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1 Introduction

Empirical researchers are often interested in evaluating the impact of a change in the

distribution of explanatory variables on some features of the unconditional distribution

of an outcome variable of interest, such as e.g. its quantiles. The Unconditional Partial

Effects (UPEs) recently introduced by Firpo, Fortin, and Lemieux (2009) constitute a

convenient way to summarize such dependencies. For a binary covariate T , the UPE

is defined as the impact of a marginal increase in the probability p = Pr(T = 1) on

some feature Γ(FY ) of the distribution FY of an outcome variable Y of interest, holding

everything else constant. This type of parameter is potentially of great practical relevance

in various economic applications. To give an example, a researcher might be interested

in the direct effect of a marginal increase in the proportion of unionionized workers on

the mean or some quantile of the wage distribution, holding all other characteristics of

the labor force constant.

This paper provides a detailed analysis of UPEs of binary covariates in general non-

separable models. We show that these parameters are generally not point identified if the

underlying model contains at least one additional covariate that also influences the out-

come distribution. A rare exception to this rule is the UPE on the mean of the outcome

distribution, which is identified if there are no interactions between the binary regressor

and all other covariates. For most other features of the outcome distribution usually

considered in applied work, including e.g. quantiles or related statistics like interquantile

ranges, UPEs are typically not point identified even for extremely simplistic models, such

as linear models with i.i.d. errors and no interaction terms.

In cases where point identification fails, the UPE can often still be bounded, with the

identified set taking the form of an interval. We derive explicit expressions for the upper

and lower bounds of this set, and show how to estimate them nonparametrically in the

context of an empirical application that analyzes the effect of unionization on the wage

distribution. Our empirical results suggest that a marginal change in the proportion of
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unionized workers has an ambiguous effect, manifested in relatively wide bounds for the

parameters of interest. In particular, we cannot rule out that such a change would leave

the distribution of wages entirely unaffected.

UPEs have been recently introduced to the literature by Firpo, Fortin, and Lemieux

(2009). For a continuously distributed covariate, they are defined as the effect of a

marginal shift in the regressor’s location on the distribution of the outcome variable. For

this case, Firpo, Fortin, and Lemieux establish identification of the UPE under general

conditions, and propose various estimation procedures. They also consider UPEs of a

binary covariate, particularly in an earlier working paper version (Firpo, Fortin, and

Lemieux 2007), but only cover the case where no additional regressors are present in the

model explicitly.

The main contribution of our paper is to show that these results do not extend to the

practically relevant case of a multidimensional covariate vector. The reason is that there

exists no unique way to link a multivariate distribution function to its one-dimensional

marginals if at least one of them is discrete. This follows from a result in copula theory

known as Sklar’s Theorem (Sklar 1959). Hence, there are several ways to implement a

change in the marginal distribution of a binary covariate while ”holding everything else

constant”, and consequently, the impact of such a change on distribution of the outcome

variable is only partially identified in general.

While Firpo, Fortin, and Lemieux (2009) provide a theoretical discussion of UPEs

of binary covariates only for the univariate case, their empirical application (which is

the same as ours) presents point estimates of such a parameter in a setting with many

additional regressors. Our paper discusses the interpretation of these results. We argue

that their estimates correspond in fact to a different parameter, which can be seen as a

generalization of the usual Average Partial Effect. While this parameter is point identified

under general conditions, it cannot be interpreted as the impact of a marginal ceteris

paribus change in the unconditional distribution of the binary covariate.

We view our paper as an important complement to a growing literature that analyzes
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the impact of counterfactual changes in the distribution of covariates on the uncondi-

tional distribution of an outcome variable of interest. Examples include DiNardo, Fortin,

and Lemieux (1996), Donald, Green, and Paarsch (2000), Machado and Mata (2005),

Chernozhukov, Fernandez-Val, and Melly (2009) and Rothe (2009). In these papers, the

focus is on the effect of a fixed change of the entire covariate distribution on the distribu-

tion of the outcome variable. The parameters they estimate are thus quite different from

the ones considered in Firpo, Fortin, and Lemieux (2009) and the present paper, which

correspond to marginal changes in the distribution of a single covariate.

The plan of the paper is as follows. In the next section we describe our modelling

framework and the parameters of interest. Section 3 contains the identification analysis.

Section 4 discusses the interpretation of the point estimates in Firpo, Fortin, and Lemieux

(2009). Section 5 contains our empirical application. Finally, Section 6 concludes. Tech-

nical arguments are delegated to the Appendix.

2 Model and Parameters of Interest

The setup we consider is as follows1: we observe a scalar dependent variable Y and a

(d+1)-dimensional vector of covariates Z = (T,X ′)′, with marginal distribution functions

FY and FZ , respectively. The covariate vector consists of a dummy variable T ∈ {0, 1},

and the d-dimensional vector of remaining covariates X, which can be either continuously

or discretely distributed. The corresponding marginal distribution functions are denoted

by FT and FX , respectively. The dependent variable is assumed to be generated through

the nonseparable model

Y = m(Z, η), (2.1)

1Our setup is the same as in Firpo, Fortin, and Lemieux (2009), but we introduce it in a slightly
different manner which is convenient for our later analysis.
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where η is an unobserved error term that is assumed to be independent of Z 2. In a typical

microeconometric application, Z and η would correspond to observed and unobserved

characteristics of an individual, respectively, and m would describe the decision rule

that, given individual characteristics, determines the individual’s choice Y . This flexible

formulation allows the covariates to exert influence on Y in manifold ways. For example,

model (2.1) allows for heteroskedasticity or skewness in the conditional distribution of Y

given Z.

