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Abstract
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is informed as to whether the object is valued commonly. We show that any equilibrium
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values are di¤erent. We derive su¢ cient conditions for equilibrium existence.
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1 Introduction

The popular press seems to be intrigued by the uncertainty about the motivations and

identities of bidders in auctions and takes particular interest when a high-stakes auction

has been won by a �mystery bidder�.1 However, to a dealer who seeks resale pro�t,

the presence of a mystery bidder poses a possible challenge for formulating a bidding

strategy. If both the dealer and his opponent compete in the same downstream market,

then they might well have the same value for an artwork after revelation of all privately held

information.2 On the other hand, if his opponent is a private collector, their valuations

are likely to be much less interdependent. It is therefore natural to ask how a dealer would

bid against a mystery bidder who may be either a dealer or a collector.

This paper studies an auction that is motivated by such a situation.3 We consider

an auction (the Mixed Game) in which two bidders play one of two games: Game C, a

second-price common-value auction, or Game N, a second-price auction where values are

not common. One bidder (Bidder 2) knows which game is being played (she is model-

informed), but the other (Bidder 1) does not (he is model-uninformed). In Game N,

we allow for an arbitrary relationship between valuations � this includes the possibility

of private values as well as intermediate dependence (i.e., �interdependent values�). We

restrict attention to equilibria in bid functions that satisfy a certain smoothness property.

1Among the numerous reports about mystery bidders, one example is a New York Times article �Recog-
nize this man? The art world doesn�t�(May 6, 2006) that reported that an unidenti�ed man bid $95 million
for the Picasso �Dora Maar with Cat�. This was a close second to the highest price paid for an artwork
at auction. As another example, a New York Times article �Rothko Breaks a Record for Contemporary
Art�(May 16, 2007) discusses the sale of paintings to three separate mystery bidders at the prices of $72.8,
$52.6 and $14.6 million.

2Several authors have used dealers bidding on artwork to exemplify common-value auctions. Examples
include Deltas and Engelbrecht-Wiggans (2005) and Harrington (2009; chapter 10.4, p 301).

3Such situations are not exclusive to art auctions. Mystery bidders are also present in other settings
that might otherwise involve common values such as corporate takeovers. For instance, when Pepsi re-
cently acquired the majority stake in Russia�s biggest juicemaker OAO Lebedyansky for $1.4 billion, it
submitted the bid without revealing its identity (see �Lebedyansky Shares Gain on Speculation Pepsi May
Bid (Update1)�, Bloomberg.com, March 11, 2008, and �Pepsi to buy into Russian juice maker for $1.4 bln�
uk.reuters.com, March 20, 2008).
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Given this restriction, we show that, in any equilibrium of the Mixed Game, the bid

functions used in Game N constitute equilibrium strategies in Game N.

This follows from a peculiar feature of second-price common-value auctions (see Mil-

grom, 1981): essentially any strategy for Bidder 1, paired with Bidder 2�s best response

to it, constitutes an equilibrium of Game C. Now, consider any equilibrium of the Mixed

Game. By virtue of Bidder 2�s best response and the above property of common-value

auctions, Bidder 1�s strategy must be a best response in Game C. The key step is to

show that Bidder 1 must also be playing a best response in Game N. Suppose he does not.

Then a small deviation towards the Game N best response would yield him a �rst-order

gain in Game N. It would yield him only a second-order loss in Game C, since the putative

equilibrium strategy constitutes a best response in Game C. He would therefore want to

deviate.

We thus conclude that the bidders coordinate with reference to the non-common-values

equilibrium. Using this property, we derive su¢ cient conditions for equilibrium existence.

Our paper relates to several papers that have investigated the sensitivity of equilibria to

small di¤erences in values or small amounts of private information in otherwise common-

value environments. Notable examples include Bikhchandani (1988), Bulow et al. (1999),

Klemperer (1998), and Larson (2009).4 Bikhchandani�s paper is the closest to our work.

He analyzes a particular case of our model whereby, in Game N, the model-informed

Bidder 2 has a higher valuation than her opponent with certainty. He shows, among other

things, that Bidder 2 wins with certainty in case Game N occurs.

