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Abstract

In this short paper we introduce a general class of games that allow for local
(dyadic) and global types of social interactions. By constructing a “potential”,
we show that every game in this class admits a Nash equilibrium in pure strate-
gies. We illustrate the universality of the result through a large spectrum of
applications in various disciplines.

Keywords: Social interactions, conformity, local externalities, potential function,
Nash equilibrium.

JEL Numbers: C72, D74, D85.

1 Introduction

Suppose, we need to decide which laptop to purchase and assume, for simplicity,

that all options are reduced to two choices, PC and MAC. In trying to make a decision,

we obviously rely on our intrinsic preferences and a potential benefit based on laptops’

features, design, price and our prior computer experience. However, the process does

not stop there and we often invoke elements of “social interaction” that can manifest

itself in two ways. One is local, when we consult, often on bilateral basis, with our
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peers (colleagues, co-authors, friends, family members, neighbors). Another is global,

which represents the influence exerted by a global “market appeal”, that tends to tilt

our choice towards more popular product.

The dependence of individuals’ utility on the actions and perception of others has

been recognized in various studies of social interactions and social networks.1 The

purpose of this note is to examine environments that exhibit both local and global

influences. More specifically, we consider a class of normal form games where player’s

payoff for any given action is determined by her intrinsic preference for actions (taste

component); dyadic externalities exerted by her peers on bilateral basis (local social

interaction component)2; the number of other players choosing this player’s action

(global social interaction component)3.

We show that, in presence of symmetric dyadic externalities, where each pair

of players influences each other in the same way, and a positive global effect, some

mild continuity assumptions guarantee that our game admits a pure strategies Nash

equilibrium. To prove this result, we demonstrate that our game has a potential

(Rosenthal (1973), Monderer and Shapley (1996)), whose maximum over the set of

all strategy profiles yields a Nash equilibrium of our game.4 We show moreover that

if the set of feasible actions for each player is finite, the symmetry of dyadic influences

is sufficient to ensure the existence of a pure strategies Nash equilibrium.

In the next section we introduce the model and state our result. Sections 3 and 4

contain various applications of our model.

1See, e.g., Becker (1974), Schelling (1978), Akerlof (1997), Glaeser, Sacerdote and Scheinkman
(1996), Blume (1993), Durlauf (1999,2003), Manski (2000), Blume and Durlauf (2001, 2003), Brock
and Durlauf (2001, 2002), Brock and Durlauf (2002), Glaeser and Scheinkman (2003), Galeotti at
al. (2006), Jackson (2008)), among many others.

2Dyadic influence matrices have been utilized in empirical studies of various international con-
flicts. See, e,g., Bueno de Mesquita (1975), Axelrod and Bennett (1993), Fafchamps and Gubert
(2007).

3The global component of social interaction is often called a conformity effect, driven by prestige,
esteem, popularity or social acceptance (Akerlof (1980), Jones (1984), Bernheim (1994).

4The problem of maximizing the potential is quite challenging, however. It is NP-hard even in
the case of two feasible actions for each player AND in absence of two out of the three components of
the payoff functions above. In fact, this problem is equivalent to the celebrated MAX-CUT problem
in combinatorial optimization.
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2 The Model and Results

Consider a class of games G with a finite set of players (society) N = {1, 2, ..., n}.

Each player i has a set of feasible actions (pure strategies) Xi. Let X =
⋃n

i=1 Xi.

For simplicity, we assume that all Xi (and, thus, X) are compact subsets of the

Euclidean space ℜT , T ≥ 1. Players’ choices xi ∈ Xi generate the n−dimensional

strategies profile x = (x1, x2, ..., xn), which yields the partition of N into clusters of

players choosing the same strategies. We denote this partition by π(x) and let Si(x)

be the cluster in π(x) which contains player i, as well as all other players j for whom

xj = xi. The payoff Ui(x) of player i is the sum of three terms:

Ui(x) = Vi(xi) +
∑

j∈N

W j
i (xi, xj) + H

(
xi, |S

i(x)|
)
, (∗)

where |Z| stands for the cardinality of the set Z. The first term describes the intrinsic

taste of player i for her chosen action xi. The second term represents the local dyadic

social influences of others on player i,5 whereas the last term captures a conformity

facet of social influence represented by the number of players who have chosen the

same action. We impose the following assumptions:

Assumption A.1: Upper Semi-continuity. The following functions are upper semi-

continuous: Vi(·) : X i → ℜ for all i ∈ N , W j
i (·, ·) : X i×Xj → ℜ for all i, j ∈ N

and H(·, r) : X → ℜ for all r, 1 ≤ r ≤ n.