The parameters we are interested in correspond to the effect of certain infinitesimal

perturbations of the covariates’ distribution on some feature Γ(FY ) of the distribution

of the outcome variable, where Γ : FΓ → R, and FΓ is a class of distribution functions

such that FY ∈ FΓ if |Γ(FY )| <∞. That is, suppose we have a sequence of distribution

functions FZ,δ indexed by δ ∈ R, such that

lim
δ→0
‖FZ,δ − FZ‖∞ = 0.

Let Zδ be a sequence of random vectors with distribution FZ,δ that are independent of η,

and define the counterfactual random variables Yδ as

Yδ = m(Zδ, η).

The corresponding CDF of Yδ, denoted FY,δ, can then be written as

FY,δ(y) =

∫
FY |T,X(y, t, x)dFZ,δ(t, x),

since η is assumed to be independent of both Z and Zδ (see e.g. Rothe (2009)). With

this notation, we can define the effect of an infinitesimal perturbation of the covariate

distribution in the direction FZ,δ on Γ(FY ) as the derivative of Γ(FY,δ) with respect to δ

2Here we follow Firpo, Fortin, and Lemieux (2009) and do not consider models with endogeneity.
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evaluated at δ = 0,

θ(Γ, FZ,δ) =
∂Γ(FY,δ)

∂δ

∣∣∣∣
δ=0,

provided that the latter quantity is well-defined.

In their paper, Firpo, Fortin, and Lemieux (2009) introduce the Unconditional Partial

Effect (UPE) of a regressor T on Γ(FY ) as the effect of a specific infinitesimal perturbation

of the covariate distribution. For continuously distributed T , it is the effect of a pertur-

bation in the direction FZ,δ(t, x) = FZ(t− δ, x), which corresponds to a location shift in

T . In the case of a single binary covariate T , it is defined as the effect of a perturbation

in the direction FZ,δ(t) ≡ FT,δ(t) = I{0 ≤ t < 1}(FT (0)− δ) + I{t ≥ 1}, corresponding to

an increase in p = Pr(T = 1) to p + δ. See Corollary 1 in the published version of their

paper and Corollary 3 in Firpo, Fortin, and Lemieux (2007), an the earlier working paper

version, respectively, for details. For a general multivariate setting, the UPE of a binary

covariate is only informally defined as the effect of a perturbation corresponding to an

increase in p = Pr(T = 1) to p+ δ, leaving all remaining features of the distribution of Z

unchanged. One of the main problems we aim to solve in this paper is to give an explicit

method to construct such a perturbation.

In order to accomplish this in a multivariate setting, we use a well-known result from

the theory of copula functions due to Sklar (1959). Copula functions are popular tools in

various areas of applied statistics and economics, including such diverse fields as finance,

risk management or meteorology, since they allow researchers to model the dependence

structure and the one-dimensional marginals of a multivariate distribution separately

(see Joe (1997), Nelsen (2006) or Trivedi and Zimmer (2007) for extensive surveys of

the related literature). This feature also makes them very attractive for our purposes.

In particular, it follows from Sklar’s Theorem that for every multivariate distribution

function FZ with marginal distribution functions FT , FX1 , . . . , FXd
there exists a function
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C∗ such that

FZ(t, x) = C∗(FT (t), FX1(x1), . . . , FXd
(xd)), (2.2)

where C∗ : [0, 1]d+1 → [0, 1] is a multivariate distribution function with uniform one-

dimensional marginal distributions. This so-called copula function C∗ connects (or ”cou-

ples”) a multivariate CDF to its one-dimensional marginals, and can thus be interpreted

as the object that contains all the information about the dependence structure of the

random vector Z.

It is important to note that (2.2) is not merely a statistical representation, but also has

an intuitive economic interpretation. Suppose that for every member of the population

the difference in utility between choosing T = 1 over T = 0 is given by a continuously

distributed random variable Ũ , so that T = I{Ũ ≥ 0}. Denoting the corresponding

distribution function by F̃U , we can define the rank of an individual in the distribution

of latent utility as U = F̃U(Ũ). Now suppose for simplicity that X is continuously

distributed, and let V = (FX1(X1), . . . , FXd
(Xd))

′ be the vector of corresponding ranks.

Then the copula C∗ in (2.2) is the distribution function of (U, V ). That is, it determines

the joint distribution of the ranks in the population.

Given the representation in (2.2), it appears natural to define a perturbed distribution

of the covariates where only the probability of observing T = 1 has changed from p to

p+ δ as

Gδ(t, x) = C∗(FT,δ(t), FX1(x1), . . . , FXd
(xd)),

where FT,δ is the new marginal CDF of the first component, given by

FT,δ(t) = I{0 ≤ t < 1}(1− p− δ) + I{t ≥ 1}.

Note that for any δ 6= 0 the only difference between Gδ and FZ is the marginal distribution

7



of the first component. The remaining marginals are the same for both distribution

functions, and since they share the same copula function both distributions also exhibit

the same dependence structure. With this notation, we can now define the UPE of a

dummy variable T on Γ(FY ) as

α(Γ, T ) = θ(Γ, Gδ).

The following theorem gives conditions under which this parameter is a well-defined

feature of the underlying data generating process, and derives an explicit representation.

