d) distributions where one parameter is equal to 2. Negatively skewed
distributions correspond to ¢ > 2 and d = 2 while positive skewness corresponds to ¢ = 2 and d > 2. The
case with zero skewness corresponds to Beta(2,2).
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Insert Figure 7 around here

6 Conclusion

In this paper, we study majority voting over the size and location of a public good. Individ-
uals differ both in income and in their preferences for the public good location, so that the
polity is summarized by a bivariate distribution of these two traits. Public expenditures are
financed by affine income taxation: we consider both the case of a lump sum tax and of a
proportional income tax. We study both the simultaneous and the sequential determinations
of the public good size and location. We show that, while the choice of the type of public
good follows the traditional median logic, the majoritarian determination of the taxation
rate is more subtle and need not coincide with the preferences of a median income citizen.
With lump sum financing, income heterogeneity plays no role and the sequential equilibrium
consists of the median location together with the public good level most-preferred by the
individual located at the median distance to the median (as in Alesina et al. (1999)). This
policy bundle also constitutes an equilibrium with simultaneous voting in the special case
of a median uniform bivariate distribution. With proportional taxation, there is no policy
equilibrium with simultaneous voting even if the bivariate distribution is uniform. We offer
a complete characterization of the equations describing the sequential equilibrium in the
general case (no assumption on the bivariate distribution of traits). We show why and how
our results depart from those obtained in a natural benchmark where the public good level
chosen is the one most-preferred by the individual with the median distance to the median
and the median income. We obtain a lower public good level than this benchmark when the
income distribution is concave, such as with positively skewed Beta distributions, and when
the correlation between income and location is positive but not perfect. We also compare
majority voting allocations with the socially optimal one.

This paper is a first step towards a more general analysis of the majoritarian decision
process when the policy set is multidimensional. Further research would shed additional light
on the robustness of the conclusions established in the present paper. First, we would like to
know to which extent these results remain valid for a broader class of settings and of utility
functions. Is the quasi-linear form an inescapable constraint? The specific utility functions
used in this paper are common in the nation formation literature which has motivated us,
but we conjecture that some features of the equilibrium outcome can be extended to more

general formulations. A second promising direction of research would consist in comparing
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the equilibrium reached under sequential voting with another popular solution due to Kramer
(1972) and Shepsle (1979), in which separate committees vote on the various issues at hand.
De Donder, Le Breton and Peluso (2011) contain some preliminary answers to these two
questions. A third direction of research would consist in integrating the majority voting

approach described in this paper to a more general game of nation formation.

7 Appendix

In the two following subsections, we investigate the conditions under which the indirect
utility functions of the citizens in the lump sum case and in the proportional case are strictly
quasi- concave. The developments are based on a straightforward application of the classical
differential test of strict quasi-concavity as exposed for instance in Green, Mas-Colell and
Whinston (1995)).

7.1 Appendix 1

In this first appendix, we demonstrate that, under some appropriate conditions, the (indirect)

utility U of a citizen of type (o, y) in the case of lump sum taxation
Ulp,0) =V () [A = la =pll +y = b

is strictly quasi-concave. Without loss of generality, consider the case where a@ > p. The
bordered Hessian matrix D?U(p,b) attached to U is here
V') (A —a+Dp) V') VIIO)(AN—a+p)—1
V'(b) 0 V(b)
V(D) (A—a+p)—1 V(b) 0
The utility function is strictly quasi-concave if and only if the determinant of this matrix

is positive —i.e., if
2(V'(0)(A —a+p) = )VOV'(0) = (V(0)* V"(B)(A — a+p) > 0,

which is equivalent to the inequality

2V7(b)
2(V'(0))> = V()V"(b) > ———.
VIO = VOV'() > 1o
The right hand side is decreasing in p. Therefore, it is enough to check this inequality
forp=0—i.e.,
2(V'(b)* = V(b)V"(b) .1
2V7(b) A—a
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The relevant (i.e., Pareto) range of values of b is the interval [V’ -t (ﬁ) Vil (%)] The
above inequality is tighter to satisfy when o = 1 and V’(b) is small. Therefore, it will hold
true for all b € [V'7' () ,V'7* (3)] and all o € [0,1] if

ROV
X 2v) A—1

ie. if VOV (b) .
V) A1)

which holds true when V' is concave enough or/and X is large enough. For the sake of

illustration, consider the isoelastic case?® V(b) = b° with § € ]0,1[. The above condition

simplifies to

(1 B 6) b(5—1 > 1 )
2 A(A=1)
Since p°~1 > %, the inequality will hold true if
(1-=19) 1
% A1
or equivalently if
5 < A—1
A+1

7.2 Appendix 2

In this second appendix, we prove that under appropriate conditions, the (indirect) utility

W of a citizen of type (a,y) in the case of proportional taxation,
W(p,a) =V(ayu)) [A = la = p|] + (1 — a)y,

is strictly quasi-concave. Without loss of generality, we consider the case where o > p. The
bordered Hessian matrix D?W (p, a) attached to W is here

V"(ayar) (yr)* A —a+p) V'(aya)ynr V'(ayar)ysr(A — a+p) —y
V' (aynr)ym 0 V(ayn)
Vi(aym)yy(A —a+p) -y V(ayu) 0

The utility function is strictly quasi-concave if and only if the determinant of this matrix

is positive —i.e., if

2 (V' (aya)ynr(A = a + p) = o) V{ayae) V' (ayar)ys—(V (ayan))* V" (ayar) (yar)* (A=atp) > 0,
20In the isoelastic case , the sufficient condition can be improved to the condition (1;;5) > ﬁ or even to