4 In a similar spirit, Parreiras (2006) shows that a small probability that a second-price auction is in fact
a �rst-price auction eliminates the multiplicity of equilibria associated with second-price common-value
auctions.
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2 Model

Consider a second-price auction with two bidders.5 There are two possible states of the

world: C and N. It is common knowledge that state C occurs with probability � and that

state N occurs with probability 1� �. In state C, Bidder 1 (he) and Bidder 2 (she) have

a common value for the object. In state N, they may not. Bidder 2 alone observes the

state. We refer to the situation in which � 2 (0; 1) as the Mixed Game. If � = 1 we call

it Game C and if � = 0 we call it Game N :

Each bidder i 2 f1; 2g observes a private signal si, distributed independently of the

state. Conditional on the opponent�s signal sj , bidder i�s signal has a density fi(�jsj) that

is strictly positive on [0; 1]. For each bidder i, fi(�j�) is continuous in both arguments.

Assume the signals satisfy the monotone likelihood ratio property (MLRP). That is, for

any s0i � si and s0j � sj
fi(s

0
ijs0j)

fi(sijs0j)
� fi(s

0
ijsj)

fi(sijsj)
:

In state C, both bidders have the same valuation v : [0; 1]2 ! R that is increasing in

both arguments. In state N, each bidder i has a valuation viN : [0; 1]2 ! R that is strictly

increasing in his or her own signal and non-decreasing in the opponent�s. All values v, v1N

and v2N are continuously di¤erentiable in both arguments.

A strategy for Bidder 2 in the Mixed Game is a pair of bid functions (�2C ; �2N ) that

map signals to bids in each state. A strategy for Bidder 1 is simply �1, as he does not

observe the state. We consider interim Bayesian Nash equilibria and restrict attention

to undominated strategies of the Mixed Game �that is, equilibria in which none of the

strategies are weakly dominated. We also restrict attention to strictly increasing bid

functions that are continuous and that are continuously di¤erentiable at all but �nitely

5Because there are only two bidders, the English button auction and the Vickrey auction are strategically
equivalent.
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many points.6 De�ne the bid intervals B1 = [�1(0); �1(1)], B2C = [�2C(0); �2C(1)] and

B2N = [�2N (0); �2N (1)]. Each bid function can be represented equivalently by its inverse

��1, �2C and �2N respectively.

3 Characterization of equilibrium

A well-known condition for equilibrium, when applied to the Mixed Game, requires that

Bidder 1 bid his value conditional on tying with his opponent, whenever ties are possible.

This value depends on two dimensions of his opponent�s information - her signal and

the state. If Bidder 2 bids p 2 B2CnB2N , then Bidder 1 must infer state C. If she bids

p 2 B2NnB2C , he must infer state N. When p 2 B2C \B2N , his inference must be derived

according to Bayes�Law.

Let D be the set of points p 2 B2C \B2N at which both �2C and �2N are continuously

di¤erentiable. When Bidder 1 has signal s1 and observes bidder 2 bid p 2 D, the

probability he assigns to state C is

�̂(s1; p) =
�f2(�2C(p)js1)�02C(p)

�f2(�2C(p)js1)�02C(p) + (1� �)f2(�2N (p)js1)�02N (p)
:

Bidder 1�s updating rule is thus de�ned for Bidder 2�s bids in the set

U = D[ (B2CnB2N )[ (B2NnB2C). Bidder 1�s expected valuation conditional on receiving

signal s1 and observing opponent bid p 2 U is

w(s1; p) =

8>>>><>>>>:
�̂(s1; p)v(s1; �2C(p)) + (1� �̂(s1; p))v1N (s1; �2N (p)) if p 2 D;

v(s1; �2C(p)) if p 2 B2CnB2N ;

v1N (s1; �2N (p)) if p 2 B2NnB2C :

We can now state our central result.
6We brie�y discuss the possibility of equilibria in discontinuous bid functions at the end of Section 4.
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Proposition 1 If (�1; (�2C ; �2N )) is an equilibrium in undominated strategies in the

Mixed Game for any probability of state C, then (�1; �2N ) is an equilibrium (possibly in

dominated strategies) of Game N.

Proof approach. Suppose that (�1; (�2C ; �2N )) is an equilibrium in the Mixed Game.

Since �2N must be a best response to �1, we need only verify that �1 is a best response

to �2N . Lemma 1 gives necessary conditions for �1 to be a best response to (�2C ; �2N )

in the Mixed Game. Lemma 2 gives a necessary condition for �2C to be a best response

to �1. Together, these imply certain conditions (given in Lemma 3) that imply �1 is a

Game-N best response to �2N (as shown in Lemma 4).