Theorem 1. Suppose that i) the real-valued functional Γ is Hadamard differentiable at

FY , with derivative Γ′, ii) the copula function C∗ is differentiable with respect to its first

component, and iii) the support of X conditional on T = t does not vary with t ∈ {0, 1}.

Then the Unconditional Partial Effect of a dummy variable T on Γ(FY ) exists and can

be written as

α(Γ, T ) =

∫
gΓ(x)ds∗(FX1(x1), . . . , FXd

(xd)), (2.3)

where

gΓ(x) = Γ′(FY |T,X(·, 1, x))− Γ′(FY |T,X(·, 0, x)) (2.4)

and

s∗(b) =
∂C∗(a, b)

∂a

∣∣∣∣
a=FT (0).

(2.5)

The role of both condition i) and ii) in the preceding theorem is to ensure that Γ(FY,δ)

is differentiable with respect to δ. The Hadamard differentiability condition requires the

functional of interest to be sufficiently smooth around FY in some appropriate sense. To
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be precise, this means that there exists a continuous linear functional Γ′ such that

∣∣∣∣Γ(FY + δhδ)− Γ(FY )

δ
− Γ′(h)

∣∣∣∣→ 0 as δ → 0

for all functions hδ → h (see Van der Vaart (2000, p. 296) for details). This condition

can be verified for most functionals that are commonly of interest in applied work under

mild additional regularity conditions. Examples include moments, quantiles, interquantile

ranges, the Lorenz curve, the Gini coefficient and other measures of inequality (see e.g.

Rothe (2009)). We discuss the case of the mean and the quantiles in greater detail below.

Finally, condition iii) in the preceeding theorem ensures that the conditional distribution

function FY |Z , which enters the term gΓ, is well-defined over the area of integration

in (2.3).

3 Identification

Given knowledge of the copula function C∗, it would be straightforward to compute

α(Γ, T ) using the representation in Theorem 1. Unfortunately, while Sklar’s Theorem

guarantees the existence of a copula function satisfying (2.2), it does not ensure its

uniqueness. Instead, as one can easily see, C∗ is identified by the data only on the range

of the marginal distribution functions FT , FX1 , . . . , FXd
. (see also Nelsen (2006, Theorem

2.3.3)). In particular, for any value b0 ∈ Ran(FX1)× . . .× Ran(FXd
), the value C∗(a, b0)

is uniquely determined for a ∈ {0, FT (0), 1} only. This in turn implies that the function

s∗ defined in (2.5) is not point identified, since the identification of a derivative at a fixed

point requires knowledge of the function at least in some small neighbourhood.

Although s∗ is not point identified, one can use the properties of copula functions to

find restrictions on its shape. The following lemma establishes that s∗ belongs to a very

specific class of functions.

Lemma 1. Suppose that FT (0) ∈ (0, 1). Then s∗(·) ∈ S, where S is the set of all
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multivariate distribution functions with support RX = {(FX1(x1), . . . , FXd
(xd))

′ : x ∈ X},

where X denotes the support of X.

This result allows us to construct the identified set A(Γ, T ), which contains the possi-

ble values of the UPE that are compatible with the distribution of observable quantities.

Using the representation for α(Γ, T ) given in (2.3), we obtain that

α(Γ, T ) ∈ A(Γ, T ) =

{∫
gΓ(x)ds(FX1(x1), . . . , FXd

(xd)), s ∈ S
}
. (3.1)

This expression for the identified set can be further simplified by noting that due to

the properties of the functions contained in S, we can interpret A(Γ, T ) as the set of

all weighted averages of the function gΓ. If this function is is bounded, then every such

weighted average is necessarily smaller than the smallest upper bound on gΓ(x), and

bigger than the biggest lower bound. The next theorem formalizes this idea.

Theorem 2. Suppose that the conditions of Theorem 1 hold. Then the identified set for

α(Γ, T ), the Unconditional Partial Effect of a dummy variable T on Γ(FY ), is given by

A(Γ, T ) = [αL(Γ, T ), αU(Γ, T )]

where

αU(Γ, T ) = sup
x∈X

gΓ(x)

αL(Γ, T ) = inf
x∈X

gΓ(x)

and X denotes the support of X.

The theorem shows that the identified set A(Γ, T ) takes the form of an interval, and

provides explicit expressions for its upper and lower bounds, which are easy to evaluate.

Since the identified set is restricted by the extrema of the ”bound generating function”

gΓ(x), our problem falls into the general class of models with partially identified param-
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eters restricted by intersection bounds. A general theory for estimation and inference in

this setting is provided by Chernozhukov, Lee, and Rosen (2009), whose results we also

use in our empirical application below.

It is an immediate consequence of Theorem 1 that α(Γ, T ) is identified if and only if

gΓ(x) is constant for all x ∈ X . In this case the upper and lower bound coincide, and

the identified set reduces to a singleton. Under other circumstances, point identification

necessarily fails. However, the bounds may be informative, in the sense that αU(Γ, T )

and αL(Γ, T ) are finite, if gΓ(x) is bounded over x ∈ X . Whether or not that is the case

depends on the specific form of the conditional distribution of Y given X and T , and the

functional of interest Γ.

We now discuss two examples that illustrate the application of Theorem 2: the UPE

on the mean and on the τ -quantile of Y .

Example 1 (Mean). Suppose that ΓM(FY ) =
∫
y dFY (y) is the functional that maps a

CDF into the corresponding mean. Since this functional is linear, it is also Hadamard

differentiable with derivative Γ′M = ΓM . The bounds given in Theorem 2 can thus be

written as

αU(ΓM , T ) = sup
x∈X

(E(Y |T = 1, X = x)− E(Y |T = 0, X = x)) and

αL(ΓM , T ) = inf
x∈X

(E(Y |T = 1, X = x)− E(Y |T = 0, X = x)) .

