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Abstract

We study majority voting over a bidimensional policy space when the voters' type space is

either uni- or bidimensional. We study two voting procedures widely used in the literature.

The Stackelberg (ST) procedure assumes that votes are taken one dimension at a time according

to an exogenously speci�ed sequence. The Kramer-Shepsle (KS) procedure also assumes that

votes are taken separately on each dimension, but not in a sequential way. A vector of policies

is a Kramer-Shepsle equilibrium if each component coincides with the majority choice on this

dimension given the other components of the vector. We study the existence and uniqueness

of the ST and KS equilibria, and we compare them, looking e.g. at the impact of the ordering

of votes for ST and identifying circumstances under which ST and KS equilibria coincide. In

the process, we state explicitly the assumptions on the utility function that are needed for

these equilibria to be well behaved. We especially stress the importance of single crossing

conditions, and we identify two variants of these assumptions: a marginal version that is

imposed on all policy dimensions separately, and a joint version whose de�nition involves both

policy dimensions.

Keywords: Unidimensional and bidimensional type space, single crossing, one-sided sepa-

rability

JEL Codes: D72, H41



1 Introduction

It is well known that majority voting su�ers from what Bernheim and Slavov (2009) call the

\curse of multidimensionality": when the policy space is su�ciently rich, there is no policy

option that gathers a majority of votes when faced with all other possible options {i.e., there

is no Condorcet winner (see e.g. Plott 1967, Davis, DeGroot and Hinich 1972, McKelvey,

Ordeshook and Ungar 1980, Banks, Duggan and Le Breton 2006 and Banks and Austen-Smith

1999).

In all rigorous formal versions of this result the respective roles of the properties of the

types' distribution function and of utility functions are not always clearly disentangled. For

instance, in the spatial model of politics (where preferences are Euclidean), the symmetry of

preferences is imposed and the focus is exclusively on the distribution of voters' types. The

�rst objective of this paper is to �ll this small gap and to o�er a pedestrian analysis of the

existence of a Condorcet winner with a unidimensional type space.

Faced with this \curse of multidimensionality", the applied political economy literature

has followed various directions, including the obvious one of restricting the policy space to

be unidimensional. Several lines of attack recognizing the issue of multidimensionality have

consisted in a detailed game theoretical description of the collective decision making process

and a subsequent analysis of its equilibrium outcomes. One example of such an approach is the

analysis of sequential bargaining by Baron and Ferejohn (1989) and Banks and Duggan (2000).

Another, more recent, example consists in the analysis of an electoral competition game with

nonseparable preferences, where candidates di�er in their exogenous characteristics (Krasa and

Polborn (2009)) or strengths on certain policy dimensions (Krasa and Polborn (2010)) and

where they are uncertain about voters' preferences. In this paper, we adopt a bidimensional

policy space and we focus on two widely used approaches having in common that votes never

take place simultaneously on all dimensions.

The �rst approach assumes that citizens vote sequentially on each dimension. An exogenous

ordering of the dimensions is considered and, at each voting stage, the outcomes of the preceding
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votes are known to the voters. For instance, when there are two dimensions, a �rst majority

vote is organized over one of the policy dimensions and is followed by a second majority vote

over the other dimension. We call Stackelberg (ST) equilibria the policies that can be supported

at equilibrium for a particular ordering of the dimensions. This sequential resolution has been

used by many authors in political economy models (see e.g. Alesina, Baqir and Easterly 1999,

Alesina, Baqir and Hoxby 2004, Cremer, De Donder and Gahvari 2004, Cremer et al. 2007,

De Donder, Le Breton and Peluso 2009, Etro 2006, Gregorini 2009, Haimanko, Le Breton and

Weber 2005).

The second approach assumes instead that there is no sequential ordering of the votes, but

that they are taken separately on each dimension. Under the presumption that all dimensions

except one have been settled, citizens cast their vote over the residual dimension. A solution

is consistent if the vector of policies obtained through that procedure is self-supporting in a

Nash-like manner. This idea has been independently developed by Kramer (1972) and Shepsle

(1979) and hereafter we will call Kramer-Shepsle's equilibria (KS) the policy vectors meeting

this consistency condition. More precisely, a vector is a Kramer-Shepsle's equilibrium if, for any

dimension, the corresponding component in the vector coincides with the majority choice on this

dimension given the other components of the policy vector. Shepsle considers the case where

the collective decision processes may di�er across dimensions and demonstrates existence under

quite general conditions. He also illustrates through examples that the set of KS equilibria may

display peculiar features. To the best of our knowledge, the only other theoretical contributions

are two unpublished papers by Banks and Duggan (2004) and Duggan (2001) who examined the

existence issue from a general perspective. This concept has also been studied by the applied

political economy literature, e.g. by De Donder and Hindriks (1998), Diba and Feldman (1984),

Nechyba (1997), Sadanand and Williamson (1991).

In this paper, we provide an analysis of the KS and ST equilibria in a general framework

with a bidimensional policy space. We study their existence, uniqueness and we compare them,

looking e.g. at the impact of the ordering of votes for ST and identifying circumstances under
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which ST and KS equilibria coincide. In the process, we state explicitly the assumptions on

the utility function that are needed for these equilibria to be well-behaved. We especially stress

the importance of single-crossing conditions, and we identify two variants of these assumptions:

a \marginal" version that is imposed on all policy dimensions separately, and a \joint" ver-

sion whose de�nition involves both policy dimensions. We perform this analysis �rst with a

unidimensional type space, and then with a bidimensional type space.

Our results run as follows. Starting with a unidimensional type space, we illustrate the

\curse of multidimensionality" (of the policy space): when we assume that the utility function

satis�es both marginal and joint single-crossing, there is generically no Condorcet winner and,

perhaps more surprisingly, in most cases and for any policy proposal, it is possible to �nd a

direction that is favored by almost all voters. We then study the KS and ST equilibria in this

setting. We show that under marginal single-crossing, the KS solution(s) coincide with the

set of componentwise ideal point(s) of the median type. Under strict concavity of the utility

function, this implies that there exists a unique KS solution which is the unique ideal point of

the median type. Assuming in addition strategic complementarity between policy dimensions

results in the reduced utility function in the �rst stage of voting (given the anticipated choice in

the second stage of voting) being single-crossing, so that the KS equilibrium coincides with the

ST equilibrium. Although single-crossing and single-peakedness are two logically independent

properties, we provide conditions on the derivatives of the direct utility function that ensure

that a majority of the electorate has single-peaked reduced utility functions.

We next study a speci�c environment that has received a lot of attention in di�erent lit-

eratures (e.g. on nation formation) and which does not satisfy the marginal single-crossing

property. In this environment, voters di�ering in their preference for the type of a public good

have to choose both its type and its quantity. While the majority-chosen public good's type

does not depend on its quantity, the opposite relationship is not true, a situation we dub one-

sided separability. The literature has focused on the ST equilibrium where voters choose �rst

the public good's quantity. We show that this equilibrium corresponds to the KS equilibrium,

3



but that the ST equilibrium with the opposite sequence of votes (which, to the best of our

knowledge, has not been studied previously) is more complex, with the identity of the second-

stage decisive voter being a�ected by the �rst-stage voting decision. We provide a thorough

analysis of how �rst-stage voting is impacted in that case (i.e., how voters bias their �rst-stage

voting choices when anticipating the impact on the second-stage decisive voter's identity).

We then move to a bidimensional type space. There is little we can say at this level

of generality about the existence or characteristics of the Stackelberg equilibria, and their

relationship with the KS equilibria. We thus content ourselves with providing an example with

a discrete number of types di�ering both in the location and in the shape of their indi�erence

curves and where i) there are multiple KS equilibria, ii) not all KS equilibria correspond to ST

equilibria (whatever the ordering of the votes) and iii) some KS equilibria do not correspond

to any voter's most-preferred policy.