Assumption A.2: Symmetry. W j
i (xi, xj) = W i

j (xj, xi) for every i, j ∈ N , every

xi ∈ Xi and every xj ∈ Xj. Let also W i
i (x, x) = 0 for every i ∈ N and every

x ∈ Xi.

Assumption A.3: Conformity. H(x, ·) is increasing for all x ∈ X.

Assumption A.1 is of a technical nature. Assumption A.2 implies the symmetry

of dyadic influence between any two players i and j. Assumption A.3 represents the

conformity effect. Our main result is:

Theorem: Under A1, A2, A3, every game in G admits a Nash equilibrium in pure

strategies.

5We may explicitly introduce a notion of “peer groups” by simply assuming that the values W
j

i

are equal to zero if i and j do not belong to same peer group.
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The proof of the theorem, which is relegated to the Appendix, utilizes the ingenious

idea of Rosenthal (1973) to show that our game of social interactions is a potential

game studied in Monderer and Shapley (1996) (see also Kukushkin (2007)).

Note that Assumption A1 is vacuous when X is a finite set. Also in that case, we

can dispense with the conformity assumption A3, and, moreover, allow for “congestion

effects” when individuals’ utility is adversely affected by the number of others making

the same choice (Milchtaich (1996), Konishi, Le Breton, Weber (1997b)).

Corollary: If the set X is finite, then under A2, every game in G admits a Nash

equilibrium in pure strategies.

3 Linear-Quadratic Games

We now turn to the examination of environments covered by our result and begin

with a class of social interaction games where the taste and dyadic components in (*)

consist of linear and quadratic terms.

3.1 Network Games

Akerlof (1997) considered a status model where strategic choices of all players

represent a unidimensional interval and a individual utility depends on the difference

between her own status and the status of others within the society:

Ui(x) = −ax2
i + bxi − d

∑

j 6=i

(xj − xi),

where a, b, c, d are positive constants and x is an effort, or a status-producing variable.

Akerlof (1997) also considered a conformity model,6 where individuals minimize the

social distance from their peers:

Ui(x) = −ax2
i + bxi + c − d

∑

j 6=i

|xj − xi|.

Ballester, Calvó-Armengol and Zenou (2006) studied the contribution game with

the following specification of utilities:

U(x) = −ax2
i + bx2

i +
∑

j 6=i

σijxixj,

6See Bernheim (1994) for a more general functional form.

4



where, a, b > 0, xi is i’s contribution and the dyadic social influences are captured

by the cross-derivatives ∂2Ui

∂xi∂xj
= σij = σji, i 6= j. When σij > 0, the contributions

by i and j are strategic complements, whereas when σij < 0, these two efforts are

strategic substitutes. A variant of this model has been examined by Corbo, Calvó-

Armengol and Parkes (2007), where U(x) = −
x2

i

2
+ xi + θ

∑

j 6=i

σijxixj, where θ can

be either negative or positive and σij = σij ∈ {0, 1} for all i 6= j. Again, the case

where θ < 0 can be considered as a variant of the contribution game with free ride

incentives. A particular case of this specification is considered by Glaeser, Sacerdote

and Scheinkman (2003) in their exploration of a social multiplier, where the value σij

is equal to 1/(|Pm| − 1) whenever different individuals i, j belong to the same peer

group Pm, and zero, otherwise.