This implies that α(ΓM , T ) is identified whenever the conditional expectation of Y given

T and X does not contain any interaction terms between T and the other regressors,

i.e. it holds that E(Y |T = t,X = x) = m1(t) + m2(x). When T exerts a heterogeneous

effect varying with X point identification fails. For example, the UPE is only partially

identified for the Probit model. There the conditional expectation function E(Y |T =

t,X = x) = Φ(γ1 + γ2t+ γ′3x), where Φ(·) is the standard normal CDF, is not additively

separable in t. Such a lack of additive seperability is also present in other generalized

linear models and most nonlinear regression models.
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Example 2 (Quantile). Suppose that ΓQ,τ (FY ) = inf{y ∈ R : FY (y) ≥ τ} = QY (τ)

is the functional that maps a CDF into the corresponding τ -quantile. If FY is contin-

uously differentiable in some open neighbourhood of QY (τ), and the derivative fY is

strictly positive, it follows from Lemma 21.4 in Van der Vaart (2000) that Γ is Hadamard

differentiable with derivative

Γ′Q,τ : φ 7→ −
(
φ

fY

)
◦QY .

In this case the bounds given in Theorem 2 simplify to

αU(ΓQ,τ , T ) = sup
x∈X
−
FY |T,X(QY (τ)|1, x)− FY |T,X(QY (τ)|0, x)

fY (QY (τ))
and

αL(ΓQ,τ , T ) = inf
x∈X
−
FY |T,X(QY (τ)|1, x)− FY |T,X(QY (τ)|0, x)

fY (QY (τ))
.

Inspection of the bounds reveals that the UPE of a dummy variable T on the τ -quantile of

the outcome distribution is not identified even for very simple models without interaction

effects. Consider for example the case that Y = T + X + η. Then the numerator in the

expression for the bounds is given by FY |T,X(QY (τ)|1, x)−FY (QY (τ)|0, x) = Fη(QY (τ)−

x−1)−Fη(QY (τ)−x), which will generally depend on x.3 On the other hand, since every

distribution function is bounded between 0 and 1, it is ensured that both αL(ΓQ,τ , T ) and

αU(ΓQ,τ , T ) are finite. The bounds are thus necessarily informative, although this does

not guarantee that they will be narrow in a particular application.

4 What do RIF Regressions Estimate?

As mentioned above, Firpo, Fortin, and Lemieux (2009, 2007) explicitly only discuss the

definition and identification of UPEs of binary regressors for the case that there are no

additional covariates present in the model. However, in their empirical application they

3The only exception would be the rare and arguably unrealistic case that the distribution function of
η is linear over the respective range of x.
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report point estimates of the effect of unionization on the mean and various quantiles of

the wage distribution, while controlling for a number of further human capital variables.

These estimates are obtained using several variants of their so-called RIF regression

techniques. Since our analysis suggests that such parameters are generally not identified,

it is useful to clarify how their results can be interpreted. We now show that although

they are interpreted by Firpo, Fortin, and Lemieux as if they were estimates of the UPE,

they correspond in fact to a different parameter, that coincides with our UPE if and

only if the copula function C∗ has the same local properties as a copula that induces

independence between T and X.

Using our notation, the population quantity corresponding to the point estimates in

Firpo, Fortin, and Lemieux (2009) is given by4:

β(Γ, T ) =

∫
gΓ(x)dFX(x). (4.1)

Note that if Γ = ΓM is the functional that maps a CDF into its mean, this parameter

simplifies to β(ΓM , T ) = E[E(Y |T = 1, X)−E(Y |T = 0, X)], which is the usual Average

Partial Effect of a binary covariate (Wooldridge 2002, Chapter 2). For a general functional

Γ, we therefore refer to β(Γ, T ) in the following as the Generalized Average Partial Effect

(GAPE).

The GAPE is conceptionally different from the UPE, and cannot be interpreted as the

effect of a marginal change in the unconditional probability of observing T = 1. While

the GAPE can be written as the effect of an infinitesimal perturbation of the covariate

distribution, the direction of the perturbation differs from the one used to construct the

UPE. In particular, using the notation from Section 2, we have that β(Γ, T ) = θ(Γ, G̃δ),

where

G̃δ(t, x) = (FT |X(t, x)− δI{0 ≤ t < 1})FX(x).

4This is not explicitly stated in the paper, but can be inferred from the Supplemental Material.
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Here G̃δ(t, x) is a perturbed covariate distribution where the conditional probability of

observing T = 1 given X = x is changed from p(x) = Pr(T = 1|X = x) to p(x) + δ for

every value of x ∈ X . While in this case the unconditional probability of observing T = 1

increases by δ as well, in general this perturbation does not leave the original dependence

structure of the covariate distribution unaffected.