The paper is organized as follows: Section 2 presents the one-dimensional type general

framework. Its �rst subsection analyzes simultaneous voting, the second subsection studies

and compares Kramer-Shepsle and Stackelberg equilibria, while the third subsection is devoted

to the analysis of a speci�c environment studied e.g. in the nation formation literature. Section

3 focuses on the case with two-dimensional types while section 4 concludes. Most proofs are

relegated to Appendices.

2 One-Dimensional Types

Throughout the paper, we consider a population of voters who have to select a public policy in

a two-dimensional policy space. A policy choice is therefore a vector (x; y) 2 Z; where the set

of feasible policy choices Z is assumed to be a convex, compact and rectangular subset X � Y

of <2.1 In this section, we assume that each voter is described by a one-dimensional type

1This assumption implies that X and Y are compact intervals of the real line for i = 1; 2: The rectangularity

assumption implies that the choice over one dimension does not have any implication on the feasible choices

over the other dimension. A more general case is the subject of Banks and Duggan (2004).
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� 2 <. The statistical distribution of types is given by a continuous cumulative distribution

function F whose support is the interval [�; �] of <, with f denoting the corresponding density.

The utility of a citizen of type � for policy (x; y) is denoted by U(�; x; y) that is assumed to

be twice continuously di�erentiable and such that: @2U(�;x;y)
@x2

< 0 and @2U(�;x;y)
@y2

< 0:2 Further,

we will assume that for all � 2 [�; �], for all y 2 Y (respectively x 2 X), the maximum

of U(�; :; y) (respectively U(�; x; :)) is attained in the interior of X (respectively Y ).3 The

following examples illustrate the broad spectrum of applications covered by this framework.4

Example 1 (Absolute Intensity of the Preference for Public Goods)

Let Z = [0; x]�[0; y], � > 0 and U(�; x; y) = �P (x; y)�(x+y) where P is twice continuously

di�erentiable, increasing and such that @2P (x;y)
@x2

< 0, @2P (x;y)
@y2

< 0, @P (0;y)
@y

= @P (x;0)
@x

= 1,

� @P (x;y)
@y

< 1, � @P (x;y)
@x

< 1 for all (x; y) 2 Z. In this setting, x and y denote the quantities of two

di�erent pure public goods produced under constant returns to scale and �nanced through per

capita taxation. The parameter � reects the intensity of the preference for the bundle (x; y)

of public goods (aggregated through P ) with respect to the private numeraire.

Example 2 (Spatial Politics with Di�erentiated weights)

Let Z = [�; �]2 and U(�; x; y) = ��(�)(x��)2� (�)(y��)2 where � and  are two positive

continuously di�erentiable functions. In this general framework, the parameter � plays two

roles. On one hand, it describes the favorite policy bundle of a citizen regardless of the speci�c

features of � and  . On the other hand, it also determines through these functions the respective

weights placed by a citizen on the two dimensions. In the particular case where �(�) =  (�) = 1

for all � in [�; �], we obtain the spatial model of politics with the extra assumption that the

support of the distribution is one dimensional (precisely here the diagonal).

Example 3 (Local Jurisdictions, Nation Formation and \One and a Half Dimen-

2These sign conditions imply that, for all �, U(�; x; y) is strictly concave in x for all y and strictly concave

in y for all x.
3Most of our analysis extends to settings with corner solutions at the cost of some additional notation which

has been avoided here.
4The working paper version of this paper (downloadable at

http://idei.fr/doc/wp/2010/pdd kramer 0110.pdf) contains several other examples.
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sional" Preferences)

Let Z = [0; x] � [0; 1], � 2 [0; 1] and U(�; x; y) = v(x)	(y � �) � x where v is such that

v(x) > 0; v0(x) > 0,v00(x) < 0 and v0(0) =1; v0(x)	(0) < 1, 	(d) > 0;	 is increasing to the left

of 0, decreasing to the right of 0 and such that 	00(d) < 0. In this setting, x denotes the quantity

of a pure public good while y now denotes a horizontal characteristic of this public good. This

policy environment has been analyzed by many authors, including Alesina, Baqir and Easterly

(1999), Alesina, Baqir and Hoxby (2004), Perroni and Scharf (2001) in the analysis of local

jurisdictions, and Etro (2006) and Gregorini (2009) in the exploration of models of nation

formation. It is also reminiscent of the voting environment of Groseclose (2007) where the

horizontal dimension denotes ideology while the other dimension represents valence (de�ned as

an advantage that a candidate has due to a non-policy factor, such as incumbency or charisma).

All voters have the same preference on the valence dimension (hence the term \one-and-a-half

dimensional" coined by Groseclose, 2007).

We �rst study the simultaneous voting game over the two dimensions before turning to

sequential voting and the Kramer-Shepsle solution.

2.1 Simultaneous Voting

We now show that in the context of simultaneous voting over a bidimensional policy space with

unidimensional voters' types, the fact that utility functions satisfy reasonable \single-crossing"

conditions does not guarantee the existence of a Condorcet winner. On the contrary, for any

policy proposal, it is always possible to propose an alternative policy that is favored by almost

all voters. For most of the paper, we assume the following monotonicity property:

Assumption 1 (Marginal Single-Crossing) We assume that

@2U(�; x; y)

@�@x
> 0 and

@2U(�; x; y)

@�@y
> 0

for all (x; y) 2 Z and � 2 <.
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Assumption 1 simply states that the marginal utility of both dimensions increases monotoni-

cally with the type of the agent. This monotonicity assumption implies that the classical single-

crossing condition (which states that \leftist voters tend to favor left policies more than voters

who are rightist in political preferences" (Myerson, 1996, p.23)) is satis�ed on each dimension

separately, hence the term of marginal single-crossing assumption.

It is easy to see that Assumption 1 is satis�ed in Example 1. As for Example 2, we obtain

@2U(�;x;y)
@�@x

= 2�(�)� 2�0(�)(x� �). The �rst term is always positive while the second term can

take negative values. It is enough to bound the second term. Assumption 1 holds as soon as

�0(�) is not too large. If we denote by m the minimum of �(�) over [�; �], then it will hold

whenever j�0(�)j < m
��� . The same analysis applies to

@2U(�;x;y)
@�@y

.

Assumption 1 does not hold for Example 3. We obtain @2U(�;x;y)
@�@x

= �v0(x)	0(y � �) and

@2U(�;x;y)
@�@y

= �	00(y � �). The second-order derivative is always positive but the sign of the

�rst-order derivative depends upon the position of y with respect to �: its sign is positive if

and only if y > �. This example is thus not covered by the results of this section and, given its

importance in the literature, is analyzed separately in section 2.3.

We now introduce this de�nition.

De�nition 1 Assume people vote over the set 
. We call ! 2 
 a majority (voting) equilib-

rium, also called a Condorcet winner, if there is no !0 6= ! with !0 2 
 that is strictly preferred

by more than one half of the voters to !:

We denote by x(y; �) (respectively, y(x; �)) individual �'s most-preferred value of x (resp., of

y) for any given y (resp., given x). The following lemma (proved in Appendix 1) shows that the

strict concavity of the utility function guarantees both the existence and unicity of a majority

winner when voting over x for any given y (resp., over y for any x).5 Moreover, if Assumption

1 holds, Lemma 1 shows that the most-preferred value of x (respectively, of y) is increasing in

�, for any given y (resp., given x), and that the individual with the (unique) median type �med

is decisive in both choices if they are taken separately.

5The elementary proof consists in showing that the CDF of marginal peaks has no at sections.
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Lemma 1 Let U(�; x; y) be twice continuously di�erentiable and such that: @2U(�;x;y)
@x2

< 0 and

@2U(�;x;y)
@y2

< 0: Then:

i) For all y (respectively x), there exists a unique (one-dimensional) Condorcet winner,

which we denote by xm(y) (resp., ym(x)).

ii) Under Assumption 1, the most-preferred value of x (respectively, of y) is increasing in

�, for any given y (resp., given x):

@x (y; �)

@�
> 0 and

@y (x; �)

@�
> 0:

Moreover, xm(y) (resp., ym(x)) corresponds to the value of x (resp., of y) that is most-preferred

by the individual with the median type, �med:

xm(y) = x(y; �med) 8y 2 <;

ym(x) = y(x; �med) 8x 2 <:

Observe that we have imposed the strict concavity of the utility function separately with

respect x and to y, but not with respect to (x; y). We then introduce the following de�nition.