Lemma 1 For any � 2 (0; 1), Bidder 1 is best responding to Bidder 2 only if

(i) for all p 2 B1 \ U , w(�1(p); p) = p;

(ii) for all p < �1(0),

�

Z
fes2:p<�2C(es2)<�1(0)g(v(0; es2)� �2C(es2))f2(es2j0)des2

+ (1� �)
Z
fes2:p<�2N (es2)<�1(0)g(v1N (0; es2)� �2N (es2))f2(es2j0)des2 � 0; and

(iii) for all p > �1(1),

�

Z
fes2:�1(1)<�2C(es2)<pg(v(1; es2)� �2C(es2))f2(es2j1)des2

+ (1� �)
Z
fes2:�1(1)<�2N (es2)<pg(v1N (1; es2)� �2N (es2))f2(es2j1)des2 � 0:

Proof. Conditions (ii) and (iii) simply state that Bidder 1 does not want to deviate

downwards when s1 = 0, nor upwards when s1 = 1. Condition (i) states that, at any bid

p in the range of possible bids for both bidders, Bidder 1 is bidding his expected value

conditional on receiving signal �1(p) and tying with Bidder 2, provided the expectation
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is well-de�ned. This requirement follows from standard arguments (see, e.g., Milgrom

(1981)). �

Lemma 2 Bid function �2C is a best response for Bidder 2 to �1 in state C only if

v(�1(p); �2C(p)) = p for every p 2 B1 \B2C .

Again the proof is standard, and hence omitted.

Lemma 3 If (�1; (�2C ; �2N )) is an equilibrium in undominated strategies in the Mixed

Game, then

(i) for all p 2 B1 \B2N , v1N (�1(p); �2N (p)) = p;

(ii) for all p < �1(0),
R
fes2:p<�2N (es2)<�1(0)g(v1N (0; es2)� �2N (es2))f2(es2j0)des2 � 0; and

(iii) for all p > �1(1),
R
fes2:�1(1)<�2N (es2)<pg(v1N (1; es2)� �2N (es2))f2(es2j1)des2 � 0.

Proof. For Bidder 2�s strategy to be undominated in the Mixed Game requires that, for

any s2 2 [0; 1], v(0; s2) � �2C(s2) � v(1; s2). Clearly, then, the �rst integral in Lemma

1(ii) is non-positive and the �rst integral in Lemma 1(iii) is non-negative. Conditions (ii)

and (iii) of this lemma follow.

For (i), let p 2 B1 \ B2N . If p =2 B2C , it holds by Lemma 1(i). If p 2 B2C \D, then

it follows by subtracting v(�1(p); �2C(p)) = p (in Lemma 2) from the equation in Lemma

1(i). Remaining possible values for p are in (B2C \ B2N )n D, which is at most �nite.

Condition (i) therefore follows by continuity of v1N (�1(�); �2N (�)) on B1 \B2N . �

Lemma 4 If bid functions �1 and �2N satisfy conditions (i), (ii) and (iii) of Lemma 3,

then �1 is a best response for Bidder 1 to �2N when he knows the state is N.

Proof. We consider only downward deviations, as upward deviations can be ruled out

analogously. Let s1 2 [0; 1]. By standard arguments (e.g., Milgrom, 1981), Lemma 1(i)

guarantees that any deviation to a bid b̂ 2 [�1(0); �1(s1)) is unpro�table. Consider, then,

a deviation to b̂ < �1(0). This is unpro�table if
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Z
fes2:b̂<�2N (es2)<�1(s1)g(v1N (s1; es2)� �2N (es2))f2(es2js1)des2 � 0:

The unpro�tability of deviation b̂ = �1(0) implies that the above inequality holds for

integration over the set fes2 : �1(0) � �2N (es2) < �1(s1)g. Therefore, it is enough to show

it holds when integration is over only fes2 : b̂ < �2N (es2) < �1(0)g. Since v1N is increasing

in s1, it is enough to show thatZ
fes2:b̂<�2N (es2)<�1(0)g(v1N (0; es2)� �2N (es2))f2(es2js1)des2 � 0:

This is immediate from Lemma 3(ii) when the bidders�signals are independent. Otherwise,

an argument using the MLRP is needed, and this is given in the Appendix. �

Consider now the Mixed Game with some �xed probability of state C, � 2 (0; 1).