While in general the GAPE and the UPE are two different parameters, they can be

shown to coincide under a very specific restriction on the copula function C∗. Recall

from (2.3) that the UPE can be written as

α(Γ, T ) =

∫
gΓ(x)ds∗(FX1(x1), . . . , FXd

(xd)),

where s∗(b) = ∂aC
∗(a, b) evaluated at a = FT (0). Comparing this expression to the

term on the righ-hand side of (4.1), we see that the GAPE and the UPE are equal if the

function s∗ satisfies the relationship s∗(b) = C∗(1, b) for all b ∈ [0, 1]d. From the definition

of s∗, it follows that for each element C of the class of copula functions which imply this

relationship it holds that

C(a, b) = aC(1, b) + o(‖a− FT (0)‖), (4.2)

as a → FT (0), uniformly over b ∈ RX . Every element of this class therefore locally

behaves in the same way as a copula function that induces independence between T and

X, i.e. that has C(a, b) = aC(1, b) for all a and b. One can thus think of relationship (4.2),

which implies equality of UPE and GAPE, as a local independence condition. Note that

imposing this condition by assumption would be sufficient to achieve point identification

of the UPE. However, such an approach would typically not be attractive in practice.

First, the local independence condition is not a testable property, and second it is unlikely

to be justifiable in applications by economic arguments, except if T and X are fully

independent.
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Finally, we remark that although the UPE and the GAPE are generally different, the

GAPE is always contained in the identified set A(Γ, T ), since by Lemma 1 we have that

C∗(1, ·) ∈ S, the set of feasible values of the function s∗.

5 Empirical Application

In this section, we revisit the empirical application in Firpo, Fortin, and Lemieux (2009),

which investigates the direct effect of unionization on the distribution of male (log) wages.

We employ the same dataset, which consists of 266,956 observations on U.S. males from

the 1983—1985 Outgoing Rotation Group (ORG) supplement of the Current Population

Survey. Following Firpo, Fortin, and Lemieux (2009), we use a model of wage determi-

nation of the form

Y = m(T,X, η)

where Y is the log wage of the individual, T is an indicator for membership in a union,

and X is a vector of further control variables, which include indicators for being married

and being non-white, six indicators for different levels of education, and nine indicators

for different levels of labour market experience. The parameters of interest are the effects

of a marginal increase in the unionization rate on the mean and the quantiles of the

distribution of log wages. Our above analysis suggests that these parameters are not

point identified, but can be bounded. Since the support of the covariates is finite, the

bounds will be informative.

In order to estimate the bounds on the UPE, we use a methodology proposed by

Chernozhukov, Lee, and Rosen (2009). They consider the general problem of conducting

inference on a partially identified parameter when the bounds of the identified set are

given by the extrema of estimateable functions. Since in our application the bounds on

the UPE are the maximum and minimum of the bound generating function x 7→ gΓ(x)

over the finite set X , they fit exactly into this framework.
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Table 1: Effect of Union Status on Mean and Quantiles of Log Wage Distribution

Mean 10th Centile 50th Centile 90th Centile
UPE

Bounds [-0.198, 0.469] [-0.012,0.774] [-0.023, 0.659] [-1.058, 0.116]
95% CI [-0.241, 0.545] [-0.643, 1.029] [-0.093, 0.976] [-1.629, 0.390]

GAPE
Estimate 0.179 0.197 0.341 -0.136
95% CI [0.175, 1.183] [0.193, 0.201] [0.333, 0.349] [-0.144, -0.128]

Chernozhukov, Lee, and Rosen (2009) argue that simple sample analogue estimators

of the bounds can be severely biased in finite samples. They therefore propose to add a

precision-correction term to a suitable estimate x 7→ ĝ(x) of the bound-generating func-

tion before applying the maximum and minimum operators in order to obtain median

unbiased estimates. They also show that a similar idea can be used to to construct

asymptotically valid confidence intervals for the true parameter of interest. Since in

our application all covariates are discretely distributed with finite support, these proce-

dures can easily be implemented in a fully nonparametric fashion by using the ordinary

frequency method. The details are described in Appendix B.

We apply the estimators and inference procedures to the 1983–1985 CPS data. In

Table 1, we report estimates of the identified set of the UPE of union status on the mean

and the 10th, 50th, and 90th quantiles of the log wage distribution, together with the

respective 95% confidence intervals for the true parameter. The results are compared

with the RIF-OLS estimates from Firpo, Fortin, and Lemieux (2009). In addition to

that, Figure 1 shows the estimated identified sets and 95% confidence intervals of the

UPE of union status on 19 different quantiles (from the 5th to the 95th). Again, these

results are compared with the RIF-OLS estimates.

Our nonparametric bounds for the UPE of unionization turn out to be quite wide

for all statistics we consider. The estimate of the identified set for the mean effect is

[−0.198, 0.469], allowing for a wide range of possible values. The upper bound on the

quantile effect is highly nonmonotonic, increasing from 0.4 at the 5th quantile to 1.5 at
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Figure 1: Nonparametric bounds on UPE of union status on the quantiles of log wages (shaded
area) with corresponding confidence intervals (dashed area); and estimated GAPE from Firpo,
Fortin, Lemieux (2009) (solid line).

the 15th quantile, then steadily declines to about 0.1 at the 90th quantile, before sharply

increasing to 0.9 at the 95th quantile. In contrast, the lower bound stays roughly constant

around zero from the 5th quantile to the median, and then sharply declines to -1.6 at

the 95th quantile. The confidence intervals for the true parameter include the value 0 at

every quantile, and thus do not rule out that a marginal change in unionization would

have no effect whatsoever on the distribution of log wages.

Based on their point estimates, Firpo, Fortin, and Lemieux (2009) come to a quite
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different conclusion. The unconditional quantile effect they estimate exhibits an inverse

U-shape, first increasing from about 0.1 at the 5th quantile to about 0.4 at the 35th

quantile, before declining and eventually reaching a negative effect of about -0.2 at the

95th quantile. Firpo, Fortin, and Lemieux (2009) interpret these results as if they were

estimates of the UPE, arguing that they provide evidence that ”unionization progressively

increases wages in the three lower quintiles of the distribution, peaking around the 35th

quantile, and actually reduces wages in the top quintile of the distribution” (p. 966).