De�nition 2 We call (x�; y�) a componentwise ideal point of an individual with type � if

ArgMax
x2X

U(�; x; y�) = x� and ArgMax
y2Y

U(�; x�; y) = y�.

The following proposition shows that, if a Condorcet winner exists when voting simultane-

ously over the two dimensions, then it must be a componentwise ideal point of an individual

with the median type, �med:
6

Proposition 1 Consider the bidimensional majority voting setting with a unidimensional type

space where Assumption 1 is satis�ed. Then, the majority equilibrium (x�; y�) under simultane-

ous voting over both dimensions, if it exists, must be a componentwise ideal point of the median

type voter �med:

x� = x(y�; �med) and y
� = y(x�; �med):

6An ideal point of an individual of type � {i.e., a choice (x�; y�) such that (x�; y�) = ArgMax
(x;y)2X�Y

U(�; x; y); is

of course a componentwise ideal point for such an individual. But the converse is not true, as we show in an

example available upon request.
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We now investigate under what conditions a vector (xs; ys) (called the status quo hereafter)

is preferred by a majority of voters to any local deviation. We establish the conditions under

which an individual votes in favor of a motion moving away from the status quo in a (arbitrary)

direction d = (dx; dy) 2 <2. The change in the utility of a voter of type � induced by d is7

'(�) � @U(�; (xs; ys))

@x
dx +

@U(�; (xs; ys))

@y
dy:

The population of voters who favor a move from the status quo in the direction d is composed

of all the types for which '(�) > 0: A local Condorcet winner is de�ned as a policy pair (xs; ys)

for which there exists an " > 0 such that for any vector (dx; dy) 2 <2 belonging to the unitary

circle, the mass of citizens who strictly prefer (xs + "dx; y
s + "dy) to (x

s; ys) is less than or at

most equal to 1
2
. We introduce the function

�(d) =

Z
f�2[�;�]:'(�)>0g

dF;

which measures the proportion of voters favoring a deviation in direction d from the status quo

(xs; ys). We show in Appendix 2 that if (xs; ys) is a local Condorcet winner, then �(d) � 1
2
for

all d. This implies that, to check that a policy pair is a local Condorcet winner, it is su�cient

to look at the sign of the function '.

Observe that '(�med) = 0 since (x
�; y�) is a componentwise ideal point of individual �med.

From '0(�) � @2U(�;x�;y�)
@�@x

dx +
@2U(�;x�;y�)

@�@y
dy, using Assumption 1, we obtain that '

0(�) > 0 if

dx > 0 and dy > 0, which means that all individuals with � > �med are in favor of directions

d with positive deviations from the status quo. By de�nition, this interval of types represents

one half of the polity, so that �(d) = 1=2. Similarly, '0(�) < 0 if dx < 0 and dy < 0, so

that all individuals with � < �med (and only them) favor the direction d, and �(d) = 1=2.

In words, if the deviation considered either increases or decreases both dimensions, then the

individuals favoring this deviation are to be found only on one side of the median and are thus

not numerous enough to defeat the status quo.

7The function ' also depends on d and on the status quo, but we simplify the notation by writing '(�): It

is a �rst-order approximation of the change in utility - see Appendix 2 for the full statement.
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We now turn to deviations with both a positive and a negative component. Individuals

with � > �med bene�t from the positive component of the deviation but su�er from the negative

component, and vice versa for the individuals with � < �med. The set of voters who favor such

a deviation may then be disjoint and could comprise both people above and below �med. We

now characterize this set and study whether it represents more than one half of the electorate.

Consider without loss of generality the case where d is such that dx > 0 and dy < 0. Recall

that voters who favor a direction d are such that '(�) > 0. Denoting by

MRS(�) =
@U(�;x�;y�)

@x
@U(�;x�;y�)

@y

the (absolute value of)8 the marginal rate of substitution between x and y at (x�; y�) for

individual �, we obtain that voters who favor the direction d are such that � > �med together

with MRS(�) > �dy=dx (i.e., those for whom the utility gain from a larger value of x is

larger than the utility loss from the lower value of y); or such that � < �med together with

MRS(�) < �dy=dx (i.e., those for whom the utility gain from a smaller value of y is larger

than the utility loss from the larger value of x). The identi�cation of the coalition of citizens

� (dx; dy) supporting the deviation is illustrated on Figure 1 below, where we represent the

MRS measured at (x�; y�) as a function of �. It is important to note that this coalition need

not be connected.

Insert Figure 1 about here

The construction itself shows that the circumstances for having (x�; y�) undefeated are very

exceptional. Indeed, given the choice of �dy=dx, if the set
�
� 2 [�; �] :MRS(�) = �dy=dx

	
has

measure 0 for F , then it must be the case that the coalition � (dx; dy) and its complement

[�; �]n�(dx; dy) have both a measure equal to 1
2
with respect to F for the policy (x�; y�) to be

8Note that, under Assumption 1, the marginal rate of substitution at (x�; y�) is well de�ned for all � 6= �med.

Further, it is negative for all individuals since @U(�; x�; y�)=@x > 0 and @U(�; x�; y�)=@y > 0 for all � > �med

while @U(�; x�; y�)=@x < 0 and @U(�; x�; y�)=@y < 0 for all � < �med: Slightly abusing notation, we denote by

MRS(�med) the limit, as � tends towards �med, of MRS(�). From Assumption 1 and l'Hôpital's rule, it is easy

to see that this limit exists.
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a local Condorcet winner. This may happen for some speci�c value of �dy=dx but then a small

perturbation of dy=dx is likely to destroy this property.
9

We then impose further structure on the problem in the hope of �nding circumstances under

which a local Condorcet winner exists. An interesting benchmark, often used in the political

economy literature, is the case where the utility function exhibits the single-crossing or Spence-

Mirrlees's condition (Gans and Smart 1996, Greenberg and Weber 1986, Rothstein 1990){i.e.,

where the marginal rate of substitution is monotone10 in �:

Assumption 2 (Local Joint Single-Crossing) Let (x�; y�) be a componentwise ideal point

of the median type. We say that U satis�es the property of local joint single-crossing with

respect to (x�; y�) if

@U(�; x�; y�)=@x

@U(�; x�; y�)=@y
is strictly increasing in �

for all � 2 <.

We then obtain the following result.

Proposition 2 In the bidimensional majority voting setting with a unidimensional type space,

let (x�; y�) be a componentwise ideal point of a voter with median type. Under Assumptions 1

(marginal single-crossing) and 2 (local joint single-crossing), then :

a) The policy bundle (x�; y�) is defeated at the majority by almost every deviation d such that

dxdy < 0.

b) Moreover, there exists a deviation ~d = ( ~dx; ~dy) with ~dx ~dy < 0 that is preferred by all voters

(except �med) to (x
�; y�).

In order to prove Proposition 2, we use Figure 2, where we make use of Assumption 2. The

�rst panel depicts the case where MRS(�med) < �dy=dx. In that case, all individuals below
9This reasoning does not hold when MRS (�) is constant since, for any given directional deviation, the

society is always divided equally.
10The subsequent analysis would carry through to the case where the MRS is monotone decreasing in type.

Note that there is no logical connection between the two single-crossing conditions that we study (Assumptions

1 and 2) in the sense that neither implies nor precludes the other.
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�med prefer the deviation. This is also the case for individuals with � > �med who are such

that MRS(�) > �dy=dx. A strict majority favors d if this second group is not empty, which

is the case provided that MRS(�) > �dy=dx {i.e., that dy is not too large or dx not too small

(in absolute values). Figure 2(b) illustrates the case where MRS(�med) > �dy=dx. In that

case, all people with � > �med favor the deviation, together with individuals with � < �med

for which MRS(�) < �dy=dx. As soon as this second group is not empty (which is the case if

MRS(�) < �dy=dx{i.e., that dy is not too small or dx not too large, in absolute values), a strict

majority of voters favor the deviation. This proves Proposition 2 (a).