Notice that one can expand the unidimensional framework described above. In-

deed, let Xi be a compact subset of the T−dimensional Euclidean space ℜT , T > 1

and define the utility functions as follows:

U(x) = 〈αi, xi〉 − σi

‖xi‖
2

2
+

∑

j 6=i

σij 〈xi, xj〉 ,

where ‖·‖ and 〈·, ·〉 denote, respectively, the Euclidean norm and the Euclidean scalar

product of vectors in ℜT . If for every i ∈ N , the set of pure strategies Xi is a product

set, then the analysis of this game can be undertaken along single dimensions as

the utility function is separable across the components. However, if Xi is not a

product set, then the multidimensional setting cannot be decomposed into several

unidimensional components.

3.2 Neighborhood and Local Interactions

Glaeser, Sacerdote and Scheinkman (2003) also examine a continuous set of ac-

tions, where player i’s utility is given by:

hixi − E

{
n∑

j=1,j 6=i

Jij (xi − xj)
2

}
+ ǫi (xi) , or, hixi + 2E

{
n∑

j=1,j 6=i

Jijxixj

}
+ ǫi (xi) .

This specification can be decomposed into a private component hixi + ǫi (xi) and

the interaction effect E
{∑N

j=1,j 6=i Jijxixj

}
. The private component can be further
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decomposed into its mean, hixi, and a 0-mean stochastic deviation ǫi (xi). The terms

Jij measure the advantages of conformity: when all Jij are positive, there is an

incentive to conform. Our theorem applies when a realization of the random variable

ǫi is a common knowledge. When the realization is a private information of player i,

the analysis requires an alternative approach which we will briefly discuss in the next

section.

4 The Binary Setting

In many social environments, players’ strategies are reduced to acceptance or re-

jection of the action under consideration:7 quit smoking (Harris and Lopez-Varcarcel

(2006)), become a member of the club (Dixit (2003)), participate in criminal activities

(Glaeser, Sacerdote and Scheinkman (1996)), join an industrial alliance (Axelrod et

al. (1995)), participate in a riot or a strike (Schelling (1978), Chwe (1999), Granovet-

ter (1978)), choose a side in international conflict (Altfeld and Bueno de Mesquita

(1979), Axelrod and Bennett (1993)), purchase a house in a specific residential area

(Schelling (1969)), display a national flag on the Independence Day (Chwe (2006)).

4.1 Critical mass and threshold models of collective action

A celebrated example of the analysis of the social influence channels in the di-

chotomic setting has been offered by Shelling (1978). In his threshold model of col-

lective action, the participation of an individual in an action depends on the fraction

of the population engaged in the action. This model is a special case of (*) without

the second component, where, moreover, H(Y, r) = r and H(N, r) = 0 for every pos-

itive integer r. Indeed, each player i who must chose between participation (Y) and

non-participation (N) is represented by a critical mass ti of the number of individuals

of players choosing (Y) in order for i to endorse her own participation. That is, for

every i, αi is the smallest integer such that Vi(N) − Vi(Y ) ≤ ti.

In his pioneering paper Granovetter (1978) has pointed out that the influence

any given person has on one’s decision may also depend on the nature of the pair’s

relationship. Thus, one needs to reintroduce the second (social interaction) term in

(*) to capture heterogeneity of players’ dyadic social externalities.

7See Granovetter (1978) and Schelling (1973) for additional illustrations of this setting.
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4.2 A Theory of International Alliances

In their strategic analysis of international alignments,8 Axelrod and Bennett (1993)

(AB - henceforth) developed the so-called landscape theory based on n actors (na-

tions), an n-dimensional vector s whose coordinates represent the size (or importance)

of the nations, an n×n matrix p, whose entry pij (positive or negative) represents the

propensity of nations i and j to work together. An outcome (configuration) consists

of a partition π of all nations into two mutually exclusive blocks, S and T . AB define

the frustration Fi(π) of country i ∈ S from π, Fi(π) =
∑

j∈T

sjpij, and the energy, E(π),

of the configuration π by: E(π) =
∑

i∈N

siFi. AB then examine stable configurations

that yield a local minimum of energy over all possible two-bloc alliances.9 AB focus

on the case where all the entries pij are symmetric and negative, and define the “

distance” between every i and j as dij = −pij > 0. Obviously, the AB model is a

special case of our setting, where all players face two choices, S and T , in absence of

intrinsic preferences for two blocs10 and a conformity component, where the dyadic

influences are either −sisjdij if i, j belong to the same bloc, or 0, otherwise.11