However, as described in Section 4, the GAPE parameter they actually estimate is

generally different from the UPE, and does not warrant such an interpretation. More

precisely, in the present context the GAPE corresponds to the effect of a small increase

in unionization by exactly the same amount in every subgroup of the population defined

by the covariates X. It would thus coincide with the UPE only if union membership

rates generally changed by the same absolute amount in e.g. all educational groups or

age groups. Since such uniform changes in unionization patterns have not been observed

in the US or other industrialized countries in the past, this is unlikely to be a realistic

assumption. The GAPE thus cannot be used to establish a direct link between uncondi-

tional union membership rates and the distribution of wages.

Instead, our interval estimates of the UPE show that the direct role of unionization is

much more ambiguous, and do not rule out the possibility that changes in overall union

membership rates could leave the aggregate wage distribution entirely unaffected. The

reason for this ambiguity is that covariates other than union membership play a substan-

tial role in the determination of wages. In the presence of such individual heterogeneity

in the population, the effect of say a decline in unionization critically depends on which

individuals are actually leaving the unions. In our framework, the component responsible

for this relationship is the copula C∗, which governs the dependence structure between

union membership and all other characteristics. Since this function is not fully identi-

fied by cross-sectional data, one cannot determine exactly how a change in the overall

unionization rate would affect the unionization rate in every subgroup of the population
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defined through their value of the other explanatory covariates. Thus its impact on the

unconditional wage distribution is only partially identified.

6 Conclusions

In this paper, we study the effect of an infinitesimal change in the marginal distribution

of a binary covariate on some feature of the unconditional distribution of an outcome

variable of interest, holding everything else constant. We show that such parameters are

only partially identified in general, and provide an explicit expression for the identified

set. We implement these results in the context of an empirical application that studies

the effect of unionization on the distribution of wages.

A Proofs

Proof of Theorem 1. Our proof consists of three steps. First, it follows from the differ-

entiability of the copula that

lim
δ→0

FZ,δ(t, x)− FZ(t, x)

δ
= I{0 ≤ t < 1} lim

δ→0
δ−1[C∗(FT (0)− δ, FX1(x1), . . . , FXd

(xd))

− C∗(FT (0), FX1(x1), . . . , FXd
(xd))]

= −I{0 ≤ t < 1}s∗(FX1(x1), . . . , FXd
(xd)).

Second, using the previous result and the continuous mapping theorem, we obtain that

lim
δ→0

FY,δ(y)− FY (y)

δ
= lim

δ→0

∫
FY |T,X(y, t, x)dFZ,δ(t, x)−

∫
FY |T,X(y, t, x)dFZ(t, x)

δ

=

∫
FY |T,X(y, t, x)d

(
lim
δ→0

FZ,δ(t, x)− FZ(t, x)

δ

)
= −

∫
FY |T,X(y, t, x)d (s∗(FX1(x1), . . . , FXd

(xd))I{0 ≤ t < 1})

=

∫
FY |T,X(y, 1, x)− FY |T,X(y, 0, x)ds∗(FX1(x1), . . . , FXd

(xd)).
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Finally, Hadamard differentiability of Γ implies that

lim
δ→0

Γ(FY,δ)− Γ(FY )

δ
= Γ′

(∫
FY |T,X(·, 1, x)− FY |T,X(·, 0, x)ds∗(FX1(x1), . . . , FXd

(xd))

)
=

∫
Γ′(FY |T,X(·, 1, x))− Γ′(FY |T,X(·, 0, x))ds∗(FX1(x1), . . . , FXd

(xd)),

where the last equality follows from the linearity of Γ′.

Proof of Lemma 1. This follows from Theorem 2.2.7 in Nelsen (2006), by straightforward

extension of the arguments given there from the bivariate to the general multivariate

case.

Proof of Theorem 2. Let H = {H : H(x) = s(FX1(x1), . . . , FXd
(xd)), s ∈ S}. Note that

it follows from the properties of S that H is the set of all distribution functions with

support X . It then follows directly that

inf
x∈X

gΓ(x) ≤ sup
H∈H

∫
gΓ(x)dH(x) ≤ sup

x∈X
gΓ(x).

SinceH is the set of all distribution functions with support X , these bounds are sharp.

B Estimation and Inference

In this section, we describe how to construct median unbiased estimates of the bounds on

the UPE, and how to obtain asymptotically valid confidence intervals for the parameter

of interest. We heavily rely upon recent results by Chernozhukov, Lee, and Rosen (2009)

- henceforth CLR - who provide a general theory for estimation and inference in models

with partially identified parameters restricted by intersection bounds. This class includes

our setting as a special case. We first explain the general principles, and then consider

the cases of the mean and quantile UPE in greater detail.

B.1 General Principles

The basic idea of CLR is to add suitable precision-correction terms to a standard estimate

of the bound generating function gΓ before applying the maximum or minimum operator.

To explain this in detail, we first have to introduce some notation.5 For any p ∈ (0, 1),

5Note that our notation slightly differs from the one in CLR since in their paper the upper bound
of the identified set is given by the infimum of the bound generating function, whereas in our case it
is given by its supremum. One could simply transfer our notation back into theirs by considering the
negative version of the bound generating function
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we define

α̂Up = max
x∈X̂U

[ĝ(x)− kps(x)] and α̂Lp = min
x∈X̂L

[ĝ(x) + kps(x)].