It is interesting to ask whether an equilibrium (�1; (�2C ; �2N )) of the Mixed Game for

the probability � must also be an equilibrium for other values of this probability. Since

(�1; �2N ) is an equilibrium in Game N, it is easy to show that the equilibrium persists for

probabilities lower than �. However, for higher probabilities (including probability 1 �i.e.,

in Game C), this need not be the case. Suppose that there exist signals s2 such that Bidder

2 wins with certainty in state C, and that for such signals �2C (s2) < v(1; s2). Although

Bidder 1, when receiving signal s1 = 1, would not wish to deviate for low probabilities

of state C (because it would be detrimental in case state N occurs), he may well wish to

deviate upwards for high probabilities. To ensure this is not the case, we might impose a

further restriction on Bidder 2�s possible strategies in the Mixed Game.7

RS(C): Bidder 2�s strategy satis�es �2C(s2) = v(1; s2) whenever �2C(s2) > �1(1) and

�2C(s2) = v(0; s2) whenever �2C(s2) < �1(0).

The next result then follows from the arguments above.
7This condition is implicitly assumed in Proposition 2 of Bikhchandani�s (1988) paper.
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Proposition 2 Suppose the strategy pair (�1; (�2C ; �2N )) is undominated in the Mixed

Game and �2C satis�es RS(C). It is an equilibrium in the Mixed Game if and only if

(�1; �2C) is an equilibrium in Game C and (�1; �2N ) is an equilibrium in Game N.

4 Existence of equilibrium

Suppose we con�ne our interest to equilibria satisfying RS(C). Then, by Proposition 2, the

question of existence may be answered by considering whether there are functions �1, �2C

and �2N such that (�1; �2C) is an equilibrium of Game C and (�1; �2N ) is an equilibrium

of Game N. We give conditions for equilibrium existence in Proposition 3 below.

We �nd it convenient to consider equilibrium bid functions �1 and �2N that satisfy

analogues of the condition RS(C).

RS(N): Bidder 2�s strategy satis�es �2N (s2) = v2N (1; s2) whenever �2N (s2) > �1(1) and

�2N (s2) = v2N (0; s2) whenever �2N (s2) < �1(0).

RS(1): Bidder 1�s strategy satis�es �1(s1) = v1N (s1; 1) whenever �1(s1) > �2N (1) and

�1(s1) = v1N (s1; 0) whenever �1(s1) < �2N (0).

Proposition 3 There exists an equilibrium of the Mixed Game in undominated strategies

that satis�es RS(1), RS(C) and RS(N) if, for all s1; s2C ; s2N 2 [0; 1],8

(i) @v1N (s1;s2N )
@s1

> @v2N (s1;s2N )
@s1

and @v2N (s1;s2N )
@s2

> @v1N (s1;s2N )
@s2

;

(ii) @v1N (s1;s2N )
@s1

> @v(s1;s2C)
@s1

; and

(iii) @v1N (s1;s2N )
@s1

@v2N (s1;s2N )
@s2

� @v2N (s1;s2N )
@s1

@v1N (s1;s2N )
@s2

> @v(s1;s2C)
@s1

�
@v2N (s1;s2N )

@s2
� @v1N (s1;s2N )

@s2

�
.

Condition (i) is the �single-crossing condition� suggested initially by Maskin (1992).

It guarantees existence of an equilibrium in Game N. Condition (ii) says that Bidder 1�s

8Conditions (i)-(iii) regulate the slopes of the bid functions via the conditions for equilibrium that we
outline in the proof below. We must consider Bidder 2�s bid functions for both state C and N. However,
at any given bid p, Bidder 2�s state C and state N signals (�2C (p) and �2N (p)) may di¤er. To account
for this possibility, we impose the conditions for possibly distinct values s2C and s2N .
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signal has a greater marginal e¤ect on his value when the state is N than on the common

value. Condition (iii) is more di¢ cult to interpret, but is implied by conditions (i) and

(ii) together with the requirement that, for all s1; s2C ; s2N 2 [0; 1],

@v(s1; s2C)

@s1
� @v2N (s1; s2N )

@s1
:

Proof of Proposition 3. Given condition (i), arguments similar to Lemma 2 of Krishna

(2003) imply that an equilibrium in undominated strategies exists in Game N, with bid

functions satisfying RS(1) and RS(N). Suppose that (�1; �2N ) is such an equilibrium. We

construct a best response �2C to �1 that satis�es RS(C). It follows immediately that �1

is a best response to �2C in state C, establishing that (�1; (�2C ; �2N )) is an equilibrium.