The third panel of Figure 2 shows that, if the deviation ~d is such that MRS(�med) = �dy=dx,

all voters (except of course �med) favor this deviation, proving part b) of Proposition 2.

Insert Figure 2 about here

While the reader may not be surprised by part a) of Proposition 2, part b) is more surprising,

since in that case there is a unanimity against the median voter's most-preferred policy, even

under marginal and joint single-crossing conditions.

In Example 2, additional assumptions on �(�) and  (�) are necessary to ensure that U

is strictly concave and satis�es the property of local joint single-crossing with respect to the

unique ideal point (x�; y�) of the median type, since

@U(�; x�; y�)=@x

@U(�; x�; y�)=@y
=
�(�)

 (�)

�med � �

�med � �
=
�(�)

 (�)
:

For instance, in the case where [�; �] = [0; 1] and  (�) = 1, the property will be satis�ed

whenever �0(�) > 0. The following slight variant of Example 2 provides another illustration.

Let U(�; x; y) = �(x� cos �)2 � (y � sin �)2 with � 2
�
3�
2
; 2�

�
. We obtain that

@U(�; x; y)

@x
= �2(x� cos �) and @U(�; x; y)

@y
= �2(y � sin �):

Since @2U(�;x;y)
@x@�

= �2 sin � > 0 and @2U(�;x;y)
@y@�

= 2 cos � > 0, Assumption 1 is satis�ed. If F is

uniform on
�
3�
2
; 2�

�
, we have �med =

7�
4
and (x�; y�) =

�
1
2

p
2;�1

2

p
2
�
. Moreover,

MRS(�) =MRS(�; x�; y�) =
cos 7�

4
� cos �

sin 7�
4
� sin �

: (1)
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We then deduce that MRS 0(�) = sin �
� sin �� 1

2

p
2
+(cos �)

1
2

p
2�cos �

(� sin �� 1
2

p
2)
2 . A careful analysis shows

that MRS 0(�) < 0 over the relevant range of values of � i.e. up to a sign reversal, U satis�es

the property of local joint single-crossing with respect to the unique ideal point (x�; y�) of the

median type in that variant of Example 2. Any motion from (x�; y�) in the direction (�1; 1)

will be supported by almost all agents.11 Indeed, from (1), using L'Hospital's rule we obtain

MRS(
7�

4
) =

g0(7�
4
)

h0
�
7�
4

� ;
where g(�) � cos 7�

4
� cos � and h(�) = sin 7�

4
� sin �. Since g0(7�

4
) = � sin 7�

4
= 1

2

p
2 and

h0
�
7�
4

�
= � cos 7�

4
= �1

2

p
2, we obtain that MRS(7�

4
) = �1. If we want to work back in terms

of normalized gradients, we get the vector (�1; 1) as we need to multiply both g0(7�
4
) and h0(7�

4
)

by �1.

The take home message of this section is then that, except in very peculiar circumstances

such as a perfectly symmetrical utility function, there is little hope of �nding a Condorcet

winner when voting simultaneously over the two dimensions, even when the type space is

unidimensional and single-crossing conditions are satis�ed.

We now move to the other equilibrium concepts studied in this paper, those proposed by

Kramer and Shepsle, and by Stackelberg.

2.2 Kramer-Shepsle and Stackelberg equilibria

Let us examine �rst the Kramer-Shepsle equilibria. We �rst prove existence of such equilibria for

a class of problems much larger than the class of problems considered in the previous section.

Let U be the class of utility functions U de�ned on Z such that U1y = U(:; y) (respectively

U2x = U(x; :)) is strictly concave on X (respectively Y ) for all y (respectively for all x). A

pro�le is a mapping U from
�
�; �
�
into U . We denote by R1 (respectively R2) the set of weak

orders on X (respectively Y ) induced by strictly concave utility functions on X (respectively

Y ). Given U and (x; y) 2 Z, we denote by M1(y) (respectively M2(x)) the set of Condorcet

11We thank the associate editor for pointing this out.
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winners on the �rst dimension (respectively on the second dimension) when the choice on the

second dimension (respectively the �rst dimension) is y (respectively x).12

De�nition 3 Given a pro�le U, a Kramer-Shepsle (or KS) equilibrium for U is a policy vector

(xKS; yKS) such that

xKS 2M1(yKS) and yKS 2M2(xKS):

We prove in Appendix 3 that KS equilibria always exist for any pro�le U satisfying the

above assumptions.

Under Assumption 1, the correspondence M is a function: M1(y) = xm(y) = x(y; �med)

and M2(y) = ym(x) = y(x; �med). This implies that (x; y) is a KS equilibrium i� (x; y) is a

componentwise ideal point of a median type described by the following �rst order conditions:

@U(�med; x
KS; yKS)

@x
= 0 and

@U(�med; x
KS; yKS)

@y
= 0: (2)

We have thus proved the following.

Proposition 3 In the bidimensional majority voting setting with a unidimensional type space,

under Assumption 1, any KS equilibrium (xKS; yKS) coincides with a componentwise ideal point

of the �med type voter.

Let us now move to the set of Stackelberg (or ST) equilibria that arise when there is a

sequence of two votes. We assume (without loss of generality at this stage) that individuals

are �rst called to vote over x and then, after having observed the voting outcome of this �rst

round, that they vote over y. We solve for these ST equilibria and compare them with both

the KS equilibria and with the ST equilibria under the opposite sequence (where voters choose

�rst y and then x).

Solving backward, we know from Lemma 1 (i) that, for any outcome x in the �rst stage,

there exists a unique majority equilibrium ym(x) in the second stage. From Lemma 1 (ii), we

12Under Assumption 1, these sets are singletons but in general it is not necessarily the case. However it is

straightforward that both of them are non empty intervals.
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know that under Assumption 1, ym(x) is the most-preferred value of y of the median type �med.

In any case, this implies that, in the �rst stage, the reduced utility of a citizen of type � for x

is equal to

V (�; x) = U(�; x; ym(x)):

De�nition 4 A Stackelberg (or ST) equilibrium when voters choose �rst x and then y is a

policy vector (xST ; yST ) such thatZ
f�2[�;�]:V (�;x)�V (�;xST )>0g

f(�)d� � 1

2
for all x 2 R

and yST = ym(x
ST ):

Of course, the �rst part of the de�nition of ST is not easy to test in general. Under the

presumption that the function ym (x) is di�erentiable, the marginal �rst-stage utility of a citizen

of type � is given by

@V (�; x)

@x
=
@U(�; x; ym (x))

@x
+
@U(�; x; ym (x))

@y

dym (x)

dx
= 0: (3)

The �rst term of (3) describes the direct e�ect of varying x on the individual's utility, while the

second term describes the indirect e�ect through variations in the second-stage voting outcome.

We will make an extensive use of the following assumption:

Assumption 3 (Strategic complementarity) We assume that the two policy dimensions

are strategic complements:

@2U(�; x; y)

@x@y
� 0: (4)

From this assumption, we deduce the following proposition.

Proposition 4 If the function U(�; x; y) is strictly concave in (x; y) for all � and satis�es As-

sumptions 1 (marginal single-crossing) and 3 (strategic complementarity), we have (i) dym (x) =dx �

0; (ii) dxm (y) =dy � 0 and (iii) @2V (�;x)
@x@�

> 0. Moreover, there exists a unique ST equilibrium

which coincides with the (unique) KS equilibrium.
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Proof. Under Assumption 1, ym (x) is the unique solution of the equation
@U(�med;x;y)

@y
= 0.

From our assumption that @2U(�med;x;ym(x))
@y2

< 0, we deduce from the implicit function theorem

that ym is di�erentiable, with

dym(x)

dx
= �

@2U(�med;x;ym(x))
@x@y

@2U(�med;x;ym(x))
@y2

� 0 (5)

from Assumption 3. The proof of (ii) is obtained similarly.