Our model also covers the analysis of standard-setting alliances aiming to develop

and sponsor technical standards (Axelrod et al. (1995)). For every firm i the set

N\ {i} is partitioned into two disjoint sets, Ci and Di, i’s close and distant rivals12,

respectively. The utility of a firm contemplating to join the alliance A is positively

correlated with the size of A but is negatively impacted by allying with its rivals,

especially the close ones: Ui =
∑

j∈A sjpij, where pij is equal to 1 − α if j ∈ Di, and

to 1 − α − β if j ∈ Ci, where α and β are two positive parameters.13

8See also the pioneering work of Bueno de Mesquita (1975, 1981) on systematic polarity.
9It is interesting to point out that AB found two stable configurations in Europe, one is the exact

partition into the Axis and Allies of World War II, and another that separates the USSR, Yugoslavia
and Greece from the rest of Europe.

10Galam (1996) removes this restriction.
11Note that the AB model is a special case of the multidimensional extension of the linear

quadratic-model in subsection 3.1, where the set of players’ pure strategies coincides with the vertices
of a unit simplex.

12This echoes the distinction between strong and weak ties in the analysis of social networks
(Granovetter (1973).

13Axelrod et al. (1995) test their theory by estimating the choices of nine computer companies to
join one of two alliances sponsoring competing UNIX operating system standards in 1988.
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4.3 Local Interaction, Statistical Physics and Ising’ Model

As we indicated in subsection 3.2, the case where the realization of ǫi is a private

information of player i, the analysis of the game requires an alternative approach.

Each player i knows the realizations of ǫi but has to form beliefs about the strategies

of other actors. If the action can only take the values -1 and +1, we have in equilibrium

Prob (xi = 1) = F

(
2hi + 4E

{
N∑

j=1,j 6=i

Jijxj

})
,

where F is the cumulative density function of the random variable ǫi (−1) − ǫi (+1).

There are various specifications of parameters hi and Jij. One is the uniform global in-

teraction model considered by Brock and Durlauf (2001) (BD - henceforth) with hi = h

and Jij = J
2(N−1)

, where h and J are two parameters. BD calculate the Nash equilib-

rium of this mean field model while assuming that each player believes that the expec-

tation of the action of each of his opponents is identical, say m. BD derive the equilib-

rium condition on m, and the individual choice probability becomes Prob (ηi = 1) =

F (2h + 2Jm) , where m = Prob (xi = 1)− Prob (xi = −1) = 2Prob (xi = 1)− 1. BD

derive the equation m = tanh
(

1
2
g(h + Jm)

)
where g(z) ≡ log F (z) − log(1 − F (z)).

Assuming, in addition, that the random terms are distributed according to the ex-

treme value distribution with parameter β, F (z) = 1/(1 + exp (−βz)), the equation

simplifies to m = tanh β (h + Jm), which is the well-known Curie-Weiss model of

magnetization in statistical physics.

Another important model of social interaction is the uniform local interaction

model studied by Blume (1993) and Ellison (1993), where hi = h and Jij = J or 0,

depending upon whether or not i and j are neighbors.14 A neighborhood relation can

be defined on the undirected graph with players located on the d-dimensional integer

lattice Zd, where neighbors of i are players placed at the minimal distance from i, as

in the standard Ising’s stochastic model.

5 The Multinomial Framework

In this section we consider situations where the players face more than two choices.15

As an illustration, consider a group of co-workers who make their lunch choices among

14See the excellent survey of Durlauf (2004) on neighborhood effects.
15While we focus on the discrete setting, most of the results can be extended to a continuous case.
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K available restaurants, that vary according to the type of cuisine, food quality,

price, service, etc. The restaurants offer price discounts for large groups, and the

unit lunch price lk(sk) in restaurant k is decreasing with sk, the number of reser-

vations it receives. We assume that the utility of player i choosing restaurant k is