The construction of Bidder 2�s best response �2C proceeds in three steps. Step 1 shows

that �1 is �su¢ ciently steep�to admit a continuous and increasing best response by Bidder

2 in state C. Step 2 de�nes the interval over which ties can occur in state C, and Step

3 constructs �2C as the solution to a di¤erential equation. Verifying that �2C is a best

response is left to the reader.

Step 1. In this step, we show that, for any p 2 B1 and any s2C 2 [0; 1], and provided

that �1 is di¤erentiable at p,

@v(�1 (p) ; s2C)

@s1

d�1 (p)

dp
< 1:

To see this, note that, if either p < �2N (0) so that (by RS(1)) �1 solves

@v1N (�1 (p) ; 0)

@s1

d�1 (p)

dp
= 1,

or, if p > �2N (1) so that (again, by RS(1)) �1 solves

@v1N (�1 (p) ; 1)

@s1

d�1 (p)

dp
= 1;

then the result follows by condition (ii). If p 2 B2N , it is ensured by condition (iii). This
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is because the equilibrium requirement in Game N is

v1N (�1 (p) ; �2N (p)) = v2N (�1 (p) ; �2N (p)) = p;

which, after di¤erentiating with respect to p and solving for d�1(p)dp , yields

d�1 (p)

dp
=

@v2N (�1(p);�2N (p))
@s2

� @v1N (�1(p);�2N (p))
@s2

@v1N (�1(p);�2N (p))
@s1

@v2N (�1(p);�2N (p))
@s2

� @v2N (�1(p);�2N (p))
@s1

@v1N (�1(p);�2N (p))
@s2

.

Step 2. If v(1; 0) > �1(1) or v(0; 1) < �1(0) then Bidder 2�s strategy can be speci�ed

according to RS(C), with Bidder 2 either winning or losing with certainty for all signals.

So suppose that v(1; 0) � �1(1) and v(0; 1) � �1(0). If v(0; 0) � �1(0) put p = �1(0). If

v(0; 0) > �1(0), then since v(1; 0) � �1(1), and since �1 is continuous, we may specify p

such that v(�1(p); 0) = p. By Step 1, this is uniquely de�ned. Similarly, if v(1; 1) � �1(1),

put �p = �1(1). If v(1; 1) < �1(1), de�ne �p as satisfying v(�1(�p); 1) = �p. We will construct

a best response for Bidder 2 for which ties are possible for bids in [p; �p].

Step 3. On the interval [p; �p], bids must be determined by

v(�1(p); �2C(p)) = p.

An increasing and continuous function �2C that satis�es this equation can be constructed

on [p; �p] as a solution to

@v(�1 (p) ; �2C (p))

@s1

d�1 (p)

dp
+
@v(�1 (p) ; �2C (p))

@s2

d�2C (p)

dp
= 1

(wherever the derivative of �1 exists), with initial condition given by �2C(p) = s2, where

v(0; s2) = p, if v(0; 0) � �1(0), and by �2C(p) = 0 otherwise. This is possible because

@v(�1;�2C)
@s1

d�1
dp < 1 by Step 1, and because @v(�1;�2C)

@s2
> 0. The function �2C can then be

extended to p =2 [p; �p] according to RS(C). �

Proposition 3 provides su¢ cient conditions for equilibrium existence that are fairly

easy to check. A natural case to consider is when state N is pure private values. In this
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case, condition (i) is automatically satis�ed and conditions (ii) and (iii) are equivalent. So

an equilibrium exists provided that condition (ii) is satis�ed.

The conditions of Proposition 3 are, however, somewhat more restrictive than necessary

for the existence of the equilibria that we consider: i.e., those in undominated strategies,

with bid functions that are increasing, that satisfy the continuity and di¤erentiability

conditions given in the model set-up, and that satisfy RS(1), RS(C) and RS(N). There

are two reasons for this. Condition (i) is more than required for equilibrium in Game

N (although, this assumption has been made routinely in the literature on e¢ ciency of

second-price auctions). Also, the requirement that conditions (i)-(iii) hold for all possible

signal realizations is more than required. Of course, this restriction does not matter

if values are linear in the signals (since the derivatives in conditions (i)-(iii) are then

independent of bidder signals).