From di�erentiating (3) and Assumptions 1 and 3, we deduce that @2V (�;x)
@x@�

> 0. This implies

that V is (strictly) single-crossing. Therefore, from Gans and Smart (1996) and Rothstein

(1990), we deduce that V admits a majority equilibrium. We o�er a direct proof by showing

that this majority equilibrium coincides with xF (�med). To do so consider �med and x
F (�med)

the (unique) global peak of V (�med; x).
13 For any �, we de�ne

	(�; x) � U
�
�; xF (�med) ; ym

�
xF (�med)

��
� U (�; x; ym(x)) :

For any x < xF (�med), we can write

	(�; x) =

Z xF (�med)

x

@V (�; t)

@x
dt > 0:

Assuming that � > �med, we further obtain

	(�; x)�	(�med; x) =
Z �

�med

Z xF (�med)

x

@2V (b�; t)
@x@�

dtdb� > 0:
We deduce that 	(�; x) > 0 and therefore that a strict majority of voters prefer xF (�med) to

x. A similar argument holds for any x > xF (�med). Hence, x
F (�med) cannot be defeated by a

majority, since any majority against xF (�med) would have to consist in part of agents � > �med,

a contradiction.

The intuition behind Proposition 4 is pretty simple. Assumptions 1 and 3 together ensure

that the reduced utility V is single-crossing. The median voter then anticipates in the �rst stage

13If U is strictly concave, then for any �, U (�; x; y) has a unique (global) peak. By de�nition of ym (x), we

deduce that xF (�med) is the unique (global) peak of V (�med; x).
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that he will remain decisive in the second stage as well. In his �rst-stage choice of x, he then

ignores (by an envelope theorem argument) the indirect e�ect of x on his utility, and chooses

the optimal value of x given the value of y that will result in the second stage. The resulting

policy bundle (xF (�med); ym(x
F (�med))) constitutes the unique Stackelberg equilibrium.

In Proposition 4, we have not assumed that V is single-peaked. If we had, denoting by

xF (�) the peak of V (�; x), we would deduce from the argument used in the last part of the

proof of Proposition 4 that xF is strictly increasing.

It is well known that single-crossing and single-peakedness are two logically independent

properties. The following proposition states that under some additional assumptions on U , at

least a majority of the electorate has single-peaked indirect utility functions.

Proposition 5 In the bidimensional majority voting setting with a unidimensional type space,

if the function U(�; x; y) is strictly concave in (x; y) for all � and satis�es Assumptions 1 (mar-

ginal single-crossing) and 3 (strategic complementarity) and if @
3U(�med;x;y)
@x2@y

< 0, @
3U(�med;x;ym(x))

@x@y2
<

0 and @3U(�med;x;ym(x))
@y3

< 0 then V (�; x) is single-peaked in x for all � � �med.

These conditions on preferences involve the third derivatives of U . Note that these assump-

tions are satis�ed in Example 1 if, for instance P (x; y) =  (x) (y) with  > 0;  0 > 0;  00 < 0,

 000 < 0 and with  00 =( 0)2 < �1 to ensure that U is concave in (x; y).14

Propositions 4 and 5 assume that both dimensions are strategic complements. If dimensions

are not strategic complements, then the argument used to prove that V is single-crossing does

not hold and the issue of existence of a ST equilibrium arises. Moreover, even if we assume

that V is single-peaked, the most-preferred �rst-stage value of x need not be monotone in �

anymore. In that case, it is necessary to consider the decreasing rearrangement ex of x (as in the
proof of part (i) of Lemma 1). Then the median outcome xmed is the solution to the equation

F (� : ex (�) � xmed) =
1

2
;

14Note that, although the assumptions 	0 > 0; 	00 < 0 and 	000 < 0 can not be simultaneously met on the

whole real line, the domain over which they are satis�ed may be arbitrarily large. A polynomial example is

available upon request from the authors.
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and in general xmed 6= x (�med).

To go beyond these general cases, we need to put more structure on the utility function. In

the next section, we focus on a family of utility functions that has been studied at length, for

instance in the nation formation literature.

2.3 One-sided Separability

In this subsection, we focus on the environment described in Example 3, which has received a

great deal of attention in di�erent �elds. This setting is characterized by both a horizontal and

a vertical dimension. As already pointed out, Assumption 1 (marginal single-crossing) is not

satis�ed so that this setting calls for a separate tailored treatment.

Let us assume that � 2 [0; 1] and

U(�; x; y) = v(x)	(y � �)� x where x 2 <+ and y 2 [0; 1] : (6)

We assume that v is increasing and strictly concave, and such that v0(0) =1 and v0(x)	 (0) <

1 for x large enough and that 	 is a function with values in <++, symmetrical with respect

to 0 and increasing to the left of 0.15 We also assume that the function 	 is di�erentiable

everywhere, so that 	0(0) = 0.16 This general form describes the situation of a public policy

program with a vertical dimension x (the quantity or quality level of a public good) and a

horizontal dimension y (a characteristic of the public good, such as its color, location,...). The

type � of a voter represents her most-preferred public good variant y among all feasible options:

any departure from this ideal choice decreases her utility for any value of x. Also, for any �xed

type of public good y, each voter derives a gross bene�t from this public good consumption

which increases with x. We assume that the unit cost of production of the public good is one,

that there is a mass one of consumers, and that public provision is �nanced with a lump sum

15Therefore, it is decreasing to the right of 0. Alesina, Baqir and Easterly (1999), Etro (2006) and Gregorini

(2009) consider the speci�c case where 	(y; �) = �� j� � yj where � is a parameter larger than 1.
16This di�erentiability assumption is not necessary for our arguments but allows to signi�cantly simplify some

proofs.

18



tax. We thus have to subtract x from the gross utility to obtain the net utility of the public

good. Note that we consider here a setting slightly more general than the one described as

Example 3. The function U(:) is assumed to be strictly concave in x but not necessarily in y,

as we make no concavity assumption on the function 	(:).

We start by looking at the ST procedure where citizens vote �rst over x and then over y.

This is the sequence the jurisdiction and nation formation literature have focused on. Note

�rst that the majority choice over y does not depend upon x, while the converse is not true,

as an individual's willingness to pay for the public good depends on its location. We dub this

property one-sided separability. Whatever the value of x, the majority choice over y, which we

denote by ymed; is given by

ym(x) = y(x; �med) = ymed = �med:

Given ymed, the reduced utility function takes the form

V (�; x) = v(x)	(ymed � �)� x:

Given our assumptions on v and 	, V is a concave function of x with a peak at x(�) where

x(�) is the unique solution x of the equation

v0(x)	(ymed � �) = 1; (7)

which is the familiar rule equating the marginal utility from the public good to its marginal

taxation cost for individual �. It is clear that this peak decreases continuously as � moves away

from �med, both to the left and to the right of �med. As the function V (:) is concave in x, we

can apply the median voter theorem and assert that there exists a majority equilibrium value

of x; which corresponds to the median most-preferred value of x when y = ymed. As should

be obvious from (7), this decisive individual is not the individual with the median location

�med, since this individual is the one with the largest willingness to pay for the public good,

but rather the individual with the median distance to the median (i.e., the median value of

jymed � �j, since the function 	(:) is symmetrical around zero). We explain in Appendix 5 how

to solve for the median optimal value of x, which we denote by xmed.
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From the above arguments, we deduce that (xmed; ymed) is the unique ST equilibrium when

voting �rst over x and then over y. It is also clear that this policy pair is the unique KS

equilibrium as well, since ym(x) = ymed whatever the value of x. We thus have the following

Proposition.

Proposition 6 Given the utility function (6), the policy (xmed; ymed) is the (unique) Kramer-

Shepsle equilibrium and it coincides with the Stackelberg equilibrium when people vote �rst over

x and then over y.