(1+9)
20

the condition > ﬁ if we dont look for a condition uniform with respect to a.
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which is equivalent to
2(V'(aysm)ym( X — a+p) —y) V'(aynr) — V(ayar) V" (ayar)yse (A — o+ p) > 0,

and, after some rearrangements, to

2V (ayn)y

yar [2(V!(ann)” = V(agan) V(o) | > T2

As in Appendix 1, the right hand side is decreasing in p. Therefore, it is enough to check
this inequality for p = 0 — i.e. that

yar 2 (V' (ayar))? = V(ayar) V" (ayu) 1
7 > ,
y 2V (ayar) A —«

or equivalently that

o Viam)V o) 1
2V (aynr) A—a

PIV (ayar)
)

The relevant range of values of ayy; is the interval [V’ -t (L) SVt (iﬂ The

A-Dynm Aym
above inequality is tighter to satisfy when a = 1 and V'(ayy,) is small. Therefore, it will

hold true for all ayy; € [V”l (ﬁ) LVl (ﬁ)] and all « € [0, 1] if
~ym V(ayu)V" (aym) 1
y 2V (ayar) AA=1)

which, as in the lump sum case, holds true when V is concave enough or/and A is large
enough. In the isoelastic case V(ayy) = (aya)? with § € ]0,1[, and since (aya)® ‘yy >

y%%, the inequality will hold true if

(1-6 1
% A_1

as in appendix 1.

7.3 Appendix 3: Proof of Proposition 7

With independent distributions of 5 and y, we have h(5,y) = hg(8)hy,(y) and a4 is solution

to the equation

| ma(a) 8 (a))ds = 5. 2
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Under assumption (i), Hz(/) is the uniform distribution over [n, \] and a; solves

A A — n
Hy (B (a)df = —— (24)
7
while a,,eq 18 such that \
+7n 1
Hy(TSO (Amea)) = 9

The two tax rates do not coincide in general. It is of interest to identify the properties of
H, which would lead to a; being smaller than, equal to, or larger than the benchmark a,cq.

We have that, if H, is concave (respectively, convex), then

/ H, (B (a))dB < (respectively, > ) Hy()\—go(a)).

Since
¢'(a) = y3,V"(9(a)) <0,
and H, is increasing, we have proved the last sentence of the statement of Proposition 7.
The case where H, has concave and convex sections is also important as reflected by the
standard assumption of single-peaked density. If we assume that h, is symmetrical around
yp = Y/2, we obtain that a,.q is given by

At
2

=Ym-

RN

2 (amed) =

Replacing a by ameq in (24), and using the symmetry of H,, we obtain

An A+n

e I : [_ B ]
/nHy(ﬁMyM)dﬁ = /77 Hy(ﬁMyM)dﬁ+/n 1 Hy(ﬁM?JM) s

Atn
— / dgzﬂ’
" 2

i.e., we have proved that a,,.q = a;.

7.4 Appendix 4: Gumbel copula and the correlation between in-
come and location

To assess the intrinsic role of independence, it is useful to introduce a measure of departure
from independence. From Sklar’s theorem (Sklar (1959)), there exists a joint distribution C

on [0, 1]2, called a copula, such that its two marginals are uniform on [0, 1] and

H(B,y) = C(Hp (B), Hy ())-
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As an illustration, we now assume that both Hg and H, are uniformly distributed, and

that the distribution H is obtained using the Archimedean copula

H(B,y) = @ (®(Hz (8)) + ®(H, (1)),

where ® is called the generator function. We provide an example with the so-called Gumbel

copula, where the generator function is given by
®(z) = (In(z)) "

Increasing c results in an increase in the correlation between 5 and y: the correlation is equal

to zero (independence) when ¢ = 0, and increases to one as ¢ becomes large enough.
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Table 1: Survey of the nation formation literature

Public good's choice Voters' heterogeneity Uniform Taxation
Horizontal | Vertical | Both | Preferences | Income | Both | Distribution | Lump sum | Proportional
of traits
Alesina Spolaore (1997) X X X X
Le Breton Weber (2003) X X X
Bolton Roland (1997) X X X
Jehiel Scotchmer (1997) X X X X
Jehiel Scotchmer (2001) X X X X
Alesina, Bagir and Easterly (1999) X X X
Alesina, Baquir and Hoxby (2004) X X X X
Perroni Scharf (2001) X X X X
Etro (2006) X X X X
Gregorini (2009) X X X X

Individuals differ in several dimensions (income, race, ethnicity, religion) but all these are summarized in a unidimensional index of distance, as in models of horizontal
choices with heterogeneity in preferences.



Table 2: Summary of results
Type p Level g
Optimal Qmed V'(g*) = ﬁ
Sequential-Lump sum Qmed V(g") = ﬁ
Sequential-Proportional | qned g¥’ = ayyyr with'V'(g?) = ied y% for some 7
Benchmark Umed | Y(@med) = ameayns With V'(g(amea)) = g2

medYM

IThe proportional tax rate aj is implicitly defined by equation (21) while the income level

¢ is implicitly defined by (18).




Figure 1l : Preference contour sets in (p, b) space with lump sum taxation
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Figure 2: Iso-tax curves with lump-sum taxation
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Figure 3 : Preference contour sets in (p, a) space with proportional taxation
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Figure 4. Set of individuals favoring a move in direction d,

starting from (eq,2)
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Figure 5: Iso-tax curves with proportional taxation
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Figure 6.nb

Figure 6 : Equilibriumtax rates as a function of skewness for Betadistributions
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Figure 6.nb

Panel (b) : Beta incomedistributionswithsingle - peaaked non - linear frequency
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Figure 7 - Gumbel copulawithHz and Hy uniform
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