Although the conditions are not necessary for the existence of the equilibria that we

focus on, the following example illustrates why, when condition (ii) fails, there may be no

equilibrium in undominated strategies with continuous and strictly increasing bid func-

tions.9

Example 1 Suppose that, for all s1; s2 2 [0; 1], v (s1; s2) = s1+ s2, v1N (s1; s2) = a+ns1

and v2N (s1; s2) = a+ns2, where n < 1 and 1�n < a < 1. Suppose that � 2 (0; 1) and that

bidder signals are independently distributed. Then there is no equilibrium in the Mixed

Game in undominated strategies with continuous and strictly increasing bid functions.

Proof. Suppose with a view to contradiction that (�1; (�2C ; �2N )) is an equilibrium in

increasing, continuous bid functions and undominated strategies. That Bidder 2 plays an

undominated strategy requires �2N (s2) = a+ ns2 for any s2 2 [0; 1]. For Bidder 1 to be
9Notice that this is true in the example without restricting attention to equilibria satisfying RS(1),

RS(C) and RS(N).
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playing an undominated strategy requires that, for any s1 2 [0; 1], �1 (s1) = �̂ (s1 + ŝ2) +�
1� �̂

�
(a+ ns1) for some ŝ2; �̂ 2 [0; 1]. Therefore, since �1 is continuous (and given the

restrictions on a and n), B1\B2N must contain p = 1 and have a non-empty interior. Since

(�1; (�2C ; �2N )) satis�es the conditions of Proposition 1, (�1; �2N ) must be an equilibrium

in Game N. Therefore, �1 (p) =
p�a
n for p 2 int [B1 \B2N ]. Since �1 (1) = 1�a

n 2 (0; 1),

and since �1 is strictly increasing and continuous, 1 2 int [B1 \B2N ]. That Bidder 2 best

responds in state C then requires p�a
n + �2C (p) = p and thus �02C (p) = 1 � 1

n < 0 in a

neighbourhood of 1. This violates the assumption of increasing bid functions. �

Whilst Example 1 suggests why the conditions of Proposition 3 are important for

equilibria in the class we consider to exist, note that other equilibria, especially those

in discontinuous bid functions, may be possible. For instance, consider Example 1 and

suppose that signals are uniformly distributed. Then, there exists an equilibrium in un-

dominated strategies with discontinuous bid functions satisfying RS(1), RS(C) and RS(N).

Indeed, the bid functions �1 (s1) = a+ ns1, �2N (s2) = a+ ns2, and

�2C (s2) =

8><>: s2 if s2 � a� 1�n
2

1 + s2 if s2 > a� 1�n
2

constitute such an equilibrium.10 Furthermore, (�1; �2N ) constitutes an equilibrium of

Game N. It is therefore possible that, even when there is no equilibrium in continuous

bid functions and undominated strategies, the conclusion of Proposition 1 remains valid.

Another example of some interest is the model proposed by Deltas and Engelbrecht-

Wiggans (2005), where Bidder 2 may be �naïve�in the sense that she misunderstands the

importance of the winner�s curse and fails to take into account the information revealed

by Bidder 1�s bid.11 After a normalization of their model, bidder values are given,

10We are grateful to the anonymous referee for pointing this out.
11Deltas and Engelbrecht-Wiggans introduce their model to study the question of the evolutionary

performance of naïve bidders. They consider the case in which Bidder 2 is known to be naïve, but express
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for all s1; s2 2 [0; 1], by v1N (s1; s2) = v (s1; s2) = s1s2, and v2N (s1; s2) = E [~s1] s2,

where E [~s1] is the unconditional expectation of Bidder 1�s signal. Assume again that

signals are independently distributed. Di¤erent from Example 1, both conditions (i) and

(ii) of Proposition 3 fail here, but there still exists an equilibrium of the Mixed Game in

undominated strategies such that (�1; �2N ) is an equilibrium of Game N. In particular,

the following bid functions constitute an equilibrium in undominated strategies satisfying

RS(1), RS(C) and RS(N): �2N (s2) = �2C (s2) = E [~s1] s2 and

�1 (s1) =

8><>: 0 if s1 � E [~s1]

s1 if s1 > E [~s1] :

Note that �1 is the same bid function Bidder 1 uses in the case when it is commonly

known that Bidder 2 is naïve.