We now study the Stackelberg equilibrium when we reverse the vote sequence. Given an

arbitrary value of y from the �rst vote, consider the second stage of the game{ i.e., the vote over

x. Since the utility function (6) is concave in x, we can apply the median voter theorem to learn

that the majority-chosen x is the median most-preferred value of x given y. The most-preferred

value of x of individual � given y is

x(y; �) = (v0)
�1
�

1

	(y � �)

�
;

which is symmetrical in � around y, and decreasing as � moves away from y. Assume without

loss of generality that y � ymed. Two cases can materialize. In the �rst one, the decisive voters

are the individuals located at a distance � from y (to the left or to the right) and such that

F (y + �)� F (y � �) =
1

2
; (8)

i.e., such that exactly 50% of the polity is located at a distance at most equal to � from y (and

thus prefer a larger value of x than x(y; y� �)). Note that equation (8) has a solution provided

that y is such that F (2y) � 1=2: In words, the majority-chosen value of y must not be too far

from the median (too small if we start with y � ymed as assumed here, or too large if we had

rather started with y � ymed). If y is far enough from ymed, then the decisive voter is the one

with the median location, �med, with all the voters with � < �med preferring a larger (resp.,

lower) value of x than x(y; �med) if y � ymed (resp., if y > ymed) and all voters with � > �med

preferring a lower (resp. larger) value of x if y � ymed (resp., if y > ymed).
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This shows that the identity of the decisive voter(s) in the second stage changes continuously

with the choice made in the �rst stage. In terms of policy, this implies that

xm(y) =

8>>>><>>>>:
(v0)�1

�
1

	(y��med)

�
if y � y�;

(v0)�1
�

1
	(�(y))

�
if y� � y � y��;

(v0)�1
�

1
	(y��med)

�
if y � y��;

where (with an abuse of notation) y� is the unique solution to the equation F (2y) = 1=2; y��

is the unique solution to the equation F (2y � 1) = 1=2 and �(y) is given by (8).

Figure 3 depicts the case where F is uniform. Panel (a) shows that �(y) is de�ned only

when y is at most distant of 1/4 from the median value of y, and is constant when it exists. If

y is lower than 1/4 or larger than 3/4, the decisive voter in the choice of x is 1/2, as shown in

panel (b). For intermediate values of y, there are actually two types of decisive voters (panel

b), both distant of 1/4 from y (panel (a)). Panel (c) shows the majority-chosen value of x for

any given y; xm(y): it �rst increases with y (since the decisive voter remains the same, while

his distance from the chosen y decreases), then it is constant with y (even though the identity

of the decisive voters changes with y, they all remain at the same distance from the chosen y),

and �nally decreases with y (as the distance between the decisive voter, located at 1/2, and y

increases).

Insert Figure 3 about here

The previous analysis shows that in the second stage, the decisive voter type changes con-

tinuously with the choice made in the �rst stage. Moving backward to the �rst stage voting

over y, we assume that the indirect utility function of a citizen of type �, which is given by

W (�; y) = v(xm(y))	(y � �) � xm(y); is single-peaked in y for all �. Proposition 7 (proved

in Appendix 6) shows that individuals have no incentive to vote for y = � in the �rst stage.

Strategic considerations related to the second-stage choice of x drive them to vote for a value

of x that di�ers in a systematic way from �.
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Proposition 7 Given the utility function (6), if W (�; y) is single-peaked in y for all �, voting

�rst over y and then over x, in the �rst stage:

Voters of type � < y� (with F (2y�) = 1=2) always vote for a value of y larger than their

peak �;

Voters of type � > y�� (where F (2y�� � 1) = 1=2) always vote for a value of y smaller than

their peak �.

Voters of type y� � � � y�� always vote for a value of y larger (resp., smaller) than their

peak � if �(�) decreases (resp., increases) with �. The sign of the derivative of �(�) with respect

to � only depends upon the distribution function F .

The intuition runs as follows. Individuals know that, if they obtain their \naive" most-

preferred location y = � in the �rst-stage, the majority-chosen public good level x will be much

lower than their most-favored level, because they will be the ones with the largest willingness

to pay for the public good. A small departure from y = � then has a second-order direct cost

(because, although less appealing, the location remains close to their �rst-best choice) but a

�rst-order gain, provided that this departure leads to a larger amount of public good in the

second stage. Voters whose peak is to the left of y� anticipate that a �rst-stage choice close

to their peak will result in the median voter �med being decisive in the second stage. A value

of y slightly larger than � will then induce a larger second-stage value of x, as it increases the

willingness to pay for the public good of the �med individual (since it decreases the distance

between the �rst-stage location choice and his most-preferred location). A similar reasoning

explains why individuals located to the right of y�� always prefer a value of y that is smaller than

their �rst-best choice �. Individuals with intermediate preferences (y� � � � y��) anticipate

that voters located at a distance �(y) from y will be decisive in the second stage. They then bias

their �rst-stage choice in order to decrease this distance, so that the decisive voter increases

his most-preferred public good amount. We show in Appendix 6 that the distance �(y) is a

function of the distribution function F only.

Finally, while restrictive, the assumption that W (�; y) is single-peaked in y for all � is not
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vacuous, as we show in an example in Appendix 6.

From Proposition 7, we gather that the �rst-stage, most-preferred values of x need not be

monotone in � (once strategic considerations are taken into account), so that the individual

with the median type �med need not be the decisive voter. A more precise assessment of the

identity of the �rst-stage median voter would necessitate the introduction of functional forms

for the utility function 	 and for the distribution function F . Observe that, in the special case

where F is uniform as in the illustration above, the distance �(y) is a constant (see Figure 3)

so that individuals located between 1/4 and 3/4 have no incentive to distort their �rst-period

choice and vote for y = �. The decisive individual in the �rst stage is then �med, and the

�rst-stage choice of location is one half. In that special case, the KS equilibrium is also the ST

equilibrium for both voting sequences.

3 Two-Dimensional Types

In this section, we move to the situation where the type of a voter is two-dimensional. The

statistical distribution of types � = (�1; �2) among the voters is now described by a continuous

(i.e. absolutely continuous with respect to the Lebesgue measure on <2) cumulative distribution

function F whose support is (a subset of) <2; we denote by f the corresponding density. The

utility of a citizen of type � for policy (x; y) remains denoted by U(�; x; y), which is assumed

to be twice continuously di�erentiable and concave in (x; y) :

We skip the analysis of the simultaneous voting setting as, in contrast to the one-dimensional

case, it is very similar to what is done in theoretical political science (Banks and Austen-Smith

(1999), Ordeshook (1986)). Instead, we focus on the analysis of the sets of Kramer-Shepsle

and Stackelberg equilibria. A new phenomenon appears. In contrast to the one-dimensional

type setting where the Kramer-Shepsle equilibrium was unique as soon as the voters' utility

functions were strictly concave in both variables (see Proposition 3), in the two-dimensional

type setting there may exist several KS equilibria.17

17The working paper version of this article shows that there always exists at least one KS equilibrium when
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There is little we can say at this level of generality about the existence or characteristics

of the Stackelberg equilibria, and their relationship with the KS equilibria. In this section, we

content ourselves with providing an example (using the spatial model with quadratic preferences

most often studied in the formal political science literature, such as in Banks and Austen-Smith

(1999) or Ordeshook (1986)) illustrating that i) we may have multiple KS equilibria, ii) KS

equilibria need not be Stackelberg equilibria and iii) KS equilibria need not correspond to any

voter's most-preferred policy.

In this example, voters are heterogeneous with respect to both the location of their most-

preferred policy and the shape of their indi�erence curves (i.e., the direction and intensity of

the correlation between the two policy dimensions). We consider the case depicted in Figure

4 below, where 5 voters are identi�ed by their ideal policies, located at the points a; b; c; d; e;

respectively.