Ui(x) = bk
i +

∑

j∈Sk

pij − lk (sk), where the first term refers to the intrinsic benefit of

player i from a lunch at restaurant k, the second term accounts for the social ben-

efit derived by i from the company of her co-workers j at the lunch table, obtained

through dyadic social externalities pij, whereas the last term, previously viewed as

conformity effect, accounts for a monetary impact of the restaurant discount.16

A specific case of this general framework have been examined by Florian and

Galam (2000), who extended the landscape model to include a neutrality as a possible

third choice. Brock and Durlauf (2002), Bayer and Timmins (2005) consider a utility

specification Ui(x) = bk
i + α|Si(x)| + ǫk

i , where ǫk
i is a random effect on player i from

making choice k. When the realization of ǫi is the private information of player i,

the equilibrium outcome is described by a probability distribution satisfying some

consistency properties.

The existence of Nash equilibria in the case where Ui(x) = Vi(xi) + H (xi, |S(x|),

is shown in Konishi, Le Breton and Weber (1997a). In the context of jurisdiction

formation, where each jurisdiction selects a local public good and finances it on its

own, a Nash configuration in this setting is, in fact, a Tiebout or a sorting equilibrium

(Schelling (1978)), where no resident from an existing jurisdiction desires to migrate

elsewhere. An equilibrium profile is described by the partition π(x) and the actions

chosen by coalitions in π(x). Here the social interaction game is, in fact, the coalition

formation game, where the extent of social influence is limited to members of the

same coalition. If functions Vi and H are independent of chosen actions, the payoff

of a player i is fully determined by the set of players also choosing i’s action, and the

coalition formation game becomes hedonic (Banerjee, Konishi and Sömnez (2001),

Bogomolnaia and Jackson (2002)). Alternatively, one can generate a hedonic game

by ignoring the first and third terms in (*), and setting W i
j (xi, xj) equal to zero for

all xi 6= xj, again restricting dyadic social influence to players choosing the same

action.17

16One could introduce a congestion effect that may even outweigh price advantages.
17In this case our result has been obtained by Bogomolnaia and Jackson (2002).
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Finally, the multinomial setting is a natural framework to analyze strategic forma-

tion of clusters in social networks, where each player partitions the rest of the society

into “friends” and “enemies”. The social network is described by a graph G and the

set of vertices N , where an (undirected) edge between i and j implies that both i

and j consider the other as a friend. Let Ui(x) = α
∑

j∈Si(x)

dij + H
(
|Si(x)|

)
, where

α is a positive parameter and dij = 1 if there is an edge between i and j, and zero

otherwise. In absence of intrinsic preferences over actions, the social heterogeneity is

fully described by the graph G, called a sociogram (Moreno (1934)). Our theorem im-

plies the existence of a Nash equilibrium configuration, and, under certain conditions

on the parameters, every Nash equilibrium splits the society into cliques of players,

each considering the other as a friend.18 It is also interesting to point out that by

considering the complement of G̃ of G (i.e, players have an edge if they view each

other as an enemy), we can utilize the chromatic number of G̃ (Skiena (1990)), which

is the smallest number of colors needed to color the vertices of G̃ so that no two

adjacent vertices share the same color. Indeed, since adjacent enemies have different

colors, the chromatic number provides a lower bound on the number of clusters in a

Nash equilibrium partition.

6 Conclusions

In this short paper we examine the class of social interaction games where the

influence of a peer group is generated through symmetric dyadic interactions between

every two members of the group. Given the scope of our note, we sketch a wide range

of possible applications, whereas a detailed and more elaborated description of the

environments covered by our result, is left for a longer version of the manuscript.

7 Appendix

Proof: Consider an n-dimensional strategies profile x = (x1, ..., xn) of players’ strate-

gic choices, which generates the partition π(x) = (S1, . . . , SK) of N , where the mem-

18This notion of a clique (Luce and Perry (1949)) has been extensively examined in sociometry
and social network studies. See, e.g., Alba (1973), Seidman and Foster (1978), Borgatti, Everett
and Shirey (1990).
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bers of each Sk choose the same action xk. Define the following function19 Ψ on

Λ =
∏n

i=1 Xi:

Ψ (x) =
n∑

i=1

Vi(xi) +
1

2

n∑

i=1

n∑

j=1

W j
i (xi, xj) +

K∑

k=1

|Sk|∑

r=1

H(xk, r)

=
n∑

i=1

Vi(xi) +
1

2

n∑

i=1

n∑

j=1

W j
i (xi, xj) +

∑

y∈B(x)

|S(x,y)|∑

r=1

H(y, r),

where B(x) is the range of actions chosen at x, i.e., B(x) = {y ∈ X : ∃ i s. t. y = xi},

and S(x,y) is the cluster of players in π(x) who choose y. Since, by A1, Vi and W j
i are

upper semi-continuous (usc) for all i, j ∈ N , the first two components of Ψ are usc.

We will now show that the third term
∑K

k=1

∑|Sk|
r=1 H(xk, r) =

∑
y∈B(x)

∑|S(x,y)|
r=1 H(y, r)

is usc as well. Let y ∈ B(x) and {xm} be a sequence in Λ, converging to x.

Since for all j /∈ S(x, y), xj 6= y, it follows that for m large enough, no action

at xm can be chosen by both a member of S(x, y) and a player outside of S(x, y).

Thus, again for m large enough, S(x, y) is the union of sets in π (xm). Let Bm =

{z ∈ X : ∃ i ∈ S(x, y) s.t. z = xm
i }. Thus, for m large enough, we obtain by A3:

∑

z∈Bm

|S(xm,z)|∑

r=1

H(z, r) ≤

|S(x,y)|∑

r=1

max
z∈Bm

H(z, r) ≡

|S(x,y)|∑

r=1

H(zm
r , r),

where H(zm
r , r) = max

z∈Bm
H(z, r) for every r. But since zm

r converges to y for every r

and H is usc with respect to the first argument, lim
n→∞

H (zm
r , r) ≤ H (y, r). Thus,

lim sup
m→∞

∑

z∈Bm

|S(xm,z)|∑

r=1

H(z, r) ≤

|S(x,y)|∑

r=1

H(y, r).

Since Xi is compact for all i ∈ N , so is Λ, and the function Ψ being usc, attains

its maximum x∗ = (x∗
1, . . . , x∗

n) over Λ. We claim that x∗ is a Nash equilibrium.

Assume, in negation, that there exists a player i ∈ N and a strategy xi ∈ Xi such

that Ui(x) < Ui(x̃), where x̃ ≡
(
xi, x

∗
−i

)
:

Vi(xi) +
n∑

j=1

W j
i (xi, x

∗
j) + H

(
xi, |S

i(x̃)|
)

> Vi(x
∗
i ) +

n∑

j=1

W j
i (x∗

i , x
∗
j) + H

(
xi, |S

i(x∗)|
)
.

19Note that in the AB specification in subsection 4.2, the function Φ is a weighted sum of players’
payoffs, and the potential Φ coincides with the celebrated fractionalization index ELF (Atlas Narodov
Mira, 1964).
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Since the number of players who choose xi at x̃ exceeds the number of players who

chose xi at x∗ by one, we have:

Vi(xi) +
1

2

n∑

j=1

W j
i (xi, x

∗
j) +

1

2

n∑

j=1

W i
j (x

∗
j , xi) + H(xi, |S

i(x∗)| + 1)

> Vi(x
∗
i ) +

1

2

n∑

j=1

W j
i (x∗

i , x
∗
j) +

1

2

n∑

j=1

W i
j (x

∗
j , x

∗
i ) + H(x∗

i , |S
i(x∗)|).

The last inequality yields

Ψ (x̃) − Ψ (x∗) =

[
Vi(xi) +

1

2

n∑

j=1

W j
i (xi, x

∗
j) +

1

2

n∑

j=1

W i
j (x

∗
j , xi) + H(xi, |S

i(x∗| + 1)

]

−

[
Vi(x

∗
i ) +

1

2

n∑

j=1

W j
i (x∗

i , x
∗
j) +

1

2

n∑

j=1

W i
j (x

∗
j , x

∗
i ) + H(x∗

i , |S
i(x∗)|)

]
> 0,

contradicting the fact that x∗ is a maximum of Ψ over Λ. ✷
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