5 Concluding remarks

This paper has considered an auction in which one bidder is uncertain as to the correct

model of valuations, namely whether values are common. Our central result is that, in

this situation, bidders coordinate on the non-common values equilibrium. The result

is relevant to situations in which the motivation of one of the bidders at an auction is

uncertain. An example is where the identity of a bidder is uncertain (i.e., when there

is a �mystery bidder�). Our result holds in an environment that accommodates both a

general form of interdependent values in case values are not common, as well as correlation

of bidder signals (subject to the MLRP).

Our �nding that the non-common values equilibrium is focal would not carry over

to general situations in which both bidders face uncertainty about the commonality of

values.12 Nor would it apply directly to a second-price auction with more than two bidders,

an interest in the case where this naïvety is uncertain.
12 Indeed, de Frutos and Pechlivanos (2006) show that Bikhchandani�s (1988) results, which depend on

14



only some of whom know whether values are common. Nonetheless, the two-bidder end

game of an English auction with such bidders might take exactly the form analyzed here.13
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Appendix

This Appendix completes the proof of Lemma 4 in the proof of Proposition 1. Specif-

ically, it is shown that if the bidders�signals obey the MLRP, condition (ii) of Lemma 3

implies that for any s1 2 [0; 1] and bb < �1(0)Z
fes2:bb<�2N (es2)<�1(0)g(v1N (0; es2)� �2N (es2))f2(es2js1)des2 � 0:

Let  (s) � v1N (0; s) � �2N (s), let N(b) � fs 2 [0; 1] : b < �2N (s) < �1(0) and

 (s) < 0g and let P (b) � fs 2 [0; 1] : b < �2N (s) < �1(0) and  (s) > 0g. If N(bb) is empty,
then we are done, so suppose N(bb) is nonempty. The set N(bb) is open in the interval [0; 1]
since  is continuous. It follows that N(bb) can be expressed as a countable union of some
collection of disjoint balls that are open in [0; 1]. Call this collection �.

Condition (ii) of Lemma 3 implies that for b 2 [bb; �1(0)];
Z
P (b)

 (es2)f2(es2j0)des2 + Z
N(b)

 (es2)f2(es2j0)des2 � 0:
Each integral is continuous in b. Therefore, for any x 2 [bb; �1(0)] there exists a number
�(x) � x such that

Z
P (�(x))

 (es2)f2(es2j0)des2 = �Z
N(x)

 (es2)f2(es2j0)des2:
Let  2 �, and de�ne  � sup ,  � inf  and m () � P (�())nP (�()). Then

Z
m()

 (es2)f2(es2j0)des2 = �Z

 (es2)f2(es2j0)des2:

De�ne l () = infs2
f2(sj0)
f2(sjs1) . Then for any s 2 , l () f2(sjs1) � f2(sj0). Substituting

into the above equation yields
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Z
m()

 (es2)f2(es2j0)
l ()

des2 � �Z

 (es2)f2(es2js1)des2:

For s0 2  and s00 2 m () we have s00 > s0. The MLRP therefore implies f2(s0j0)
f2(s0js1) �

f2(s00j0)
f2(s00js1) ,

so that l () � f2(s00j0)
f2(s00js1) , or, equivalently,

f2(s
00js1) �

f2(s
00j0)

l ()
:

Since s00 was chosen arbitrarily from m ()

Z
m()

 (es2)f2(es2js1)des2 � �Z

 (es2)f2(es2js1)des2: (*)

Therefore, it follows that

Z
fes2:bb<�2N (es2)<�1(0)g  (es2)f2(es2js1)des2 =

Z
P (bb)  (es2)f2(es2js1)des2 +

Z
N(bb)  (es2)f2(es2js1)des2

�
X
2�

 Z
m()

 (es2)f2(es2js1)des2 + Z

 (es2)f2(es2js1)des2!

� 0:

The �rst inequality follows because, by construction,
S
f 2 �g = N(bb), whereasS

fm() :  2 �g � P (bb) (whilst  is negative on N(bb) and positive on P (bb)). The second
inequality follows by (*). �
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