Insert Figure 4 about here

We retain for voters a; d and e the simplest con�guration of circular level curves around their

ideal points.18 The indi�erence curves of individuals b and c are instead represented by two

ellipses centered around their ideal points, for which we choose di�erent shapes.19 We depict

in Figure 4a the lines y(�; x) (obviously, y(�; x) is a horizontal line through point � for voters

� = a; d; e), as well as ym(x) in bold. We proceed similarly in Figure 4b, showing the lines

x(�; y) together with xm(y). We report both xm(y) and ym(x) on Figure 5, and we obtain 3

KS equilibria: points c and d, but also a third point k� that does not correspond to any voter's

most-preferred location!

preferences satisfy the marginal single-crossing condition for both dimensions of types. It also shows that policy

variables x and y are strategic complements when preferences satisfy both the marginal and joint single-crossing

conditions.
18We do not represent level curves for these voters to avoid cluttering the �gure further. See the working

paper version of this article for an analytical description of the preferences in matrix terms.
19The equations of the ellipses represented in the �gure are (x� 4)2 � 2(x� 4)(y� 3) + 2(y� 3)2 = 1 for the

small ellipse around b; (= 15 for the bigger one) and 4 (x� 5:4)2 � 3(x� 5:4)(y� 4) + (y� 4)2 = 9 for the level

curve of individual c:
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Insert Figure 5 about here

As for Stackelberg equilibria, we observe numerically that both V (�; x) = U(�; x; ym(x)) and

W (�; y; xm(y)) are single-peaked for all �ve voters. Moreover, location c constitutes the unique

Stackelberg equilibrium, whatever the sequence of votes.

4 Conclusions

Majority voting over a multidimensional policy space leads in general to negative results, re-

quiring very stringent conditions for the existence of an equilibrium outcome when voting

simultaneously over all dimensions. Such results have induced political economy scholars to

introduce speci�c and restrictive assumptions on individual preferences, on the distribution of

individuals' types across the population and on the voting rule, often based on a sequential

scheme.

Our paper takes one step back: it assumes utility functions and a distribution of types as

general as possible, and it focuses on two speci�c alternatives to simultaneous majority voting.

Our analysis of Kramer-Shepsle and Stackelberg equilibria leads to promising results. We show

that it is possible to conclude about the existence of these equilibria starting from simple

single-crossing conditions widely used in the literature. Under the same weak assumptions, we

compare the characteristics of the solutions issued by the two voting procedures under exam,

emphasizing the relevance of the median type preferred policy. We also study the uniqueness

of equilibrium solutions, showing that multiple Kramer-Shepsle equilibria become plausible

when the domain of individual preferences is richer. While developing our analysis in a general

setting, we also study thoroughly an environment modelled in the political economy literature

exploring issues such as the quantity and the location of public goods in modern democracies,

the connection with the size of the nations and the stability of national borders to secession

threats.
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Both additional theoretical advances and further applications could enrich and complete

our main �ndings. Along the �rst line, it would be interesting to study a model where the set

of alternatives consists in a �nite hypercube and where voter preferences are orderings. Along

the second research line, we recommend a systematic comparison of KS and ST equilibria in

the main models studied in the applied political economy literature, in the spirit of De Donder,

Le Breton and Peluso (2009).
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Appendix 1: Proof of Lemma 1

i) Since the utility U is strictly concave with respect to x, for any given value of y (resp.

x), the payo� of a citizen of type � is maximized for a choice x (y; �) (resp. y(x; �)) such that

@U(�; x (y; �) ; y)

@x
= 0 (resp.

@U(�; x; y(x; �))

@y
= 0).

From the implicit function theorem, we deduce

@x (y; �)

@�
= �

@2U(�;x(y;�);y)
@�@x

@2U(�;x(y;�);y)
@x2

and
@y (x; �)

@�
= �

@2U(�;x;y(x;�))
@�@y

@2U(�;x;y(x;�))
@y2

:

Take any y in Y and let xy(:) : [�; �] ! R be de�ned by xy(�) = x (y; �) and Gy be the

cumulative distribution function de�ned on the interval X as follows:

Gy(x) = F
��
� 2 [�; �]

	
: xy(�) � x

�
:

We claim that there exists a unique value of x such that:20

Gy(x) �
1

2
and G�y (x) �

1

2
:

Indeed, suppose on the contrary that there exist two values x1 < x2 satisfying the above

inequalities. Since 1
2
� G�y (x2) � Gy(x1) � 1

2
, we deduce that

Gy(x1) =
1

2

Since 1
2
� Gy(x2) � Gy(x1), we obtain that Gy(x2) =

1
2
. This implies that the cumulative

function Gy is constant with the value
1
2
on the interval [x1; x2]. We now show that this is not

possible. Consider the sets

A1 �
�
� 2 [�; �]

	
: xy(�) � x1g and A2 �

�
� 2 [�; �]

	
: xy(�) � x2g:

Let �1 and �2 be such that xy(�1) = x1 and xy(�2) = x2. Since xy is continuous, we deduce

from the intermediate value theorem that such values of � exist. Suppose without loss of

20For any increasing function G and any real number x, G� (x) = Lim
y!x;y<x

G(y) denotes the left limit of G at

x.
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generality that �1 < �2. From the intermediate value theorem again, for any value of x� in

]x1; x2[, there exists �
� 2 ]�1; �2[ such that xy(��) = x�. Let � > 0. From the continuity of xy,

there exists a small interval [�� � �; �� + �] & ]�1; �2[ with � > 0 and xy(�) 2 (x� � �; x� + �) for

all � 2 [�� � �; �� + �]. Since F has full support, we deduce that F ([�� � �; �� + �]) > 0 and

therefore Gy ((x
� � �; x� + �)) > 0. This implies that Gy(x2) � Gy(x1)+Gy ((x

� � �; x� + �)) >

1
2
. But this contradicts the earlier claim.

Let x� be the unique solution x of the inequalities Gy(x) � 1
2
and G�y (x) � 1

2
. To conclude,

it remains to show that x� is the unique Condorcet winner. It is clearly a Condorcet winner

as for any x < x�, by strict concavity of U(�; :; y) all types in the set
�
� 2 [�; �]

	
: xy(�) � x�g

strictly prefer x� to x. A similar argument holds for any x > x�.

We now show that there is no other Condorcet winner. Suppose that there is another one,

say x��. Without loss of generality, assume that x�� < x�. Then, from the de�nition of x�;

Gy (x
��) < 1

2
. Since Gy is right continuous, there exists n large enough such that Gy

�
x�� + 1

n

�
<

1
2
. This implies F

��
� 2 [�; �]

	
: xy(�) � x�� + 1

n
g
�
> 1

2
. By concavity of U(�; :; y) all types in

the set
�
� 2 [�; �]

	
: xy(�) � x�� + 1

n
g strictly prefer x�� + 1

n
to x��. This contradicts our

assumption that x�� is a Condorcet winner.

ii) From Assumption 1, we deduce from above that:

@x (y; �)

@�
> 0 and

@y (x; �)

@�
> 0:

From these monotonicity properties, we obtain immediately that xm(y) = x(y; �med) and

ym(x) = y(x; �med)).

Appendix 2: If (xs; ys) is a local Condorcet winner, then �(d) � 1
2
for all d

First note that

U(�; (xs + "dx; y
s + "dy))� U(�; (xs; ys))

= "'(�) + "2[
1

2

@2U(�; (xs; ys))

@x2
(dx)

2 +
1

2

@2U(�; (xs; ys))

@y2
(dy)

2

+
@2U(�; (xs; ys))

@x@y
(dxdy)] +M(�)0("2);
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where M(�) is a constant depending upon �. Assume that (xs; ys) is a local Condorcet winner,

but that there exists d, such that �(d) > 1
2
. Since the measure F is regular,21 for any � > 0 there

exists a compact subset 
� �
�
� 2 [�; �] : '(�) > 0

	
such that F (

�
� 2 [�; �] : '(�) > 0

	
n
�) <

�. Select � such that
R

�
dF > 1

2
and let C = Sup

�2
�

1
2
@2U(�;(xs;ys))

@x2
+ 1

2
@2U(�;(xs;ys))

@y2
+ @2U(�;(xs;ys))

@x@y
+

M(�) and c = Inf
�2
�

'(�). For all " such that " < c
C
; we deduce that U(�; (xs + "dx; y

s + "dy))�

U(�; (xs; ys)) > 0 in contradiction to our assumption that (xs; ys) is a local Condorcet winner.