Here ĝ(x) is an estimate of the bound generating function gΓ(x), s(x) is the corresponding

standard error, the critical value kp is an estimate of the p-quantile of the maximum of

the stochastic process

Zn(x) :=

(
ĝ(x)− gΓ(x)

s(x)

)
,

and the sets X̂ U and X̂ L are both (random) subsets of the support of X that contain

the points where the maximum and minimum is achieved with probablity tending to one,

respectively. Following the recommendation in CLR, we set

X̂ U = {x ∈ X : ĝΓ(x) ≥ max
x∈X

ĝΓ(x)− 2
√

log(n) sup
x∈X

s(x)}

X̂ L = {x ∈ X : ĝΓ(x) ≤ min
x∈X

ĝΓ(x) + 2
√

log(n) sup
x∈X

s(x)}.

The specific choices of ĝ, s and kp (and thus also those of X̂ U and X̂ L) depend on the

functional Γ of interest, and are explicitly described below for the case of the mean and

the quantile functional. Finally, define the interval Â(p) as

Â(p) = [α̂Lp , α̂
U
p ].

With this notation, the estimate of the identified set A(Γ, T ) is then given by Â(1/2).

In particular, using the choices described below, Theorem 1 in CLR implies that α̂U1/2 is

a consistent and asymptotically median unbiased estimate of the upper bound αU(Γ, T )

of the identified set, in the sense that

Pr(αU(Γ, T ) ≤ α̂U1/2) = 1/2 + o(1).

An analogous result applies for the lower bound. It is furthermore possible to con-

struct two-sided confidence intervals for the true parameter value as follows: Let ∆+
n =

∆nI{∆n > 0}, where ∆n = α̂U1/2 − α̂L1/2, and p̂n = Φ(τn∆+
n )c, where Φ(·) is the standard

normal CDF and τn = log(n)/max[α̂U3/4 − α̂U1/4, α̂
L
3/4 − α̂L1/4]. Then Â(p̂n) provides an

asymptotic 1− c confidence interval for the parameter of interest, such that

inf
α∈A(Γ,T )

Pr(α ∈ Â(p̂n)) ≥ 1− c+ o(1).
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These confidence intervals are thus valid uniformly with respect to the location of the

true parameter value α(Γ, T ) within the bounds. This follows from Theorem 3 in CLR.

B.2 Application to Mean and Quantile UPEs

In this section, we describe how to chose ĝ, s and kp such that the conditions of Theorem 1

and 3 in CLR are satisfied, when Γ(FY ) is either the mean or some quantile of the outcome

distribution. Other statistics of interest could be dealt with using similar arguments.

Throughout this section, we assume that the following standard regularity conditions

hold.

Assumption 1. The sample observations {(Yi, Ti, Xi)}ni=1 are a sequence of independent

and identically distributed random vectors generated according to the model defined in

Section 2.

Assumption 2. (i) The random vector Z = (T,X ′)′ has support {0, 1} × X , where

X = {x1, . . . , xr} ⊂ Rd is finite and consists of r ≥ 2 elements. (ii) For every (t, x) ∈
{0, 1} × X the conditional variance Var(Y |T = t,X = x) = σ2(t, x) exists and is finite.

Assumption 3. The density function fY of Y is bounded away from zero around QY (τ),

is twice continuously differentiable, and the derivatives are uniformly bounded.

Assumption 4. The kernel function K : R → R satisfies (i)
∫
K(y)dy = 1, (ii)∫

yK(y)dy = 0, (iii)
∫
y2K(y)dy < ∞, (iv)

∫
K(y)2dy < ∞, (v) K is Lipschitz con-

tinuous, (vi)
∫
|K(y)|2+µdy <∞, for some µ > 0.

B.2.1 Bounds on the Mean UPE

We start by consider the case where the functional of interest is the mean functional

ΓM(FY ) =
∫
ydFY (y). See Example 1 in Section 3 for details. Here our estimate of the

bound generating function gΓ is given by

ĝ(x) = Ê(Y |T = 1, X = x)− Ê(Y |T = 0, X = x),

where

Ê(Y |T = t,X = x) =
1

N(t, x)

n∑
i=1

YiI{(Ti, Xi) = (t, x)}
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is the estimate of the conditional expectation of Y given T and X, and

N(t, x) =
n∑
i=1

I{(Ti, Xi) = (t, x)}

is the number of observations within a cell defined by a realization of the covariate vector.

The corresponding standard errors can then simply be calculated as

s(x) =

(
σ̂2(1, x)

N(1, x)
+
σ̂2(0, x)

N(0, x)

)1/2

where

σ̂2(t, x) =
1

N(t, x)

n∑
i=1

Y 2
i I{(Ti, Xi) = (t, x)} − Ê(Y |T = t,X = x)2

for t = 0, 1. Now since X is finite and ĝ(x) is independent of ĝ(x̃) for x 6= x̃, it follows

directly from Assumption 1–2 and the central limit theorem that

Zn(x) :=

(
ĝ(x)− gΓ(x)

s(x)

)
d
= Z∞(x) + op(1) in `∞(X ),

where Z∞(x) is a mean zero Gaussian process with Var(Z∞(x)) = 1 for all x and Z∞(x)

being independent of Z∞(x̃) for x 6= x̃. This implies that by Lemma 1 in CLR we can

choose kp as the p-quantile of H∞ = maxx∈X̂ Z∞(x). Due to the simple structure of Z∞,

this quantity is given by kp = Φ−1(p1/r), where r is the cardinality of X̂ L or X̂R, and Φ(·)
is the standard normal distribution function.

B.2.2 Bounds on the Quantile UPE

We now consider the case where the functional of interest is the quantile functional

ΓQ,τ (FY ) = inf{y ∈ R : FY (y) ≥ τ} := QY (τ). See Example 2 in Section 3 for details.

Our estimate of the bound generating function gΓ(x) is given by

ĝ(x) = −
F̂Y |T,X(Q̂Y (τ)|1, x)− F̂Y |T,X(Q̂Y (τ)|0, x)

f̂Y (Q̂Y (τ))
≡ − û(Q̂Y (τ), x)

f̂Y (Q̂Y (τ))
.

Here Q̂Y (τ) is the ordinary sample quantile of Y ,

F̂Y |T,X(y, t, x) =
1

N(t, x)

n∑
i=1

I{Yi ≤ y}I{(Ti, Xi) = (t, x)}.
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is an estimate of the conditional CDF of Y given T and X, and

N(t, x) =
n∑
i=1

I{(Ti, Xi) = (t, x)}

is again the number of observations within a cell defined by a realization of the covariate

vector. Finally, f̂Y is a kernel estimator of the density of Y , given by

f̂Y (y) =
1

n

n∑
i=1

Kh(Yi − y)

where Kh(·) = K(·/h)/h, K is a standard symmetric kernel function that integrates to

one, and h = h(n) is the bandwidth chosen such that as h → 0, nh → ∞ and nh5 → 0.

For our empirical application, we use a Gaussian kernel and a slightly modified version

of ”Silverman’s rule of thumb” to select the bandwidth, setting h = 1.06σ̂Y n
−1/4. The

results are not sensitive to this choice.

For the construction of suitable standard errors, it is important to take into account

that the different components of ĝ converge to the corresponding true values at different

rates: while Q̂Y (τ) and F̂Y |T,X converge at the parametric rate
√
n, the density estimate

f̂Y is of the lower order
√
nh and thus dominates the overall rate of convergence. From an

asymptotic point of view, one could therefore act as if the former two quantities were in

fact known, and compute standard errors that only account for the sampling variability

of the density estimate. However, such an approach would be grossly misleading in our

setting: Both Q̂Y (τ) and f̂Y are computed from the entire sample of size n = 266, 956,

and are thus estimated very precisely. On the other hand, every value of the function

F̂Y |T,X(y, t, x) is computed only from the observations with (Ti, Xi) = (t, x), which are

less than 50 for many cells. We therefore use standard errors and a corresponding critical

value that account for the substantial finite sample variability of F̂Y |T,X through the

inclusion of appropriate ”higher order terms”. In particular, we set

s(x) =
(
s1(x)2 + s2(x)2

)1/2
,

where

s1(x) =

(
û(Q̂Y (τ), x)2

4nhf̂Y (Q̂Y (τ))3

∫
K(v)2dv

)1/2

s2(x) =

(
σ̂2
u(1, x)

f̂Y (Q̂Y (τ))2N(1, x)
+

σ̂2
u(0, x)

f̂Y (Q̂Y (τ))2N(0, x)

)1/2
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and σ̂2
u(t, x) = F̂Y |T,X(y, t, x)(1 − F̂Y |T,X(y, t, x)). Here s1(x) and s2(x) are the contri-

butions of estimating fY and FY |T,X , respectively, to the overall standard error s(x).

Regarding the critical value, we set

kp = Φ−1(p) max
x∈X̂

s1(x)

s(x)
+ Φ−1(p1/r) min

x∈X̂

s2(x)

s(x)
,

where r is the cardinality of X̂ L or X̂R, and Φ(·) is the standard normal CDF.

For the data used in our empirical application, we have that s1(x) ≈ 0 for all x ∈ X
and all τ being considered, so that s(x) ≈ s2(x) and kp ≈ Φ−1(p1/r). Our choices thus

essentially correspond to the case where QY (τ) and fY are known, which is completely

analogous to the case of the mean described in the previous subsection. On the other

hand, our choices are asymptotically valid and satisfy the conditions of Theorem 1 in

CLR. To see this, we can use Assumption 1 and 3–4 together with the usual Taylor

expansion arguments and write

ĝ(x)− gΓ(x) =
u(QY (τ), x)

2fY (QY (τ))2
(f̂Y (QY (τ))− fY (QY (τ))) + op((nh)−1/2)

d
= N

(
0,
u(QY (τ), x)2

4fY (QY (τ))3

∫
K(v)2dv

)
+ op(1)

for each x ∈ X . Furthermore, we have that s(x) = s1(x) +op(s1(x)). It then follows from

the Central Limit Theorem that

Zn(x) :=

(
ĝ(x)− gΓ(x)

s(x)

)
=

(
ĝ(x)− gΓ(x)

s1(x)

)
+ op(1)

d
= Z∞ + op(1) in `∞(X ),

where Z∞ = N (0, 1) is simply a standard normal random variable that does not depend

on x. Hence, by Lemma 1 in CLR any critical value kp equal to Φ−1(p)+op(1) satisfies the

conditions of their Theorem 1. In particular, our choice of kp = Φ−1(p)(1 + Op(h
1/2)) +

Op(h
1/2) = Φ−1(p) +Op(h

1/2) is valid.
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