Appendix 3: Existence of KS equilibria

To prove this claim, we have to prove that the set valued mapping M from Z into Z such

that M(x; y) = M1(y)�M2(x) has a �xed point. We claim that the correspondence is upper

hemi continuous. Indeed, let xn ! x and yn ! y when n!1. By continuity, we deduce that

from all � 2
�
�; �
�
, U(�; x; yn) ! U(�; x; y) for all x and U(�; xn; y) ! U(�; x; y) for all y. Let

R1n(�) and R
2
n(�) be the marginal weak orders induced on X and Y by U(�; :; yn) and U(�; xn; :).

From what precedes, for all � 2
�
�; �
�
, R1n(�) converges to R

1(�) and R2n(�) converges to R
2
n(�)

for the topology of closed convergence where R1(�) and R2(�) are the marginal weak orders

induced on X and Y by U(�; :; y) and U(�; x; :). This almost sure convergence with respect to

� implies that the marginal mapping U1yn (respectively U
2
xn) converges to the marginal mapping

U1y (respectively U
2
x) for the � metric de�ned in Banks, Duggan and Le Breton (2006). The

upper hemicontinuity of M1 and M2 follow from proposition 25 in Banks, Duggan and Le

Breton. (2006)22. Existence of a KS equilibrium follows from Kakutani 's theorem.

21Heuristically, a regular measure on a topological space is a measure for which every measurable set is

"approximately open" and "approximately closed". Any Borel probability measure on any metric space is a

regular measure. Therefore, all interesting probability measures are regular. We refer the reader to Billingsley

(1999) for a concise de�nition.

22When there is a �nite number of individuals, existence follows from Duggan (2001) or Shepsle (1979). The

extra e�ort needed here arises from the fact that we consider a continuous distribution of voters. A direct proof

avoiding the appeal to proposition 25 in Banks, Duggan and Le Breton (2006) could be provided but would

require extra cumbersome notations.
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Appendix 4: Proof of Proposition 5

Note �rst that if � � �med, then the ideal point (x (�) ; y (�)) of U(�; x; y) is such that

x (�) � x (�med) and y (�) � y (x (�) ; �med). Since U(�; x; y) is strictly concave, then, if the

function ym is concave, for all � � �med, we have that

V (�; x) =Max U(�; x; y) subject to the constraint y � ym (x)

is single-peaked with respect to x. The concavity of the ym function guarantees that the indirect

utility of all � � �med is single-peaked, because the location of their utility peak compared to

ym ensures that they maximize their concave utility on a convex set.

We now prove that if U satis�es the properties assumed in the proposition, then ym is indeed

concave. From the di�erentiation of (5), we obtain

d2ym (x)

dx2
= �

h
@3U(�med;x;ym(x))

@x2@y
+ @3U(�med;x;ym(x))

@x@y2
dym(x)
dx

i
@2U(�med;x;ym(x))

@y2�
@2U(�med;x;ym(x))

@y2

�2
+

h
@3U(�med;x;ym(x))

@x@y2
+ @3U(�med;x;ym(x))

@y3
dym(x)
dx

i
@2U(�med;x;ym(x))

@x@y�
@2U(�med;x;ym(x))

@y2

�2
Since @

2U(�med;x;ym(x))
@y2

< 0; dym(x)
dx

> 0 and @2U(�med;x;ym(x))
@x@y

> 0, if @
3U(�med;x;y)
@x2@y

< 0, @
3U(�med;x;ym(x))

@x@y2
<

0 and @3U(�med;x;ym(x))
@y3

< 0 then d2ym(x)
dx2

< 0:

Appendix 5: Majority choice of x in section 2.3

The most-preferred value of x decreases from x � v0�1( 1
	(0)

) to x � v0�1( 1
Min(	(ymed);	(ymed�1)))

as � moves away from �med. Without loss of generality, suppose that 	(ymed) � 	(ymed � 1).

The proportion B(x) of voters with an ideal peak below the �xed level x is given by :

B(x) =

8><>: F
�
ymed �	�1

�
1

v0(x)

��
if x � x�;

F
�
ymed �	�1

�
1

v0(x)

��
+
h
1� F

�
ymed +	

�1
�

1
v0(x)

��i
if x � x�;

where x� is the unique solution to the equation

v0(x) =
1

	(ymed � 1)
:
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When F is symmetric, ymed =
1
2
, x� = x and B is a cumulative distribution function on

[x; x] de�ned as follows:

B(x) = 2F

�
1

2
�	�1

�
1

v0(x)

��
:

Then, the majority choice xmed is the unique solution x to the equation :

F

�
1

2
�	�1

�
1

v0(x)

��
=
1

4
:

For instance, when F is uniform, xmed is the peak of a voter located at a distance from the

median equal to 1
4
.

Appendix 6: Proof of Proposition 7

The �rst-order condition for y of an individual � is given by

v0(xm(y))	(y � �)
dxm(y)

dy
+ v(xm(y))	

0(y � �)� dxm(y)

dy
= 0:

Our objective is to assess under what circumstances the value of y that maximizes W (�; y)

di�ers from � (which is the \true peak" of the utility function{i.e., the value of y that maximizes

U(�; x; y) for any given value of x). To this e�ect, we evaluate the derivative ofW (�; y) at y = �

to obtain

@W (�; y)

@y
jy=� =

dxm(�)

dy
[v0(xm(�))	(0)� 1] + v(xm(�))	0(0):

The function xm(y) is characterized by the equality v
0(xm(y))	(d)� 1 = 0; where d = �(�)

if y� � � � y�� and d = � � �med if � < y� or � > y��. Therefore, the above derivative is equal

to

@W (�; y)

@y
jy=� = v0(xm(�)) [	(0)�	(d)]

dxm(�)

dy
+ v(xm(�))	

0(0)

= v0(xm(�)) [	(0)�	(d)]
dxm(�)

dy
;

as 	0(0) = 0. Since 	(0)�	(d) > 0; the sign of the derivative at y = � is the same as the sign of

dxm(�)=dy. If � < y�, xm(�) = x(�; �med) so that dxm(�)=dy > 0. If � > y��, xm(�) = x(�; �med)

so that dxm(�)=dy > 0. If y
� � � � y��, xm(�) = x(�; � � �(�)) and we obtain that

dxm(y)

dy
= �v

0(xm(y))	
0(�(y))

v00(xm(y))	(�(y))

d�(y)

dy
:

33



Since 	0(�) < 0, the sign of dxm(y)=dy is the opposite of the sign of d�(y)=dy. From the

de�nition of �(y) and the implicit function theorem, we obtain that

d�(y)

dy
=
f(y � � (y))� f(y + � (y))

f(y + � (y)) + f(y � � (y))
;

so that the sign of d�(y)=dy depends exclusively upon the shape of the density function f:

We now provide an example where W (�; y) is single-peaked in y for all �. Consider for

instance the case where F is uniform, v(x) = 2
p
x and 	(y � �) = K � (y � �)2 where K is a

su�ciently large positive constant. We obtain that

xm(y) =

8><>:
�
K � 1

4
� y2 + y

�2
if y � 1

4
or y � 3

4
;�

K � 1
16

�2
if 1
4
� y � 3

4
;

and therefore that

W (�; y) =

8><>: 2
�
K � 1

4
� y2 + y

� �
K � (y � �)2

�
�
�
K � 1

4
� y2 + y

�2
if y � 1

4
or y � 3

4
;

2
�
K � 1

16

� �
K � (y � �)2

�
�
�
K � 1

16

�2
if 1
4
� y � 3

4
:

This indirect utility function is single-peaked for all � 2 [0; 1]. The graph of W (�; y) for

several values of � when K = 1 is represented in Figure 6.

Insert Fig. 6 about here
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Figure 3 : Second-stage vote over x with one-sided
separability(a)
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Figure 4: An example with quadratic preferences



Figure 5: KS equilibria with quadratic example
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